
Using Object Oriented Design Patterns to Develop an
Interactive Command System for a CAD Software with

Undo and Redo Support

Mehmet D. AKIN, Nadia ERDOÐAN
Istanbul Technical University
Electrical-Electronics Faculty

Computer Engineering Department
Ayazaga, 80626, Istanbul TURKEY

mdakin@mam.gov.tr
erdogan@cs.itu.edu.tr

Abstract. Although little time has passed since its introduction, object
oriented design patterns have had a worldwide interest. This paper presents
the use of design patterns to develop a flexible and undoable interactive
command system for a CAD software, explaining in detail the design issues
and specific cases where the need for tuning and modification of patterns has
been observed.

Keywords: design patterns, interactive command systems, CAD software

1. Introduction

Object oriented design patterns were first introduced in a book authored by Gamma
E., Helm R. Johnson R. and Vlissides J. called “Design Patterns: Elements of
Reuseable Object-Oriented Software” [1] and received a worldwide acclamation at
the time. The book describes design patterns as "description of communicating
objects and classes that are customized to solve a general design problem in a
particular context".

Design patterns allow solutions that were developed by experienced designers and
programmers to be named and catalogued. One of the short term benefits of design
patterns is the fact that as a result of this naming, they act as a common vocabulary to
simplify and enhance the dialog between developers. They also enable the design to
be discussed at an abstract level without going into details.

Besides being a documentation tool, design patterns can provide flexible and
generic solutions to problems. The outcomes of these solutions can be predetermined
as to their pros and cons.

This paper presents a mechanism developed to handle requests of a CAD software.
A flexible, pluggable and undo/redo-able command and toolbox system is defined.
The following sections introduce the details of desing and implementation phases
with the modifications on the patterns used to meet the requirements of the system.

2. Representation of Visible Objects

CAD like interactive drawing programs usually have primitive and compound
shaped objects. Primitive objects are lines, points, circles, arcs, polygons and simple
text. Compound objects are any set of these primitive objects and they are defined
according to the needs of particular contexts. Compound objects may also be named
as group or composite objects. Its best to use the “Composite” design pattern to
represent the group shape objects to achieve a good result (Figure 1). Each shape class
is derived from an abstract Shape class and they override methods like “draw“ to
provide functionality that differs from one shape to another. Rotate, scale, move and
other attribute changing methods can also be defined in the Shape base class and
overriden in the child classes.

Figure 1. “Composite” Design Pattern Figure 2. “Prototype” Design Pattern

For a flexible system, we may not know the future needs of the user and we need
to allow developers to add new primitive and compound shape objects. The object
system must be flexible to allow this. We have used a shape manager and kept object
class definitions and prototypes in it. So if a new shape class is to be added, it is
registered to the shape manager and its “clone” method is used to create an instance of
new shape class (Figure. 2). The “Prototype” [1] design pattern is applied here to
allow for the control of a centralized and flexible object creation system. The object
manager has a unique instance in the system and it must have a global access point, so
we designed it as a singleton [1], using the Singleton design pattern.

3. Undo and Redo Operations

A complete CAD system should support reliable, unlimited and fast undo-redo
operations. Undoing an operation can be defined as reversing the operation. For

Abstract
Shape

Draw()

Line

Draw()

Composite

Draw()

Abstract Shape

Clone()
…

Abstract Prototype

Clone()

Solid shape ObjectsComposite ShapesSolid Primitive shapes

operation of creating an object, undoing the operation results in deletion of the
created object. Redoing an operation is to re execute the last command that has been
undone, for our example, to recreate the deleted object.

There are different kinds of undo-redo mechanisms used in systems. Some
software allow the user to undo only one operation. Some systems have a limited
undo operation depth using a history buffer. To achieve an unlimited undo and redo
depth, the designer should utilize undo files on disk, therefore the only limitation to
the depth of undo operation is the disk capacity. Creating thousands of objects in an
operation may result in megabytes of data to be transferred during undoing and
redoing the operation.

In CAD applications, most of the operations change the internal state of the object
structure of the system. Undo operation recalls the previous states of the system, and
redo does the reverse. But if one undoes several operations and then makes a single
operation that changes the state of the system, then the previous operations can not be
redone. We call this as a “redo cancellation”

Figure 3. State transitions during undo and redo operations and redo cancellation

As seen in Figure3., the user first executed Operation1 and Operation2. Then
thought that Operation1 was not correct and undone both Operations (Undo1 and
Undo2). But after a while he realized that Operation1 was correct and redid it. At this
point, if the user does not redo Operation2 and instead, executes another operation
(Operation 3) he cannot go back to state S3 again.

Before explaining implementation details about the undo-redo handling mechanism
of the system, a look at the “Command” design pattern and the representation of
operations and tools in the CAD system should be appropriate.

4. Command Design Pattern: Representing Operations and Tools

The command design pattern is used to define requests as objects and to support
undoable operations[1]. Command pattern encapsulates a function . A command
controller can also be used to store the defined solid command prototypes and

Operation 3

S1 S2 S3

Undo 1

Redo1
(Operation 1)

S4

(Operation 2)

System cannot go back to S3
State (Redo Cancellation)

Undo 2
2222222

dispatch user events to a Command Processor. The command processor is responsible
of accepting service requests and performing undo operations [3]. Figure4 depicts the
command controller, command processor, abstract command and solid command
classes.

 Figure 4. Command design pattern and command processor

Command controller accepts request from a user within an event loop (either
selecting from a menu, or using a keyboard shortcut) and creates an appropriate
command object for the request and transfers it to Command Processor. Command
processor, calls the execute method of command object and stores it in a stack for
undoing purposes. Command stores the state information for a possible undo
operation and completes its function. When command controller accepts an undo
request, its sends it to command processor, which calls the undo method of the
command residing on top of the command stack. Command performs the undo
method using previously stored state information.

We have observed that this approach for command processing and object
manipulation does not completely satisfy the needs of a CAD application for the
following reasons.

• The system stores command objects in a stack that limits the undo depth.
• Command object itself is also stored for undoing purposes, this overhead may

seem negligible but considering block operations in which thousands of objects
attributes are changed , the system may suffer from it.

• The interactive behavior and event handling mechanism of CAD programs are
undefined in the command design pattern.

• The system can handle only one command at a time and commands are deleted
after their execution. No sub commands or auxiliary commands are defined.

Abstract
Command

Execute()
Undo()

Solid
Command1

Execute()
Undo()

Solid
Command2

Execute()
Undo()

Command
Processor

Cmd Stack

Execute(cmd)
Undo()

Command
Controller

Event Loop

To solve these problems, we need to define another class for the behavior of
operations to handle user input. In [1], a brief explanation is given for tool classes that
are used for handling user input to manipulate and create objects. We should examine
the CAD systems needs carefully to find out a correct solution.

In CAD like interactive systems, interactive operations are divided into two
phases. In the first phase, the user selects a tool and creates parameters for the tool
interactively using a mouse, keyboard or another input device. For example, the user
who chooses the circle tool, first selects coordinates of the center of the circle by
clicking the mouse button, and drags the mouse to create a circle with the desired
radius. After the second click, the second phase starts; a circle object should be
registered to the system using the parameters that have been entered by the user.

These two operations should be separated from each other to solve the problems
mentioned above. Vlissides [2] also mentions the separation of roles of classes: one
class should be responsible of user input handling, while another class should be
responsible of doing work of undo and redo operations. We call the user input
handling classes as tools and we can derive them from an abstract tool class.

Basic operations in a CAD system may be grouped into categories. Creating
simple, complex or compound objects, selecting objects, modifying attributes of
objects and operations to change the visible status of the project like, zooming,
panning of canvas or hiding a layer are the widely used categories of operations.

Zoom and pan operations should be done without destroying the previously
executed tool. User may wish to zoom into an area to see the details during the
creation of a line, or during a selection operation. To cancel a long operation for just
zooming or panning is not user friendly, and wastes precious user time. This implies a
separation of tool classes as tools and sub-tools.

Another issue about tools is the existence of auxiliary tools for the currently
executing tool. For example, during line drawing, we may give the user an
opportunity to draw a line the same length as another one: user may press a short cut
during the drawing operation and select another line, after which, the first line
operation should be finished and a line with the same length as the selected one
should be added to system. This implies that we should have a command stack and a
messaging mechanism between commands.

Vlissides[2] proposes a system for CAD like interactive systems using visitor and
command design patterns. He defines a tool class and derives creation, selection,
rotation and other tools from this base class, using the tool class as a “Visitor”.
Visitor helps designers to limit sub-classing. In his work, he defines an abstract tool
class and derive other tools from it. Tools are sent to objects and objects send
themselves to the tool objects to start their manipulation. Therefore instead of having
different creation or modification tools for each different shape, we have one method
for each kind of shape in tool classes. This approach reduces sub-classing but does
not reduce the amount of code and actually limits the flexibility of adding new shape

objects to system because the visitor design pattern is not appropriate for changing the
element hierarchy. One virtual method on the base class for each subclass should be
defined and, for each new subclass to be added, a method with a new subclass
parameter need also be added.

Therefore, we’ve chosen not to use the visitor approach, but have defined an
abstract tool class and derived all creational and manipulating tools from it. Sub-Tools
and Auxiliary tools are also derived from this base Tool class (Figure 5.).

For undo purposes, we have changed the name of the command class and defined
an abstract Undo class. All undoable operations are derived from this class. The
prototypes of Solid tool objects are kept in the tool manager. Any new tool object can
be registered to Tool Manager even during run-time. This exploits the dynamic plug-
in capability of system. Any developer, who wants to add new functionality to the
CAD kernel, may define a new tool sub class or classes and compile the code with the
CAD kernel library provided. Developer should register the classes in the entry
function of the dynamicly loadable library. The CAD system either checks the plug-
in files during start-up, or even during run-time, new functions and tools can be
applied.

Figure 5. Tool Manager, Abstract Tool, Solid Tool and Solid Sub Tool Classes

The mouse and keyboard events in the system must be forwarded to the tool
manager. Tool manager packages the events and sends them to the active tool at the
moment, which checks its internal state and executes according to user input. If a sub
tool has been chosen, Tool manager checks the Active tool and if it’s a normal tool, it
pushes it to its stack. After a sub-tool completes its operation, the previous tool is
reactivated. Tools also have a cancel option, in case the user wants to cancel the
operation (pressing a predefined key like “escape”) Tool manager invokes the Cancel
method of the active tool. It stops after executing a clean-up operation .

Tool Manager

Active Tool

Register (Tool)
Dispatch (Event)
SetTool (ToolID)

Abstract Tool

Handle(Event)
Cancel()
Execute()

Solid Tool

Handle(Event)
Cancel()
Execute()

Solid Sub Tool

Handle(Event)
Cancel()
Execute()

Do the operation,
Create undo object,
Register to Undo
Manager

The Undo Manager controls the undo objects. In our CAD kernel, we have an undo
buffer in memory, which holds undo objects. When buffer size is exceeded its content
are written to a file and another file holds size and position information for each undo
object that resides in the file. “Memento” design pattern is used here to provide
storage of undo objects without violating encapsulation. Undo manager keeps track of
both local (in buffer) Undo pointer and a Global (Disk File and buffer) Undo object
pointer, to keep track of the object to which the next undo operation will be applied.
(Figure 6)

Figure 6. Undo buffers and undo operation for group of operations.

For group operations, like multiple object creation or deletion, we first put a
special undo object called Group Marker to undo system, put all undo objects to
system and to mark the end of the block. During the undo operation, if Undo
manager finds a Group marker, it undoes all operations until it encounters another
group marker (Figure 6.). The same mechanism holds for a redo operation.

General structure of the system is shown in (Figure 7), main components for
providing flexibility in the CAD kernel are, project manager, tool manager, undo
manager, object manager . A plug-in loader, layer system, snap and grid mechanisms,
palet, font and symbol managers, and mathematical libraries for geometric operations
are provided.

Global undo pointer

Undo pointer on buffer

Undo buffer

Undo file

Undo Buffer

Group Marker Group Marker

Group Operation

Undo pointer

Figure 7. Block diagram for CAD kernel.

5. Conclusion
The use of object oriented design patterns can be very helpful in CAD like

interactive systems. As every system has its specific needs and concerns, slight
modifications on patterns or making compound design patterns may lead to better
and more satisfying results. We have used several design patterns to guide us in the
design of an interactive command system for a CAD software, with modifications at
certain points to tailor them to the requirements of the system. We have observed
that this approach has provided us flexible solutions to problems encountered during
the development phase.

6. References

[1] Gamma E. Helm R., Johnson R., Vlissides J. "Design Patterns: Elements of Reusable
Object Oriented Software", Addison Wesley, 1995.

[2] Vlissides J., "Tooled Compozite” C++ Tech. Report, September 1999, Vol. 11,No. 8.

[3] Bushmann F., Meunier R., Rohnert H., Sommerland P., Stal M. "A System of Patterns",
John Wiley& Sons Ltd. ,1996.

Object
Prototypes

Tool
Prototypes

Undo
Objects

Projects

CAD Kernel

Object
Manager

Project
Manager

Tool
Manager

Undo
Manager

Plug-in
loader

Paltte, font, math,
symbol libraries etc.

Layers, snap, grid
objects

Screen Parameters,
Reference projects,
Objects etc.

