

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 927−934, 2004.
© Springer-Verlag Berlin Heidelberg 2004

JAWIRO: Enhancing Java with Roles

Yunus Emre Selçuk and Nadia Erdoğan

Istanbul Technical University, Electrical – Electronics Faculty
Computer Eng. Dept., 34469 Ayazaga, Istanbul, Turkey

selcukyu@itu.edu.tr, erdogan@cs.itu.edu.tr

Abstract. This paper introduces a role model named JAWIRO, which enhances
Java with role support. JAWIRO implements features expected of roles,
allowing a role to be acquired, dropped, transferred, suspended, resumed, etc.
The main contribution of the proposed model is the provision of multiple
object-level inheritance together with class-level inheritance. JAWIRO provides
a better means to model dynamically evolving systems and increases the
performance of method calls when compared to class-level inheritance.

1 Introduction

Although the real world mainly consists of objects which constantly change and
evolve, the relationship between an object and its respective class is persistent, static
and exclusive in the class-based object-oriented programming (OOP) paradigm. This
property of OOP makes it suitable for modeling real world objects that can be divided
into distinct classes and never change their classes. The need of a better way for
modeling dynamically evolving entities has led many researchers to come up with
different paradigms such as prototype-based languages [1], dynamic reclassification
[2], subject oriented programming [3], design patterns [4], etc.

OOP requires programmers to define classes that determine the behavior of each
separate role in the modeled system. In a system where objects evolve in time by
acquiring multiple roles, additional classes should be constructed for each possible
combination of roles by using the previously defined classes. Such combination
classes are called intersection classes and they are usually obtained via multiple
inheritance. This approach leads to an exponentially growing tree of a class hierarchy,
which is usually sparsely populated with the necessary objects. Moreover, multiple
inheritance is not supported by all OOP languages where the work of embedding
necessary functionality into the intersection classes will be hard.

This paper presents a role model implementation, JAWIRO, which enhances Java
with role support for better modeling of dynamically evolving real world systems.
JAWIRO provides all expected requirements of roles, as well as providing additional
functionalities without a performance overhead when executing methods.

Yunus Emre Selçuk and Nadia Erdoğan 928

2 Role Based Programming and Role Models

The role concept comes from the theoretical definition where it is the part of a play
that is played by an actor on stage. Roles are different types of behavior that different
types of entities can perform. Kristensen [5] defines a role as follows: A role of an
object is a set of properties which are important for an object to be able to behave in a
certain way expected by a set of other objects. The term role model specifies a style of
designing and implementing roles. Role based programming (RBP) is accepted as a
way to overcome the previously mentioned drawbacks of OOP when modeling
dynamic systems. RBP provides a direct and general way to separate internal and
external behaviors of objects. Besides, RBP extends the concepts of OOP naturally
and elegantly.

When modeling evolving entities, specialization at the instance level is a better
approach than specialization at the class level. In this case, an entity is represented by
multiple objects, each executing a different role that the real-world entity is required
to perform. In role based programming, an object evolves by acquiring new roles and
this type of specialization at the instance level is called object level inheritance. When
multiple objects are involved, the fact that all these objects represent the same entity
is lost in the regular OOP paradigm unless the programmer takes extra precaution to
keep that information such as utilizing a member in each class for labeling purposes.
Role models take this burden from the programmer and provide a mechanism for
object level inheritance.

Object level inheritance successfully models the IsPartOf [6] relation where class
level inheritance elegantly models the IsA [6] relation. As both types of relationship
are required when modeling of real world systems, both types of inheritance should
coexist in an object-oriented environment. Therefore, many role models are
implemented by extending an object-oriented language of choice, such as INADA [7],
DEC-JAVA [8], the works of Gottlob et al. [9] and Lee and Bae [10], etc.

3 JAWIRO: A Role Model for Java

The aim of this work is to design a role model and to extend the Java programming
language with role support. Java has been chosen as the base language because even
though it has advanced capabilities that help to its widespread use, it lacks features to
design and implement roles in order to model dynamic object behaviors. The focus is
to implement an extendible, simple yet powerful role model without the restrictions,
which are elaborated in Section 4, imposed by previous work on role models.

3.1 Role Model of JAWIRO

A role model named JAWIRO is implemented to enhance Java with role support.
JAWIRO lets roles to be acquired, suspended to be resumed later, abandoned or
transferred to another owner without dropping its sub roles. JAWIRO supports all
requirements of roles without any restrictions, including aggregate roles – the only
restriction is imposed by the Java language itself, which does not support multiple

JAWIRO: Enhancing Java with Roles 929

class-level inheritance. The resulting model is a flexible one that enables coexistence
of both regular class-level inheritance and multiple object-level inheritance.

Role model of JAWIRO uses a tree representation for modeling relational
hierarchies of roles. A hierarchical representation enables better modeling of role
ownership relations, as well as more elegant and robust implementation of roles’
primary characteristics.

JAWIRO enables multiple object-level inheritance. A role object can be played by
owners from different classes if it is required for better modeling of a real world
system. This will not cause any ambiguities since a role instance can be played by
only one owner at the same time. However, the mentioned owners should implement
a common interface and the programmer is responsible from this task. This is not an
elegant approach as owners need to implement methods that they do not use directly.
A future enhancement will eliminate this necessity as mentioned in Section 5.

JAWIRO works with a consultation mechanism [8], shown in Figure 1, where the
implicit this parameter points to the object the method call has been forwarded to.

Fig. 1. Consultation mechanism

Basic features of roles defined by Kristensen [5] are implemented by JAWIRO:
− Visibility: The access to an object is restricted by its current view, e.g. current role.
− Dependency: Roles are meaningful only when attached to an owner.
− Identity: The notion that a real world object is defined by all its roles are preserved,

e.g. each role object is aware of its owner and the root of the hierarchy.
− Dynamism: A role can be added to and removed from an object during its lifetime.
− Multiplicity: An entity can have more than one instance of the same role type.

Such roles are called aggregate roles, which are distinguished from each other
with an identifier.

− Abstraction: Roles can be organized in various hierarchical relationships.
− Roles of roles: A role can play other roles, too.

JAWIRO implements the following features as well:
− Class level inheritance can be used together with object level inheritance.
− Some roles of an object can share common structure and behavior. This is achieved

by generating role classes via class level inheritance, e.g. previous feature.
− Multiple object level inheritance is supported.
− Roles can be suspended for a while and resumed later.
− A role can be transferred to another owner without dropping its sub roles.
− An entity could switch between its roles any time it wishes. This means that any of

the roles of an object can be accessed from a reference to any other role.
− Different roles are allowed to have members with same names without conflicts.
− Entities can be queried whether they are currently playing a certain type of role or

a particular role object.

Yunus Emre Selçuk and Nadia Erdoğan 930

Table 1. Application programming interface and important members of JAWIRO. All checking
operations search the entire hierarchy

Methods of RoleInterface
Name Explanation
public boolean addRole(Role r) Adds a new role to this object

public boolean canDelegate(Role r) Checks whether r exists in the same role
hierarchy with this object

public boolean canSwitch(String
className)

Checks whether this object has the given role
type (aggregate or normal)

public Object as(String className) Role switching command.
public Object as(String className,
String identifier) Role switching command for aggregate roles.

public boolean canSwitch(String
className, String identifier)

Checks whether this object has the given
aggregate role type with a specific identifier.

Additional Member of the Actor class
Name Explanation

RoleHierarchy hierarchy Maintains the role hierarchy where this Actor
object is its root.

Additional Member and Methods of the Role class
Name Explanation

RoleInterface owner The object which plays this role. Can be an
instance of Actor, Role or AggregateRole

Actor root Root of the role hierarcy.
public Object playedBy() Returns the object which plays this role.

public Object Actor() Returns the root of the role hierarcy in which
this object exists.

public boolean resign() Permanently loosing this role

public boolean suspend() Temporarily leaving this role for later
resuming

public boolean resume() Resuming this suspended role.
public boolean transfer(RoleInterface
newOwner)

Transfer this role and its sub roles to another
owner.

Additional Member of the AggregateRole class
Name Explanation
String identifier Used for distinction of aggregate roles

API of our role model and some important members are summarized in Table 1.

Real world objects, which can be the root of a role hierarchy, are modeled with the
Actor class. The role objects are modeled with the Role class. The aggregate roles
are implemented by deriving a namesake class via class-level inheritance from Role
class. The backbone of the role model is implemented in the RoleHierarchy class,
where each Actor object has one member of this type. There are two more classes
for representing the relational hierarchy of roles and their instances are member(s) of

JAWIRO: Enhancing Java with Roles 931

Actor and Role classes in order to avoid redundant traversals of the role hierarchy.
These classes are omitted in Table 1, as they are not parts of the user interface.
Actor and role classes implement the same interface, the RoleInterface.

3.2 Using Roles with JAWIRO

To show role usage and the capabilities of JAWIRO, an example containing two
hierarchies is given in Figure 2 is used by the partial code shown in Figure 3. The first
hierarchy is introduced in [9] and the second hierarchy is added to illustrate object
level multiple inheritance. Realization of Figure 2 is omitted due to space constraints;
however, a complete listing can be accessed at [11].

Fig. 2. A sample hierarchy in JAWIRO

Fig. 3. An example of using roles in JAWIRO

Company co1,co2; Employer er;
Supplier su; Customer cu1,cu2;
Person p1,p2; Teacher t;
ProfEmeritus pe; Employee ee1,ee2;
ProjectManager pm1,pm2;

co2=new Company("Black Mesa Lbs","BML");
su=new Supplier();
co2.addRole(su);

co1=new Company("Metacortex","MTCX");
er=new Employer();
co1.addRole(er); //MTCX ready to enlist.
cu1=new Customer(su);
co1.addRole(cu1);
//MTCX becomes a customer of BML

if(co1.canSwitch("examples.Customer"))
//Checking role ownership,1st way
((Customer)er.as("examples.Customer"))
.buy(3); //MTCX buys 4 goods

//Role switching : employer to customer.

p1=new Person("Tom Anderson","843-663");
t=new Teacher("Physics");
p1.addRole(t); //Tom becomes a teacher,
t.suspend();//temporarily stops teaching

t.resume(); //then continues teaching.
ee2=new Employee(er,"453-543");
p2=new Person("Gordon Fast","637-252");
p2.addRole(ee2); //Gordon enters MTCX

t.resign(); //Tom retires,but ...
pe=new ProfEmeritus(t);
p1.addRole(pe);//becomes prof.emeritus.

ee1=new Employee(er,"628-749");
p1.addRole(ee1); //Tom works in MTCX
pm1=new ProjectManager("Vir.Rlt","VR");
ee1.addRole(pm1);
//Tom becomes a project manager
pm2=new ProjectManager("Art.Int","AI");

ee1.addRole(pm2);
//Tom has another project to lead.
pm2.transfer(p2);
cu2=new Customer(su);
p1.addRole(cu2);
//Tom becomes personal customer of BML
if(p1.canDelegate(cu2))
//Checking role ownership,2nd way
cu2.buy(2); /*No need for role
switching, we learned p1 plays cu2*/

932 JAWIRO: Enhancing Java with Roles

3.3 Performance Evaluation

We have decided to measure and compare the cost of execution of programming in
JAWIRO to that of an implementation using class level inheritance to provide
evidence on the feasibility of the proposed model. The middle branch of the role
hierarchy for Person in Figure 2 is implemented by class level inheritance, as in
Figure 4 and then the time needed to execute the whoami method of
ProjectManager when switched from Person is compared to the time it takes
when the same method of AltProjMgr called directly. The whoami method prints
two lines to the standard output, which contain the names of the person and the
managed project.

Fig. 4. Hierarchies used in performance evaluation

Table 2. Performance of JAWIRO compared to regular class-based inheritance. All results are
in milliseconds and for 1000 operations

 JAWIRO Role Model Class Level Inheritance Hierarchy
 Construction Execution Total Construction Execution Total
1st run 47 454 501 31 469 500
2nd run 31 454 485 16 469 485
3rd run 47 453 500 31 453 484
4th run 31 453 484 31 453 484
5th run 47 453 500 15 469 484
6th run 31 453 484 16 453 469
7th run 47 453 500 16 469 485
8th run 32 453 485 16 453 469
9th run 47 453 500 15 437 452
10th run 31 437 468 16 469 485
Average 39.1 451.6 490.7 20.3 459.4 479.4

Execution times are measured with System.currentTimeMillis method.

Constructing the required hierarchy and executing the whoami method are timed
separately and both are repeated 1000 times. The testing process is repeated ten times.
The results obtained with a PC having 256MB RAM, 1.6GHz CPU and JDK1.4.1 are
given in Table 2. Results reveal that although constructing a role hierarchy takes
roughly about twice longer than constructing a class hierarchy, method execution time
is 1.7% shorter when using roles. However, the results for the total times measured
for JAWIRO is 2.3 percent slower than using class-based inheritance in the example.
It should be kept in mind that method execution time is more significant than the time

JAWIRO: Enhancing Java with Roles 933

it takes for constructing a hierarchy because the construction is a one-time process in
typical systems while method execution takes place constantly.

4 Related Work

Readers can refer to [12] for a review and comparison of proposed role models in
programming languages other than Java. Recent works [8,10] with JAVA are
compared with JAWIRO in this chapter, with the addition of the work in Smalltalk by
Gottlob et al. [9] and INADA [7], which is implemented in C++.

INADA [7] is an extension of C++ with role support in a persistent environment
where every type is equal to a role. Roles are presented in a set based fashion, which
is a weaker representation than the relational hierarchy of roles. The limitations of
INADA are its inability to support aggregate roles and the non-existence of methods
for run-time type control. Other primary characteristics of roles are implemented.

The role model proposed by Gottlob et al. [9] is very flexible and supports all
primary characteristics of roles. The only limitation is imposed on aggregate roles:
Sub-roles of aggregate roles are also required to be aggregate roles. However,
aggregate roles can play both regular roles and/or aggregate roles in JAWIRO.

DEC-JAVA [8] bears inspirations from the decorator design pattern [4]. The role
model of DEC-JAVA is based on two kinds of objects: Component objects which
represent a state are embedded in decorator objects. Current state of a real world
object is projected to its behavior by decorator objects. A component object can be
decorated by more than one decorator objects. Nested decorations are also supported
where the outmost decorator can access both inner decorators and inner components.
This property of DEC-JAVA makes it possible to use it as a RBP language that uses
relational hierarchies of roles.

Although DEC-JAVA supports primary characteristics of roles, it limits the user to
object-level inheritance only and does not support class-level inheritance. Moreover,
it doesn’t support methods returning a value and methods can only be evolved by
adding additional code only to the end of them via decorators in DEC-JAVA.

Lee and Bae [10] propose a unique role model where the focus is not the dynamic
evolution but preventing the violation of structural constraints and abnormal role
bindings. The constraints and abnormalities are imposed by the system to be modeled.
In contrast with other models, core objects (actors) are assigned to role object, instead
of assigning roles to actors. When a core object has multiple roles, individual role
objects are grouped into one big, composite role. This prevents a hierarchical relation
between roles but we believe hierarchical representation is a more natural approach.

Lee and Bae’s model [10] is implemented in such a way that supporting aggregate
roles is impossible. The final drawback of Lee and Bae’s model [10] is the missing
Select composition rule. When there are name conflicts (a primary characteristic of
roles) between two roles that form a composite role, this rule enables selection of the
necessary attributes and methods according to the role state at run-time.

Yunus Emre Selçuk and Nadia Erdoğan 934

5 Conclusions and Future Work

As the use of reflection capabilities of Java is kept at minimum, JAWIRO does not
introduce a performance penalty. On the contrary, it gives better performance than
using class-level inheritance. Moreover, JAWIRO does not need further reflection
capabilities of other third party tools. The only tool planned for the future is a simple
preprocessor to eliminate the complex parenthesizing in role switching commands.

 As a future work, persistence capabilities will be added to JAWIRO, so that users
will be able to save entire role hierarchies to disk for later use. The final task for the
future is to enable the use of a member or a method in the role hierarchy without
explicitly mentioning the respective class. If any name conflicts occur, the most
evolved role’s member will be used. This functionality will also remove the necessity
of implementing a common interface in multiple owners of a role that uses multiple
object-level inheritance. However, multiple object-level inheritance will be more
costly than single inheritance as the mentioned functionality needs to be implemented
by using native reflection capabilities of Java.

The only unplanned functionality of JAWIRO is a means to enforce the structural
and behavioral constraints of the real world system to be modeled. However, the
authors believe that this task is up to the programmers, not up to the role model, and it
can be achieved by careful design and proven software engineering methodologies.

References

1. Ungar, D., Smith, R.B.: Self: The Power of Simplicity. In: Proc. ACM Conf. on Object
Oriented Programming Systems, Languages and Applications. (1987) 212–242

2. Drossopoulou, S., Damiani, F., Dezani, C.M.: More Dynamic Object Reclassification:
Fickle. ACM Trans. Programming Languages and Systems 2 (2002) 153–191

3. Wong, R.K., et. al.: A Data Model and Semantics of Objects with Dynamic Roles. In: IEEE
Int’l Conf. On Data Engineering. (1997) 402–411

4. Gamma, E., Helm, R., Johnson, R., Vlissides, V.: Design Patterns Elements of Reusable
Object Oriented Software. Addison Wesley (1994)

5. Kristensen, B.B.: Conceptual Abstraction Theory and Practical Language Issues. Theory
and Practice of Object Systems 2(3) (1996)

6. Zendler, A.M.: Foundation of the Taxonomic Object System. Information and Software
Technology 40 (1998) 475–492

7. Aritsugi, M., Makinouchi, A.: Multiple-Type Objects in an Enhanced C++ Persistent
Programming Language. Software–Practice and Experience 30(2) (2000) 151–174

8. Bettini, L., Capecchi, S., Venneri, B.: Extending Java to Dynamic Object Behaviours.
Electronic Notes in Theoretical Computer Science 82(8) (2003)

9. Gottlob, G., Schrefl, M., Röck, B.: Extending Object-Oriented Systems with Roles. ACM
Trans. Information Systems 14(3) (1996) 268–296

10. Lee, J.-S., Bae, D.-H.: An Enhanced Role Model For Alleviating the Role-Binding
Anomaly. Software–Practice and Experience 32 (2002) 1317–1344

11. http://www.library.itu.edu.tr/~yeselcuk/iscis.html.
12. Selçuk, Y.E., Erdoğan, N.: How to Solve the Inefficiencies of Object Oriented

Programming: A Survey Biased on Role-Based Programming. In: 7th World Multiconf.
Systemics, Cybernetics and Informatics. (2003) 160–165

	1 Introduction
	2 Role Based Programming and Role Models
	3 JAWIRO: A Role Model for Java
	3.1 Role Model of JAWIRO
	3.2 Using Roles with JAWIRO
	3.3 Performance Evaluation

	4 Related Work
	5 Conclusions and Future Work
	References

