
J-DSM : A Java Based Framework

for Sharing Objects in a Distributed System

Yunus Emre Selcuk Nadia Erdogan
Istanbul Technical University Istanbul Technical University

Computer Engineering Department Computer Engineering Department
Central Library, Istanbul, Turkey Istanbul, Turkey

Abstract – This paper presents the design and implementation issues for the use of DSM techniques to allow
shared access to objects in an object-oriented distributed environment. J-DSM supports sharing of Java objects,
thus allowing a finer control over the granularity of sharing. J-DSM elaborates on two main classes of shared
objects, mobile and stationary, which can be accessed through DSM and RMI mechanisms, respectively. Shared
objects are uniquely named and manipulated through the J-DSM interface.

Keywords : distributed shared memory, dsm algorithms, consistency and coherence.

1. Introduction

Loosely-coupled distributed systems have
evolved using message passing as the main
paradigm for sharing information. Other
paradigms used in loosely-coupled distributed
systems, such as remote procedure call (RPC),
are usually implemented on top of an
underlying message-passing system. On the
other hand, in tightly coupled architectures, the
paradigm is usually based on shared memory
for its simple programming model. The shared-
memory paradigm has recently been extended
for use in more loosely-coupled architectures
and is known as distributed shared memory
(DSM). DSM systems have many advantages
over message-passing systems. Abstraction by
DSM gives these systems the illusion of
physically shared memory and allows usage of
the shared-memory paradigm [1,2].

Most research done on DSM systems has
concentrated on page-oriented shared memory.
However, recent advances in DSM systems are
providing increasing support for the sharing of
objects rather than portions of memory [3].
This paper presents design and implementation

issues for the use of DSM techniques to allow
shared access to Java objects in an object
oriented distributed environment. This allows a
finer control over the granularity of sharing at
the object level [4,5,6].

Taking a purely DSM-based approach can
be limited. We have adopted a hybrid approach
in J-DSM, where both DSM and RMI
mechanisms are supported for object access, as
function shipping and data shipping models of
communication may be needed to develop
efficient applications. J-DSM elaborates on
two main classes of shared Java objects:
mobile shared-objects (mso) use DSM
mechanisms for. Stationary shared-objects
(sso), on the other hand, are remote objects and
rely on RMI for being used. However, J-DSM
hides all invocation details from user.

2. Design Outline

The current implementation consists of a
set of abstract Java classes that manages both
mobile and stationary shared-objects. A list of
the important classes with their functionality is
given in Figure 1.

Stationary shared-objects do not need
replication. They are remote objects and are
accessed through remote method invocations.
Unlike mso’s, sso’s of the same class can be
created with the same name on different nodes
if they are parts of the solution of a distributed
problem. A Spawner Object is responsible for
the maintenance of all sso’s of one class. The
class that a sso belongs to is called a stationary
DSM class and is derived from an ordinary
user class. Calls to methods of this user class
are invoked from the corresponding DSM
class, considering current status of the sso.
Certain remote methods explained in Section
5.2 are also added for management purposes.
A preprocessor utility is also included which
creates necessary management classes for sso’s
hiding remote invocation details from users.

2.1 Information Structure

We assume an implementation where a
shared object directory is distributed among
nodes that participate the J-DSM system. An
entry of the directory contains management
information for an object with following fields:

Name: Two processes in an application share
an object if they call it by the same name.

Owner: The unique node which owns the only
writable copy of the shared object.

Copyset: Set of nodes that have copies of a
shared object.

Probable Owner: Each node keeps track of the
probable owner of each shared object. This
information provides a sequence of nodes
through which the true owner is located.

Node List: Set of nodes currently participating
in the DSM system.

Status: A shared object may be in one of the
following states at any time:

readable : available and not locked
writable : available, replicas invalidated
available : present and contains valid data
locked : access denied except its owner

Spawner Table : A lookup table to find the
spawner of a given stationary shared object.

3. The DSM Algorithm : Read-
Replication

As we consider read sharing to be the
characteristic of memory references in typical
distributed applications, a read-replication
(multiple reader single writer) [7] strategy is
implemented to enable simultaneous accesses
by different nodes to the same data and to
minimize access latency. A write to a writable
copy requires the use of other replicated copies
be prevented. Therefore, we implement an
invalidation based algorithm.

For providing consistency and coherence, a
simple implementation of the write-update
protocol is likely to be inefficient, because
many replicas may be updated even if some of
them are not going to be accessed in the near
future. Therefore, we use the write-invalidate
protocol for providing release consistency.

4. J-DSM Implementation

Management responsibility of shared
objects is distributed to all nodes . The DSM
algorithm is implemented by server processes
present on each node. Figure 2 depicts the
interactions between several components on a
node. The functionality of each component is
as the following.

DSMImpl the server class that implements J-DSM on a node
DSMInfo contains management info for each shared object
DSMExecutor interprets request messages and takes approp.action
DSMPacketData implements message format
DSMSpawnerInfo keeps RMI management info for stationary objects
DSMSpawnerThread responsible of stationary objects

Figure 1. Class architecture of J-DSM

DSM Server is responsible for maintenance
actions of mso’s. Current state of a mso and its
management data are stored in two hashtables,
DSMDataTable and DSMInfoTable. A DSM
server process listens a UDP port for incoming
messages. A new DSMexecutor thread is
spawned to fulfill each request.

DSMexecutor threads resolve a received
message and take necessary actions like
replying to another DSM thread or calling a
remote method of another DSM server.

Remote Methods that a DSM server
supports are either called by other DSM
servers on different nodes or construct the user
interface, as explained in Section 5.

DSM Spawner is a simplified version of a
DSM server, as an sso needs less management
work than its mobile counterpart. Management
data and current state of a sso is again stored in
hashtables named DataTable and InfoTable.
DataTable is only accessed before an object is
being recreated or after it has been finalized.

Spawner Threads are similar to DSM
threads, except executing fewer management
commands.

6. J-DSM User Interface

Several remote methods constitute the user
interface of J-DSM. Methods related to mso’s
are implemented by the DSMServer class,
while those related to sso’s are implemented
by the DSMSpawner class and the sso itself.
With the following intentions, user processes
call the methods explained below.

6.1 Mobile shared-objects

Create : int CreateObject(...)

The class data and the unique name of the
object to be created are supplied through the
parameters. Local and remote directories are
consulted to see if an object with the given
name already exists. If not, an entry in the
directory is allocated for the object and its
ownership is assigned to the requesting
process. A create error is returned, in case of
any.

Remove : boolean RemoveObject(...)

A local mso is removed from the local
node without looking at its status. No action is
taken for its replicas on other nodes.

DSMImpl

DSMDataTable

DSMInfoTable

Listening
Socket

Remote
Methods

DSMexecutor threads

DSMImpl

DSMDataTable

DSMInfoTable

Listening
Socket

Remote
Methods

DSMSpawner

Listening
Socket

Remote
Methods

DSMSpawner

Listening
Socket

Remote
Methods

InfoTable

DataTable

InfoTable

DataTable

DSMexecutor threads DSMSpawner-
 Threads

User program User programnode i node j

sso’s DSMSpawner-
Threads

sso’s

Figure 2 : Interactions between system components. A DSMSpawnerThread on node i can send
messages to its counterpart on node j, as well as communicating with the DSMSpawner on node j.

Read : Object ReadObject(...)

If a replica of the mso doesn’t exist on the
local node, the entire system is queried for the
true owner of the object. This method returns a
replica of the object for local use by the caller.

Read & Own : Object ReadLockObject (...)

This call returns a valid copy of the object
together with its ownership. The message also
contains an invalidation request.

Write : int ModifyObject(...)

Ownership of the object should be taken
before its modification. If this is not the case,
an access error is returned.

Lock/Unlock : Object LockObject (..)

This method includes two. The probable
owner of the object is searched for within the
DSM system with selective multicast messages
sent to each node on the nodelist of the object,
each by a new thread. The object is locked if
the first flag is true, unlocked otherwise. If the
object is to be locked and the second flag is
true, the object is put in the unavailable state.

6.2 Stationary shared-objects

Create : DSMspawner.CreateOtonomus(...)

This method is similar to that of a mso,
except for the addition of a boolean parameter.
If a flag parameter is true, an object is created
even if another object with the same name
exists elsewhere. Replicas of a sso can only be
created in this way.

Own/lock : DSMobject.DSMownOtonomus(...)

Invalidation request is handled if the block
parameter is true. Otherwise, the method
proceeds the way its counterpart does for a
mso. Another method that should be
implemented by a sso, void transfer(...), is used
within DSMownOtonomus method.

lock : DSMobject.DSMlockOtonomus(...)

This method is similar to that of a mso.
Read/write:

As a sso is not necessarily replicated, their
methods are invoked remotely. Thus reading
and updating members of a sso is possible only
through remote calls. The user should add
read/write methods to the sso class, if required.

7. RESULTS

This paper presents a flexible and portable
Java framework, J-DSM, for distributed shared
objects. The main feature of J-DSM is its
support for both mobile and stationary shared
objects., which improves the flexibility of the
sytem. Users can choose between the two
access protocols to shared objects to suit the
application's semantics.

J-DSM is implemented fully in Java [7]
and is portable to any platform that supports a
JVM (Java Virtual Machine). The prototype
implementation is tested on a network of NT
4.0 and Win9x platforms of Intel processors
and initial results are encouraging. Future
plans include work for improvements in
performance and utilization of the framework
for development of distributed applications.

References:
[1] B.Nitzberg and V.Lo, "Distributed Shared
Memory:Asurvey of Issues and Algorithms",
IEEE Computer, Vol.24, pp.52-60, Aug. 1991.
[2] M.Stumm and S.Zhou,"Algorithms
Implementing Shared Memory", IEEE
Computer, pp.54-64, May 1990.
[3]H.Bal, Programming Distributed Systems,
Silicon Press, Prentice Hall, 1990.
[4] O. K.Sahingoz, “Implementation of a DSM
System Based on Read Replication
Algorithm”, ITU, Ins. of Science and Tech.,
Ms.C. Thesis, 1998
[5] Y.E.Selcuk, “Implementatýon of a
Distributed Shared Memory System”, ITU,Ins.
of Science and Tech., Ms.C. Thesis, 2000
[6] O.K.Sahingoz and N.Erdogan, "A Java
Based DSM System for User Defined Shared
Data Objects", Software and Hardware
Engineering for the 21th Century, Editor N.E.
Mastorakis, WSES Press, 1999
[7] G. Cornell, C.S.Horstmann, Core JAVA,
Sun Microsystems Press, 1997.

