

PARALLEL HOUGH TRANSFORM ON DCOM ARCHITECTURE

Savas KOSE, Cenker SISMAN
Nadia ERDOGAN

Istanbul Technical University
Electrical-Electronics Engineering Faculty

Computer Eng. Department
Ayazaga, 80626, Istanbul, TURKEY

e-mail:erdogan@cs.itu.edu.tr

ABSTRACT

A model of parallel computation is proposed for
a network of processors which is enhanced with
the infrastructure provided by Distributed
Component Object Model (DCOM)
architecture. A parallelization technique that
utilizes the proposed model is presented for
Hough transform, with its design and
implementation details. The parallel algorithm
is analytically and experimentally evaluated.

Keywords : parallel computing, image
processing, Hough transform.

1. INTRODUCTION

As computer networks and sequential
computers advance, distributed computing
systems, such as networks of heterogenous
workstations or personal computers become an
attractive alternative to expensive, massively
parallel machines. Algorithms related with
image processing and pattern recognition are
usually complex and time consuming. High-
speed computation is needed especially in
pattern recognition applications. Speed can be
attained at low cost if the application can be
divided into a set of tasks and if these can be
optimally assigned to processors on a network.
In this paper, we propose a model of parallel
computation for a network of processors which
are enhanced with the infrastructure provided
by Distributed Component Object Model
architecture and we present the implementation
details of a parallelization technique for Hough

transform to detect circles in a sample image.
Our approach focuses on data partitioning.

The main idea of Hough transform is to map
edge elements in the image space into a
parameter space in such a way that peaks in the
parameter space indicate possible instances of
the sought pattern in the image [1]. The general
algorithm can be applied to circles
parameterized by the equation

(x-a)2+(y-b)2=r2

Reductions in the amount of computation can
be achieved if the gradient direction is
integrated into the algorithm (Fig 1.).
Differentiating the circle equation, recognizing
that dy/dx=tan Ö, and solving for a and b, we
get the following equations that give the
coordinates of the center o a circle, where the
value of the angle Ö can be calculated from the
neighbour pixels for every edge element (x,y).

a = x + r Cos Ö
b = y + r Sin Ö

Fig. 1. Reduction in computation with gradient
information

Sequential algorithm for Hough transform to
detect circles:
 Form an accumulator array of possible
reference points A(a,b) for a certain value of r
and initialize it to zero.
 For each edge point (x,y) and for each value
of r, repeat the following:
 Compute Ö
 Calculate the possible center (a,b)
 Increment the accumulator array:
A(a,b)=A(a,b)+1
 Local maxima in the accumulator array
correspond to possible location of circles in the
image.

2. BASIC STRUCTURE OF COMPONENT
OBJECT MODEL

Due to advances in high-speed networking,
building software as distributed object
applications has become preferable, but still a
considerable amount of time is spent to meet
computational demands on the network [2].
Component Object Model [3] provides an
architecture that supports basic features as
remote invocation, versioning, load balancing
and fault tolerance. Distributed COM (DCOM)
[4] is the distributed extension of COM. It
specifies the additional infrastructure needed to
further extend the benefits of networked
environments. DCOM is a structure that allows
applications to communicate with one another
across a network. In particular, it allows for
sharing of objects that reside on two separate
machines. This means that one can create an
object in one application, then call the methods
of that object from an application that resides
on a different computer. One of the most
important properties of this technology is that it
allows for the distribution of the load of a task
across several machines.

Object Model
COM is set of rules defining object hierarchy.
Methods are processes in procedure form, in
object models. There are two sides in COM
terminology: server and client sides. Server side
contains objects which are created from the
client side by means of interfaces. Processes in
client side invoke objects’ methods. An
interface is a group of functionally-related

abstract methods that must be located on both
of server and client sides. It is a means of
communication between sides. Object class is
an implementation of one or more interfaces. It
is located at server side, it is created by means
of interface methods and its implemented
methods are called from client side. Both
interfaces and objects are identified by 128-bit
identifiers called GUID (globally unique id).
Interface identifier is a GUID known as
interface ID (IID) and object class is identified
by class ID (CLSID). An object instance is an
instantiation of some object class. An object
server is a running instance of a dynamic link
library or an executable, capable of creating and
hosting object instances of one or more classes.
A client is a process that invokes an object’s
methods. IIDs and CLSIDs for specified objects
are stored in a system registry file. In this file,
they are matched with the location of the server
program.

Binary Interface Standard
COM specifies a binary standard that provides
the basis for reusing software components in
their binary form at run time. This ensures
dynamic interoperability of binary objects
possibly built using different programming
languages.

Programming Model
A typical client-server interaction in COM
proceeds as follows: the client starts the
activation phase by calling CoCreateInstance()
with the CLSID of the requested object and the
IID of the requested interface. A service
control manager (SCM- located on both the
client and the server sides) locates the server
and transfers the request to the server SCM. The
server creates an object instance, queries for the
interface, and returns an interface pointer to the
client. Meanwhile, SCM’s on both sides create
Proxy and Stub modules which establish RPC
connection between client and server.
In the method-invocation phase, the client
invokes methods of the interface through the
pointer as if the object resides in its own
address space. All interfaces must inherit from
Iunknown which is an abstract base class with
three methods: QueryInterface():for navigation
between instances of the same object instance;

AddRef(): for incrementing reference counts;
Release(): for decrementing reference counts.
When the client finishes using an interface
pointer, it calls Release() on the pointer.

3. MODEL OF PARALLEL
COMPUTATION

DCOM is the distributed extension of COM. It
extends the remoting architecture across
different machines. It is specified as a set of
extensions layered on top of Distributed
Computing Environment’s Remote Procedure
Call (RPC) Specifications [5]. RPC paradigm
does not provide asynchronous communication.
Therefore, a DCOM specific method call is
synchronous (Fig. 2a). The caller must wait for
the end of dispatching and returning calls. Due
to the lack of asynchronous calls, one cannot
dispatch and activate multiple processes
simultaneously on a multi-computer
environment because before dispatching a new
process, the previous process must be
completed. This prevents maximum parallelism.
While DCOM presents threading models, they
are not supported by several programming
language compilers.

In this paper, we present a new model of
parallel computation that uses operating system
threads on top of DCOM (Fig.2b). The threads
are created at the server side, in a server method
called from client side. The task of this method
is to create thread(s) on the server side and
return synchronously to the caller. As a result,
the threads begin execution in server processing
space, while the caller on the client side
continues its way without waiting for their
termination. Thus, the caller may distribute its
heavy tasks to several processors on the
network, without waiting for them to be
completed. The server thread completion may
be informed to the client side by the inspection
of the client or by an indirect server
acknowledgment call made to the client. The
client-inspection model is suitable for the
parallel computation, because in case of a
failure of one of the servers, the client can
detect which server is down. The client checks
the state of a server thread at certain time
intervals or at a time convenient for it. The act

of checking is accomplished by a client call to a
server object method to inquire the value of a
variable that denotes the state of the thread.

Client Server

2a. Synchronous DCOM call

Client Server

2b. Asynchronous mode of operation

Fig. 2. Synchronous and asynchronous
modes of operation

Parallelization Technique
A network of processors can be used to solve
distributed algorithms based on task
parallelism, where the programmer defines
different types of processes which communicate
and synchronise with each other through
message passing mechanisms over an
interconnection network. In our model of
parallel computation, we consider a parallel
algorithm to consist of a collection of processes
some or all of which can be executed in
parallel on a number of available processors.
On a DCOM based platform, a distributed
algorithm has n server processes (objects) and
one client process (object) to control these
servers. Initially, all processors are free. The
parallel algorithm (the client object) start
execution on an arbitrarily chosen processor.

Shortly after it creates a number of
computational tasks, jobs, to be performed by
partitioning the problem into sub-problems that
are as independent of each other as possible.
Independence is very important, as an increase
in dependency results in higher network traffic
due to transmission of data between processes.
Task to processor mapping is dynamic,
depending on the system state. If a free server
object is available, it is assigned the task,
otherwise, the task is queued in a job queue to
wait for a processor to be free. When a server
object completes execution of a job, it becomes
free. If a task in the queue is waiting to be
executed, then it can be assigned to the
processor just freed. Otherwise, the processor is
queued and waits for a new task to be created.
To exploit effective parallelism on the
distributed system, the client executes the job
assignment algorithm in parallel with the
server objects. When server objects complete
execution of a task, the client gets the partial
results and recombines them to find the
resulting output.

Parallel Hough Transform (PHT)
PHT exploits data parallelism: the problem is
decomposed into smaller subtasks and these are
mapped onto available processors on the
network. The overall implementation is under
the responsibility of a controller process, the
client object, which performs run time
partitioning of PHT data and allows the
algorithm to execute, by dynamically assigning
tasks (jobs) to available processors. When the
client object initialises itself, it determines the
number of computing nodes available on the
network and creates as many server objects,
before partitioning the problem into subtasks.
For a given N*M sized image and radius r, the
client divides the image into d*d sized sub-
images and puts them into a job queue. Every
server object executes a copy of the sequential
Hough transform algorithm, each time with
different input data, as long as waiting sub tasks
exist.

Algorithm executed by server objects:

 Receive d*d sized sub-image and r from client object.
 Calculate the accumulator array A for that value of r.
 Find local maxima in A.
 Pass the results to client object.

Algorithm executed by client object:

 Determine the number of processors available on the
network (N).
 Create server objects into an array server[] (#N servers).
 Create sub problems and put them into a job queue.
 While (queue not empty and not all servers have
completed) do
 For i = 1 to #N do (for each server)

 If (Server[i] is down) then
 Put its job into queue again

 Else If (Server[i] is idle) then
 If (queue not empty) then
 Assign a job to Server[i],

 End If
 Else If (Server[i] has completed) then

 Get results from Server[i],
 Put new jobs into queue if any are created,

 If (queue not empty) then
 Assign a job to Server[i],

 End If
 End If
 End For
 End While
 Merge the partial results and find the final solution.

4. PARALLELIZATION ISSUES

Partitioning of the image : Hough transform is
suitable for parallel implementation because the
adjacency of the edge elements in the image
are not taken into account during the
calculations, and the edge elements can thus be
processed in any order. One may consider
dividing the image into non-overlapping
rectangles which cover the whole image. With
this approach, circles whose radii lie on the
boundary of a rectangle may go undetected.
Therefore, the image should be divided into
overlapping rectangles with a minimum
overlap size of radius r (Fig.3). This increases
the processing time because overlapping
sections of the image are processed twice, and
even worse the corners are processed four times
by server objects.

Partition size : Another important issue is the
selection of the size d of the partitions (arrays)
the image is divided into (Fig.3). If it is taken
very small, there will be too many overlapping
sections, resulting in processing duplication.
On the other hand, selecting a very large size
decreases the degree of parallelism.

Fig. 3. Partitioning of the image into
overlapping sub-images of size d .

Busy waiting loop: The client object does busy
waiting, inquiring the state of the server objects.
This has no direct effect on the processing time
of the algorithm but induces an indirect effect
because an overload on the network traffic is
created by the communication activity.
Therefore, we use a timer activated loop instead
of a busy waiting loop in the client object.
Every time the client is activated by the timer, it
starts to execute the main while loop of its
algorithm. Each time, it calculates an average
server processing time t, which may vary
according to the load of the network, and sets
the next time interval to t. Thus, before starting
the next polling loop, it suspends its execution
for a time interval of t, and resumes execution
at a point in time when the probability of the
servers having completed their jobs will be
high. This mode of operation eliminates
unnecessary network traffic.

5. COMPLEXITY ANALYSIS OF PHT

The complexity of sequential and parallel
Hough transform algorithm for a N*M sized
image is calculated as the following , with

 r : max radius to be found.
 d : size of sub-image.
 m : size of overlapping section.
 N,M : image size.
 n : number of parallel server objects.
 C : complexity

Sequential processing : An N*M sized image
is processed r times to find circles with the radii

1 through r. Thus, its complexity C is equal to
Equ.(3)

C = r NM.
Parallel processing: If we select the size of the
sub-image d as a multiple p of the length of the
radius r, then, d = pr

Optimum case: Now, we assume we have as
many server objects as the number of sub-
images. In this case, we see that the optimum
complexity is independent of the size of the
image.

 C = r NM = rd2 = r (pr)2

Real case: In this case, we have a limited
number n of servers and partitions with
overlapping sections of length m,

 C = (1/n) r NM (d2/(d-m)2)
 = (1/n) r NM (p2r2/(pr-m)2) [Eq.1]

Length of the overlapping section m is greater
or equal to radius r. Taking m=r leads to the
following equation which shows that
complexity is inversely proportional to the
number of server objects:

C = (1/n) r NM (p2/(p-1)2) [Eq.2]

We know that the number of servers n is less
that the number of partitions, that is

 n < NM/(pr-m)2,

This leads us to the equation which gives the
optimum value of p for which the algorithm is
expected to run at optimum speed.

p = 1/r (NM/n)1/2 +1 [Eq.3]

Experiments show that, on a MIMD
architecture, network traffic and processing
speeds of heterogenous computers executing the
servers also play an important role on the total
execution time.

6. EXPERIMENTAL EVALUATION AND
RESULTS

We evaluated the parallel Hough algorithm on a
MIMD platform of Windows NT Pentium
processors each with 32MB memory,
interconnected through a 100 Mbit Ethernet
connection. For our evaluation, we used data for
a 600*600 sized image with r = 25, to detect
circles with radii between 1-25 pixels. We
measured the processing time of the sequential
algorithm as 107 seconds. Figure 4. gives the
total processing and communication (network
transfer) times for different numbers of server
objects and for different values of d.

Partition size : We compared the effect of
different partition sizes, using arrays with
dimensions of 4, 6, 8, and 12 times the length of
radius r, and using varying number of
processors, between 2 and 12. Fig. 4 shows the
results:

• partition size does affect speed-up.
• Optimal partition size is sensitive to

processor number.

Number of processors: We evaluated the
effect of varying number of processors. We
varied the number of processors from 2 to 16.
We observed that speed-up increases as the
number of processors increases. The best
processing time achieved is 13 seconds, with
12 server objects and the length of the partition
d equal to 6r. Optimum value for d found from
Eq.3 is 7*r. Therefore, we conclude that PHF
almost attains optimum speed with 12 server
objects executing on 12 different computers,
and is about 9 times faster than the sequential
implementation. We conclude that PHT
exhibits a consistent and almost linear speed-up
in parallel with the number of processors
involved.

Server
Objects

 P Total
Time
(sec)

Process
Time
(sec)

Network
Transfer
Time (sec)

 4 75 64 11

 6 59 56 3

 8 49 48 1

 2

 12 54 53 1

 4 35 29 6

 6 27 26 1

 8 28 27 1

 4

 12 31 30 1

 4 19 11 8

 6 15 13 2

 8 16 15 1

 8

 12 37 36 1

 4 14 8 6

 6 13 12 1

 8 15 14 1

 12

 12 44 43 1

Fig. 4. Processing times for different values of
n and partition sizes (d=pr)

7. REFERENCES

[1] R.J.Schalkoff, “Digital Image Processing
and Computer Vision”, 1989, John Wiley &
Sons, Inc.
[2] Y.Wang, and P.E.Chung, “Customization of
Distributed Systems Using COM”, IEEE
Concurrency, Vol.6, No. 3, July-Sept. 1998,
pp. 8-12.
[3] “The Component Object Model
Specification” Microsoft Corp., Redmond,
Wash., 1995 http:.//www.microsoft.com/com/.
[4] N.Brown and C.Kindel,”Distributed
Component Object Model Protocol –
DCOM/1.0”, Microsoft Corp., 1998;
http:.//www.microsoft.com/com/.
 [5] “DCE 1.1: Remote Procedure Call
Specification”, The Open Group, Cambridge,
Mass.,1997;http://www.rdg.opengroup.org/publ
ic/pubs/catalog/c706.htm.

