
PARTITIONED OBJECT MODELS
FOR DISTRIBUTED ABSTRACTIONS

Guray YILMAZ
Turkish Air Force Academy

Computer Engineering Department
Yesilyurt, 34807, Istanbul – TURKEY

e-mail : g.yilmaz@hho.edu.tr

Nadia ERDOGAN
Istanbul Technical University

Computer Engineering Department
Ayazaga, 80626, Istanbul – TURKEY

e-mail : erdogan@cs.itu.edu.tr

Abstract - Distributed systems provide sharing of resources and information over a
computer network. In this paper we examine two scalable architectures based on the
partitioned object model for distributed systems.
Index Terms -partitioned object model, distributed shared objects, fragmented objects

1. INTRODUCTION
The concept of an object offers both transparency and flexibility for distributed systems.
The encapsulation of state and its operations into a single object allows a clear
separation between the services provided by an object, its implementation. Aspects such
as communication protocols, replication strategies, and distribution and migration of
state can be completely hidden behind an object's interface. Therefore, adopting an
object based model for distributed systems provides solutions to problems of
transparency and flexibility. In this paper we examine the partitioned object model
which differs significantly from distributed object-based models. According to
partitioned object model, an object is assumed to be physically distributed across
several sites and all distribution aspects of an object, including its location, migration
relocation, and replication, are part of its implementation. We will discuss and compare
two projects that focus on the partitioned object model. The first one is the distributed
shared objects in Globe project which is developed at the Vrije University in
Netherlands [3,4,5].The second one is fragmented objects which is developed by the
SOR group at INRIA in France [1,2].

2. FRAGMENTED OBJECTS
The Object Model: The fragmentation of a single logical entity across several locations
is useful in many distributed applications. On this point of view, SOR group has
proposed the uniform concept of a fragmented object (FO) for designing and building
distributed abstractions. As is usual in object-oriented approach, a FO has two aspects
an external or abstract and an internal or concrete view. Abstractly, a FO appears, to its
external clients, as a single shared object. It is shared by several client objects, localised
in different address spaces, possibly on several sites. It is accessed via a programmer
defined interface. It can offer distinct, strongly typed, interfaces to different clients. Its
components, and in particular their distribution, are not visible. Internally, the FO
encapsulates a set of cooperating fragments. Each fragment is an elementary object (i.e.
a fragment has a centralised representation). The fragments cooperate using lower-level
FOs, such as communication channels. The programmer of a FO, its implementor,
controls the location and the communication between the fragments. For the operating
system, a FO is a group of elementary objects, with a common inter-address-space
communication privilege which is checked by the primitive connective object,
implemented by the system: e.g. communication channels or shared memory regions.

Accessing a Fragmented Object: The abstract interface of a FO is provided to some
client by a local interface fragment of that FO. A fragment is an ordinary local object.
Its public interface may be invoked locally. The client can not distinguish between the
interface of the fragment and that of the FO itself. A method of the fragment interface
can be entirely implemented by the fragment itself, or it can trigger invocations to other
fragments. The internal representation of a FO is fragmented on several address spaces.
The implementor considers criteria such as protection, efficiency and availability, to
decide on the distribution of data among fragments.
Binding to a Fragmented Object: An object must be instantiated before use, and a
client must first bind to a FO. To request access to some particular FO, the client
invokes a binding procedure, associated with the type of the expected interface. This
procedure returns a proxy. Binding takes place in three steps. In the first step, a name
look up yields a provider object for the named interface. In the second step, the binding
request is forwarded, by the distributed object manager, to the particular method of the
provider. In the third step, this method may dynamically instantiate a proxy
implementation, based (for instances) on the user's identity, on the binding request
arguments (e.g. type of access required), on the type of the underlying system or
architecture, or on the load of the client's host.

3 DISTRIBUTED SHARED OBJECTS
 Object Model: The Globe architecture introduces distributed shared objects (DSO)
In this model, processes interact and communicate through DSO. Objects provide
methods made available through interfaces. Objects are passive. Activity is provided by
processes that can share objects and can invoke their methods concurrently. A major
distinction with other object-based models is that an object's state can be physically
distributed through local objects. A local object resides in exactly one address space and
communicates with other local objects to form a distributed object. State and operations
on that state are completely encapsulated by the object, so that all implementation
aspects, including communication protocols, replication strategies, and distribution and
migration of state, are part of the object, but are hidden behind its interface.
Structure of the Distributed Shared Object: A distributed shared object is a
collection of distinct local objects which consist of the object's current value or state,
the object's methods and a collection of interfaces . To simplify the implementation of
new distributed objects, Globe developers have proposed a composite local object that
consists of four (sub)objects [3]: a communication object ,a replication object a
semantics object and a control object .
Semantics Object:This is a local object that implements (part of) the actual semantics of
the distributed object. A developer is responsible for constructing a class object for each
different kind of semantics object that is part of the distributed object.
Communication Object: This is generally a system-provided local object. It is
responsible for handling communication between parts of the distributed object that
reside in different address spaces, offering either point-to-point communication,
multicast facilities, or both.
Replication object:The global state of the distributed object is made up of the state of its
various semantics objects. Semantics objects may be replicated for reasons of fault
tolerance or performance. The replication object is responsible for keeping these
replicas consistent according to some replication strategy.
Control Object: The control object takes care of invocations from client processes, and
controls the interaction between the semantics object and the replication object.

Binding a Distributed Shared Object: Before a process can use a distributed object, it
has to bind to that object. Names are used to allow binding. During binding, code and
data needed to support the object are loaded into the process' address spaces. Multiple
processes can share an object by binding to it simultaneously. The code that is loaded
during binding is contained in a class object, which represents a class of object with the
same implementation. A class object is a local object which contains the
implementation of the methods of such objects. It is used to instantiate a new local
object representing the distributed object. This local object is initialized with the
distributed objects identifier and the address of the chosen communication end-point.
The distributed object can now be accessed through this local object. Depending on the
actual implementation of the class object, the local object can act as a proxy forwarding
requests to another address space, or it can get a copy of the current state of the
distributed object and act as a new replica.

4 DISCUSSION AND CONCLUSION
The two models, details of which are discussed above, differ from other models in the
sense that an object’s state may be distributed and replicated across multiple address
spaces. Distribution and replication schemes are encapsulated by an object; they form
part of its implementation. Fragmented objects are mostly language independent.
Distribution is achieved manually by allowing interfaces to act as object references that
can be freely copied between different address spaces. An important difference with
Globe's distributed shared objects, is that fragmented objects make use of relative object
references. In contrast, Globe's object handles are absolute and globally unique The
most important difference between the two models is that fragmented objects have not
been designed for wide-area networks. For example, there are no facilities for
incorporating object-specific replication strategies. Yet, in Globe model, partitioning,
replication, and migration of an object's state is supported on a per-object basis

REFERENCES

1. M. Makpangou, Y. Gourhant, J.P.LeNarzul, M. Shaphiro, “Structuring Distributed
Applications as Fragmented Objects”, Technical Report 1304, INRIA, Jan., 1991.

2. M. Makpangou, Y. Gourhant, J.P.LeNarzul, M. Shaphiro, “Fragmented Objects for
Distributed Abstractions”, IEEE Software, Oct., 1991.

 3. M.V.Steen, P.Homburg,A.S.Tanenbaum,"The Architectural Design of Globe: A Wide-
Area Distributed Systems”, Internal Report IR-422, Mar., 1997.

4. M. V. Steen, F.J. Hauck, G. Ballintijn, A.S. Tanenbaum. "Algorithmic Design of the
Globe Wide-Area Location Service" Technical Report IR-440, December 1997.

5. M. V. Steen, F.J. Hauck, P. Homburg, and A.S. Tanenbaum. "Locating Objects in Wide-
Area Systems." IEEE Communications Magazine, January 1998, pp. 2-7.

