
 

 

A Distributed Execution Environment 

for Shared Java Objects 

 

Nadia Erdogan, Yunus Emre Selcuk, Ozgur Sahingoz 

 

Computer Engineering Department 

Electrical-Electronics Engineering Faculty 

Istanbul Technical University 

80686, Ayazaga, Istanbul-TURKEY 

e-mail: erdogan@cs.itu.edu.tr 

selcukyu@itu.edu.tr 

o.sahingoz@hho.edu.tr 

 

 

Abstract 

This paper discusses the implementation of a distributed execution environment, DJO,  which 

supports the use of shared Java objects for parallel and distributed applications and provides 

the Java programmer with the illusion of a network-wide shared object space on loosely-

coupled distributed systems. DJO  supports shared objects through an implementation of 

multiple reader/single writer write-invalidate  DSM protocol in software, providing the 

shared memory abstraction at object granularity. Object distribution and sharing are 

implemented through the replication mechanism, transparently to application. The system 

enforces mutual consistency among replicas of an object. The main benefits of DJO are 

enhanced availability and performance due to the replicated object model and easier 

application design,  as the underlying software takes care of distribution and memory 

consistency issues. 

Keywords: replication, consistency management, concurrency control, distributed object  

system, Java. 
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1 INTRODUCTION 

In a distributed system, processes and users require access to shared data for meaningful 

cooperation. Traditional high performance computing often uses message passing to share 

information in parallel applications  on distributed environments [22],[17]. With this 

approach, the developer has the advantage to control communication occurring in these 

applications and can adjust it to avoid unnecessary latency which can effect overall 

performance. This control, however, implies a responsibility to plan every communication 

detail. As a result, application development becomes extremely difficult and time consuming 

[10]. 

As an alternative to message passing, the shared memory paradigm offers an attractively 

simple programming model for application development. It has been extended to distributed 

memory machines where it is usually referred to as distributed shared memory  (DSM)  

[18],[16].  DSM provides a logical single address space which is transparently  partitioned 

over a set of physically distinct nodes. Programming with this model removes the need to 

explicitly consider communications, as this is handled by the DSM service,  thus reducing 

application development complexity. Transparency is achieved by applying consistency 

models that take care of propagating changes to the shared information in the distributed 

environment. 

This paper presents  a distributed execution environment for shared Java objects (DJO) with 

its underlying software architecture [19], [20] . DJO is an effort to provide the distributed 

shared memory abstraction at object granularity. It supports the use of shared Java objects for 

parallel and distributed applications, thus providing the Java programmer with the illusion of 

a network-wide shared object space on loosely-coupled distributed systems. 

 During DJO design, we have adapted some of the techniques used in software based 

implementations of DSM systems to address the problems for sharing objects in a distributed 

object system. The design of DJO is based on the replicated object model. Replicated objects 

are local copies of logically shared Java objects. They allow for object methods to be invoked 

locally, eliminating  the need to contact the remote object. DJO software architecture 

implements the multiple reader/single writer write-invalidate protocol to provide a memory 

consistency model  which guarantees a consistent view of  shared object state that matches 

programmer expectations. 
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DJO distributed execution environment consists of a collection of interconnected nodes, 

where each node executes a number of basic components that collectively form the runtime 

system. The runtime system is responsible for cashing replicas of  objects and  also for 

propagating invalidation requests and  local updates of an object to the other replicas. An 

application interested in accessing a shared object contacts its local runtime system, which 

obtains a  replica of the object and maps it into the application’s address space. The 

application can then access the object through local method calls. A critical region encloses 

method invocations that modify the object state. Applications on other nodes can not access 

the replicas of the object  until the control of the critical region is released. Entry and exit to a 

critical region is specified by special operations which alert the system, that, in turn, notifies 

all other nodes that maintain a replica of the shared object through invalidation messages on 

an entry and saves local changes on object state  on an exit. 

DJO is implemented in Java, and shared objects are a direct extension of Java objects. The 

main extension is that object state is distributed, which is  implemented without modifying the 

Java runtime environment. The target application domain of the system includes all types of 

collaborative applications, including groupware and program development environments. 

The layout of the body of the paper is as follows: Section 2 briefly discusses requirements and 

related work. Section 3 describes the read-replication algorithm on which the design of DJO 

is based, followed by the consistency model and coherency protocol that have been 

implemented. Section 4 presents the design of the software architecture.  Section 5 provides 

detailed information on the user interface of the system. Section 6 presents some performance 

measures, and finally Section 7 concludes the paper with directions for future research. 

2 REQUIREMENTS AND RELATED WORK 

A distributed application allows an artibrary number of running  components (programs) 

across any number of address spaces and nodes, cooperating as peers in implementing the 

application. Components of an object-based distributed application communicate and 

cooperate through  shared objects. Shared objects  are fine-grained, fully encapsulated 

passive entities that consist of private internal state and a set of operations by which that state 

can be accessed and modified. Each shared object is an instance of a class.  Users of shared 

objects have several requirements: 

• Location transparent access 
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• Efficient access  

• High performance 

• High availability  

• Fault  tolerance 

Implementation of DJO makes active use of replication  to address the performance and 

availability requirements mentioned above. The system transparently maintains replicas of 

shared Java objects in the address spaces of applications that access them. A replica 

encapsulates a local copy of the replicated object state and offers an interface to manipulate 

this state. Access to a replica is through local method invocations. Thus, by allowing a local 

rather than a remote copy to be accessed, replicas decrease access times, as delays in 

retreiving and updating the object are minimized. Furthermore, replication of shared objects 

also improves performance as concurrent accesses to replicas on several nodes become 

possible. 

Replicas improve availability by making it possible for applications to progress even when 

one or more replicas become temporarily unavailable. Fault tolerance is achieved by ensuring 

that object data is kept consistent. Loss of any one replica does not result in updates being 

lost, if other replicas have copies of the same updates. 

When a sytem concurrently maintains several copies of the same object, their consistency 

should be guaranteed. Different levels of consistency exist. Recent studies show that the 

overhead of coherence protocol messages limits the performance of a system considerably 

[11],[8]. Weak consistency protocols delay moving data and consistency information until 

absolutely required to do so by the memory model, thus reducing communication 

requirements significantly. DJO implements release consistency, which is a variant of weak 

consistency protocol,  through the write-invalidate policy to lower the cost of coherence. DJO 

further tries to hide communication cost by using multithreading to overlap communication 

with computation. 

Over the past decade, many software distributed shared memory systems such as Ivy [15],  

Midway [5], Munin [6] and TreadMarks [2] have been implemented on top of message 

passing hardware or on network of workstations. Early systems were page-based, just 

providing a linear memory of bytes and relied on the underlying memory management unit 

and operating system software for implementation. Recent advances in DSM systems are 

providing increasingly more support for the sharing of objects rather than portions of 
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memory. Several object systems that have been described in the literature provide facilities 

similar to those provided by DJO. Generally, they are based on new language/operating 

system solutions whereas DJO is implemented on Java Virtual Machine, thus providing  a 

portable execution environment independent of  any hardware/software. Some of  these object 

systems  are outlined below. 

Munin [6] is a shared-variable DSM and offers the application developer a set of consistency 

maintenance algorithms. Each algorithm is targeted to a group of shared variables with 

specific characteristics. Indigo [14] is a software DSM system that is implemented on a PVM 

[22] platform. CVM [12] implements a shared memory system based on a user-level library, 

which provides the developer with primitives for synchronization and allocation of shared 

memory. The user can choose between a set of given consistency models. Disom [7] presents 

an object oriented framework for object sharing. Classes are made sharable by inheriting from 

particular super-classes, which define methods that facilitate the exchange of updates among 

interested nodes. The framework provides an implementation of entry consistency. Mushroom 

[13] supports a framework of replicated objects written in Java. Communication is based on 

events, and programmers use events to describe a change that effects the replicas of an object.  

Orca [4] supports object replication and migration with strong consistency guarantees. 

However, all objects in this system must be written in a special Orca language. 

Based on the observation that large and complex systems cause overhead that  offsets their 

benefits, we have tried to keep the design of DJO as simple as possible. Instead of supporting 

multiple consistency models, as many other systems do, a single consistency model, one that 

we think suits groupware applications the most, is provided. We aim at an execution 

environment that is easy to use and  does not burden the application developer with 

unwanted/unneeded abstractions and functionality. However, if needed, more complex 

services could be built on top of those provided. 

3 READ-REPLICATION ALGORITHM 

Several algorithms have been developed for implementing the shared data model [10]. These 

algorithms can be classified according to the strategy  they use to distribute the shared 

entities: migration or replication. Migration implies that only a single copy of an objects 

exists at any time, so the  object should move to the requesting node for exclusive access. 

Replication, on the other hand, allows for multiple copies of the same object to reside in 

several address spaces. Replication reduces the cost of read operations that do not alter the 
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object state, since it is possible to simultaneously execute such operations locally on multiple 

nodes. However, operations that modify the state of the shared object  become more 

expensive because its replicas have to be invalidated or updated to maintain consistency. If 

the ratio of reads over writes is large, this extra expense may be offset. DJO implements the  

Read-Replication : multiple readers/single writer  [1] strategy to distribute shared objects. 

Object invocations are divided into two types: read accesses that do not change the state of 

the object and write accesses that modify the object. DJO allows for either: 

• multiple nodes  with read-only replicas of the shared object - the object is replicated 

on two or more nodes and each node has read access to its copy while none of the 

nodes have write access, or 

• one node with a read/write replica - no two nodes may be modifying separate copies 

of an object at the same time. 

On a request for a read access on a shared object that is currently not local, the system 

communicates with remote nodes to get a read-only replica of the object into the caller’s 

address space, which may only be possible if no writable replica exists in the system. A 

request for a write access to a shared object that is either not local or for which the local node 

has no write permission may only proceed after all replicas at other nodes are invalidated, 

thus preventing them from being accessed.  The read-replication algorithm is consistent 

because  a request for a read access always returns a replica with an internal state that reflects 

the results of the most recent write access. 

3.1 Consistency Maintenance 

As stated in Section 2, replication improves performance by allowing concurrent access to 

replicas at multiple nodes. However, if the concurrent accesses are not controlled, they may 

be executed in an order different from that expected. A memory is coherent if the value 

returned by a read access is always the value that was expected. [1]. Thus, to maintain the 

coherence of shared objects, a mechanism that controls or synchronizes the accesses is 

necessary. A consistency model defines a specific kind of coherence provided by the system 

while a coherency protocol is responsible for managing object data so that the required level 

of consistency is actually provided. 
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3.1.1 The Consistency Model: Release Consistency 

 

Consistency models define the order in which accesses to shared memory  are seen by 

interested parties. A number of different models have been proposed in the literature such as 

sequential consistency, causal consistency, PRAM consistency, weak consistency, release 

consistency, and entry consistency [1]. Consistency models can be divided into two major 

categories: strict models and relaxed models. In general, the stronger the consistency level, 

the higher  is the latency its implementation produces [3]. Strict consistency models order 

each access operation individually, while relaxed models combine a set of operations and 

impose an order on these sets. With strict consistency models, every write access results in an 

invalidation/update operation on all replicas. However, not all applications require to see all 

updates to a shared object, in which case relaxed consistency models perform better [3]. 

Relaxed models allow replicas to become inconsistent and perform coherence operations at 

specific user defined synchronization points within the program. The overall effect is reduced 

network traffic. One disadvantage, however, is that the programmer is expected to label 

programs with synchronization operations that act to separate conflicting sets of access 

operations. 

 

DJO implements Release Consistency which is a variant of relaxed consistency model. [9] to 

maintain the coherence of shared objects. In a release consistent environment, object 

invocations that modify the object (write accesses) require synchronization. Two 

synchronization operations are defined to differentiate between  entry and exit to critical 

regions which enclose write accesses to shared objects: an acquire operation tells the system 

that a critical region is about to be entered and a release operation indicates  that a critical 

region has just been exited. DJO requires  the programmer to determine, for every operation, 

if it modifies the object to which it applies, and to explicitly use these special operations  on 

the target object to signify the beginning and end of a set of object invocation which result in 

modifications on object state. In the current implementation, each shared object that is to be 

write accessed is associated with a synchronization variable, actually a lock, to enforce 

concurrent accesses to happen sequentially.  The system  meets the following conditions, with 

the support of the underlying coherency protocol, to achieve release consistency. 

 

• It does not allow an acquire access to perform  until an up-to-date copy of the shared 

object  associated with the lock  is brought into the address space of the requesting 

application. 

 7



• It is ensured that no replica is accessible by any other application even in read access 

mode while an application is active in a critical region. 

• After a release operation on an object has been completed,  all read access requests of 

other applications are not allowed to proceed until they all receive an updated replica 

into their address space. 

 

3.1.2  The Coherency Protocol 

 

The coherency protocol is responsible for managing shared objects so that the conditions to 

provide release consistency are satisfied. The main issue is the synchronization of write 

accesses to objects in such a way as to insure no application reads old data once a write access 

has been completed on some replica of the object. There are two approaches: write-update 

and write invalidate  [21]. Write-update broadcasts the effects of all write accesses to all 

nodes that have replicas of the shared object. This approach is usually considered to be 

expensive since a broadcast is needed on every write. In the write-invalidate scheme, on the 

other hand, invalidations are sent and modifications are requested. The basic concept is to 

send an invalidation message to all nodes that hold a replica before doing an update. 

Applications ask for updates as they need them. 

 

 

DJO adopts the write-invalidate  protocol and implements it in the following way: 

 

• An object accessed in read-only mode can be replicated on multiple nodes. 

• When an application requests a write access to an object through an acquire 

operation, a multicast message is sent to all nodes that have a read-only replica of the 

object to invalidate them, and all invalidations are acknowledged before acquire can 

proceed. This approach prevents the other applications from reading  object data that 

is out of date. 

• Any application that requests to  read access an object is not allowed to if a writer to 

the object already exists. 

 

With this scheme, updates are propagated only on requests for object access. Therefore, an 

invalidated  replica on a certain node is updated only when it receives an access request. 

Meanwhile, several updates to the object may have taken place on other nodes before 

communication for state transfer becomes necessary.  Furthermore, it should also be noted 
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that, several invalidated replicas with different state data  may exist in the system at any time, 

but all valid replicas will hold the same object state data. 

4 REPLICATED OBJECTS SOFTWARE ARCHITECTURE 

Figure 1. shows the software architecture  that implements the replicated shared object design 

discussed in the previous sections.  A runtime system executes on each node and is 

responsible for  replica management, and propagation of updates and invalidation requests. 

After completing initialization tasks, the system starts listening to a given address for 

incoming request messages  and spawns a new thread to fulfill each request. Applications  

interested  in shared objects contact their local runtime systems. 

A main concern in the design has been to minimize communication overhead, which brings a 

major limitation on performance. We try to hide communication cost by using Java 

multithreading to overlap communication and computation whenever possible. All data 

structures and management routines are thread-safe. 

The software is structured in layers. At the lowest level is the Communication Management 

Module. It is responsible for providing elementary communication mechanisms. Next, the 

Coherency Protocol layer provides routines to perform elementary actions such as transfering 

object state, invalidating replicas, etc. The Synchronization Module at the same level 

implements a locking mechanism to guarantee exclusive access to shared objects. Finally, at 

the highest layer, the Consistency Manager is responsible for implementing the consistency 

semantics. 

4.1 Communication Management Module 

The Communication Management Module provides local and remote communication support. 

Communication between system components takes place through messages that carry 

requests and resulting management information between local and remote threads. A single 

message format has been used for simplicity. Each message contains information about the 

request type, the unique object name,  IP addresses identifying either the source or destination 

of the requesting node, and other fields containing  management information required by the 

request type.   Each   request interprets those fields differently, extracting information 

relevant to its type. Communication is carried out through UDP sockets and RMI [23] calls. 

UDP sockets are used for internal messaging between system components. RMI  calls are 
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used to contact remote nodes, for example, when transferring the state of an object. Multiple 

threads are created for communication via sockets. Threads resolve the received messages and 

take the necessary actions, which could be generating a reply message providing the  

information asked to another thread, or calling a remote method of a runtime system  resident 

on another node. Threads use a particular port to listen to replies to their requests from other 

threads. Figure 2. shows the interactions in the communication module. 

4.2 The Coherency Protocol 

The coherency protocol is implemented by three management components: memory 

management component, ownership management component, and distribution management 

component. 

 

4.2.1 Memory Management Component 

 

Memory on each node in the system is effectively a part of the total shared object space 

and continues to exist as long as the node takes active part in the DJO environment. The 

Memory Management Component is responsible for the management of replicas that are 

resident in the shared address space of each node.  It  resolves a given object descriptor, 

its system-wide unique name, into a location in this address space and processes access 

operations. Each application has direct access to a local memory region which is private 

to the application (heap area), and an indirect access to a shared memory region which is 

the shared address space on the node where storage is allocated for object replicas. An 

invocation on a shared object requires the copying of the replica from the shared memory 

region into the local memory region, thus enabling local method calls on the object. 

 

The shared memory region on a node is organized into two Java Hashtables, ObjStateTable 

and ObjInfoTable, that hold, respectively, current state and management information for the 

replicas that are located on that particular node. ObjStateTable treats objects as if they had no 

specific type, dealing with them as being of type Object, root class of all classes in Java. 

Thus, shared objects of any type can be put in the table. As the type information is lost, a cast 

to the correct form has to be performed while retrieving the object from the table. 
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A valid replica of an object is retrieved from the ObjStateTable on local or remote demand. 

Modification on state of a replica, either resulting from local invocations or transferred from a 

remote node, is stored in this table. 

ObjInfoTable contains management information that is used to locate and transfer object state 

and to invalidate replicas. An entry in the table consists of  the  following fields: 

name: Applications that share an object call it by the same name, which is unique across all 

replicated copies. The name of an object is a user defined character string. The hash tables 

ObjStateTable and ObjInfoTable are actually manipulated using unique object names as the 

keys. 

 

probable owner:  Each shared object in the system has a single owner. The owner of an 

object is a unique node which is either the creator of the object or holds the only writable 

copy of  the object. The probable owner field either points to the true  owner of an object or 

provides a hint through which the true owner of an object may be located. 

 

copyset: Copyset is a set of nodes that hold valid replicas of an object. It is maintained by the 

owner node. 

status: A replica of an object may be in one of the following states at any time.  

 invalid:     an invalidated replica is present on the node.  

 readable: a valid  replica is available and is not locked. 

 writable:  a locked replica is available and its other replicas are invalidated. 

 

Figure 3. shows the resulting state transitions of an object replica on different operations. 

 

Memory Management Component also maintains a data structure, ServerList,  which keeps 

information about the set of nodes that are currently participating the system. The ServerList 

carries addressing information  that is needed to contact the run time systems resident on 

those nodes. 

4.2.2 Ownership Management Component 

 

The Ownership Management  Component is responsible for the administration of the 

ownership of replicas. DJO  adopts the dynamic-distributed scheme for ownership 

management [10]. The owner of an object  is not fixed and moves around the system, hence 
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introducing the problem of locating it. To address this problem, the concept of  probable 

owner has been used. The probable owner  need not own an object  but is responsible for 

tracking its current owner. Each node associates a probable owner  with each replica. This 

information is just a hint.  If the relevant field contains the address of the local node, then that 

node is the true owner of the object. Otherwise, it provides the beginning of a sequence of 

nodes through which the true owner may be located. Requests are forwarded until the true 

owner is reached. The probable owner field is updated whenever an up-to-date copy of the 

object is received. The main activity of this unit is to identify the location of the true owner of 

an object.  

 

4.2.3 Distribution  Management Component 
 

Distribution Management Component has the functionality required to send and receive 

replicas of objects from remote nodes and is closely linked to the Communication Module. A 

transfer operation accepts an object’s name and returns its current internal state and 

management information. It should be noted that, we assume the receiving application to 

already possess the required operation code for the object (its class declaration) and thus, 

transfer only object state.  Otherwise,  the class declarations would need to be dynamically 

loaded, too.  

 

The Distribution Management Component is also responsible for sending out invalidation 

messages before a write access to an object is permitted to proceed. Copyset is passed along  

with the ownership property as a node becomes the new owner of an object. Invalidation 

messages are sent to all nodes  on the copyset to prevent access to old data. The copyset at 

different nodes may be different. However, the owner node knows precisely the set of nodes 

that currently hold a replica of the object.  

 

4.3 Synchronization Module 

Most parallel applications need to use some kind of synchronization mechanism to order and 

control concurrent access to shared objects in cases where access results in modification of 

the object state. DJO  provides locking  primitives to achieve mutual exclusion. When an 

application possesses a lock on an object, it can be sure that it will be granted exclusive 

access to a recent copy of the object. Only the owner of an object can lock it. Therefore, 

ownership of the object has to be gained before applying for a lock. A lock is assigned to an 

application following its request to acquire an object and is set free on its next release request 
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on that object. It is the programmer’s responsibility to take care so that an object does not 

remain locked forever. 

4.4 Consistency Manager 

The Consistency Manager implements the release consistency semantics described  in the 

previous section, which includes access and synchronization operations on shared objects. 

The access operations are directed to the underlying coherency  protocol. Synchronization 

operations are, in turn,  mapped to corresponding operations provided by the synchronization 

module. 

 

 The Consistency Manager also supports acquire and release operations on shared objects. 

The acquire operation allows entry  into a critical region by acquiring a lock from the 

synchronization module. The operation specifies the target object as the parameter of the 

acquire process and, with this information,  the synchronization module can determine if it 

conflicts with another action. For example, some other application may already be holding a 

lock on that particular object. The release operation ends the critical region by notifying the 

coherence protocol to save the object state in the nodal replica. Local modifications made to 

the object  copy in the local memory region  are transmitted to the corresponding entry in the 

ObjStateTable. After the operation completes, the lock is released. 

 

5 USER  INTERFACE 

Shared Java objects in the distributed environment become accessible regardless of their 

location through a small yet powerful set of calls that is supported by the underlying software 

architecture. They  implement the release-consistent memory model, allowing new objects 

and replicas to be created, and replicas to be updated, invalidated or destroyed. They return 

either the desired resulting information or an error code. The user should check the return 

code to insure correct program flow.  

 

The user interface consists of the calls listed in Table 1. The functionality of each is described 

in detail in the following sections and the Appendix section includes sample code that 

demonstrates their use in program context. 
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5.1 Create a Shared Object 

Int djo.CreateObject(Object dsmobject, String ObjName) 
 

Naming as well as shared memory space allocation is achieved with the CreateObject call. An 

application that wishes to introduce a new  shared object uses this call to register it within the 

system. The caller provides the unique name of the object, a string, with the class data, in the 

parameter list. Any other application on a remote node may share access to the object if it 

knows this unique name (identity) of the object. The local runtime system consults local and 

remote   directories to see if an object with the given identity already exists. If an object with 

the given name already exists, the call returns with a nonzero value.  If not, an entry is 

allocated for the object in the ObjInfoTable, where management information is stored. The 

caller node gets the initial ownership of the object. Similarly, a new entry is allocated in the  

ObjStateTable, where a copy of the object state is stored. Thus any remote application that 

requests access to the object can have a replica of it retrieved from the ObjStateTable. A 

replica created on a node remains there until it is explicitly removed. 

 

5.2 Remove a Shared Object  

boolean djo.RemoveObject (String ObjName) 
 

This call removes a local replica and discards all relevant information if it is not in locked 

state. No action is taken for its replicas on remote nodes. The  call returns true on success and 

false on failure. 

 

5.3 Access a Shared Object in Read-Only Mode 

Object djo.ReadObject(String ObjName) 
 

An application issues a ReadObject call before  an attempt to read access an object. The 

ReadObject call brings a copy of the object into the local memory region of the caller so that 

local method invocations can be carried out. The runtime system returns the requested object 

if a valid  replica in the unlocked state already exists on the shared memory region of the 

calling node. If not, one of the following cases will be true: 

  

i) It may be the first time a node which is not the owner of an object is trying to 

access it. Therefore, the local node does not possess  a replica yet. 

 14



ii) An invalid replica exists on the node. That is, an access to the object is requested 

after it has been invalidated due to coherence actions. This means that changes 

have been made to the state of the object, and these changes should be 

transmitted to the local replica before it may be accessed again. As a replica 

already exists,  the probable owner may be contacted. 

 

Case i: A query  message is broadcast to all remote nodes on the ServerList, asking for the 

object. Nodes that hold a valid replica respond to this message. No reply received implies an 

access error to a nonexistent object, in which case the call returns null. Otherwise, the first 

node that responds to the broadcast message is contacted. This node is either the true owner of 

the target object or, is not the owner but holds a valid copy. In the first case,  if the owner has 

restricted access to the object by locking it, null is returned. Otherwise, the owner node adds 

the identity of the caller to the copyset directly. In the second case,  the call initiates an 

operation that locates the true owner and has the identity of the caller added to its copyset. 

Next, object state and management information  are transferred from the owner node to the  

shared memory region of the caller node. The call proceeds to update the probable owner 

field with the current owner of the object, changes object state into readable and returns the 

object to the caller. 

 

Case ii:  Starting with the  probable owner field of the object, a sequence of nodes is scanned 

until a node which is either the true owner of the object or holds a valid copy is located. Next,  

the call proceeds following the steps described in case i. 

 

After the ReadObject call returns with success, the caller receives a copy of  the  object into 

its local memory  region and may issue local method invocations, which are expected to 

access the object state in read-only mode as changes in object state will have no global effect. 

Readers are expected to contact the system by issuing the read-object call  before each access 

( or, after some user-definable period of time) to find out if they still hold a valid copy of the 

object and, if not, to have it updated. 

 

5.4 Receive Exclusive Access to the Shared Object 

Object djo.AcquireObject(String ObjName) 
 
Through the AcquireObject call, an application gets permission to enter a critical region . If 

the call returns with  success, the caller obtains both the most recent version of the object 

copy into its local memory region and a lock on the object that ensures exclusive access. 
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From then on, the caller may issue several updating method calls on the object. The call 

proceeds to consult the true owner of the target object to ask for its ownership if the caller is 

not already its owner. The current owner rejects the request if it  already holds a lock on the 

object. If this is not the case, the current owner puts the object into invalid state and removes 

itself from the copyset. This eliminates the invalidation  it would have otherwise received 

from the new owner of the object. It hands over ownership after updating  the probable owner 

field of the object with the identity of the requesting node and returns object management 

information along with object state data, which is requested only in the case when a valid 

replica is not present on the caller’s address space. Upon receiving the ownership of the target 

object, the new owner node locks the object, putting it into writable state. However, all valid 

replicas of the object need  to be invalidated before allowing access to the object to guarantee 

that no conflicting copies exist. Invalidation messages are sent to all nodes on the copyset of 

the object. The call waits for invalidations to be acknowledged to prevent the existence of old 

copies. After the invalidation process completes, the call purges the copyset as those nodes no 

longer possess  a valid replica, inserts the identity of the local node into the copyset of the 

object and returns the object to the caller, which can then proceed into its critical region. 

Now, method invocations  that result in changes in the object state may be issued. It should be 

noted that these modifications take place  on the copy of the object located in the local 

memory region of the application and  are not transmitted to the replica that resides on the 

shared memory region of the node (and therefore will have no global effect) until the critical 

region is exited through a ReleaseObject call. 

5.5 To Release Exclusive Access and Save Modified Object State 

boolean djo.ReleaseObject(Object Dsmobject,String ObjName) 
 
ReleaseObject call ends activity in a critical region after transmitting local modifications of 

object state to the only replica of the object on the shared memory region.  The call proceeds 

to verify that the caller is the true owner of the object and returns error if there is a conflict. 

Next, the entry allocated to the object in the ObjStateTable is replaced with the new state data 

provided by the caller. Finally, as the object is unlocked, the status field  in the ObjInfoTable 

is updated to readable to reflect the current state. 

 

Normally, a lock is released upon an application’s request to exit a critical region. Therefore, 

the application should take special care so that the object would not remain locked forever. 

The system has no timeout mechanism to automatically release locks. 
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6  PERFORMANCE EVALUATION 

 

We have performed simple tests to evaluate the performance of   DJO system on a LAN 

environment of five INTEL architecture machines (Pentium II 350 MHz with 128 MB RAM) 

connected through a 10 Mbps Ethernet and running Windows 98 SE. JDK 1.3 was used in the 

testing environment. The data was obtained by subtracting the values returned by 

System.currentTimeMillis() method, which was invoked just before and right after DJO calls. 

The tests were repeated 10 times for 15 different objects and the arithmetic average of the 

measurements are reported. Table 2. presents the resulting performance figures, in 

milliseconds.  

 

The tests included a simple application that involved concurrent access, either read or write, 

to shared Java objects by all participating nodes. Objects had a size of approximately 100 

bytes. Each node acquired mutual exclusion before a write-access to an object and released it 

after completion. The measured figures account for the times spent in system calls, as 

described below. 

 

Initialization: time taken to initialize a local runtime system before a node participates the 

DJO environment. Most of the measured time is consumed by the initiation of the Java 

"rmiregistery" process. 

 

Creating new object: time taken to create an object with a unique name and register it within 

the system. 

 

Read-only access: time taken to retrieve a i) locally available or ii) remotely available valid 

replica into the address space of the caller process.   

 

Receive exclusive-access: The total time taken to receive a valid replica in locked state after 

obtaining ownership of object. It includes the time spent to send invalidation messages to 5 

valid object replicas and waiting for arrival of acknowledgement messages. 

 

Release exclusive-access: time taken to transmit local object state to nodal replica and to 

unlock object. 

 

The results presented suggest that DJO can perform well. They were achieved without any 

specific optimization and it should be possible to make significant improvements on them. 
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We further plan to run the system on a larger number of nodes to test it for scalability and to 

observe effects on its performance. 

 

7  CONCLUSION AND FUTURE WORK 

This paper presents the design and implementation of a distributed execution environment for 

shared Java objects. Object sharing is implemented through the replication mechanism. Each 

application requesting access to a shared object receives a copy into its local address space. 

Object access is through invocation of methods provided by the object interface. The system 

enforces mutual consistency among replicas of an object transparently. A prototype 

implementation  of  the system has been completed. 

 

DJO distributed execution environment has several advantages. One main advantage of the 

system is that  it simplifies distributed application design. Programmers may concentrate on 

the application  logic and receive the benefits of a distributed  execution environment  through 

a simple yet powerful user interface, as issues related to distribution, access and consistency 

of shared objects are handled transparently by the underlying system. Programmers do not 

need to write any extra code for object sharing and distribution. 

 

 The replication strategy employed in the distribution of shared objects not only decreases 

access times and increases parallelism, thus resulting in better application performance, but 

also makes  the implementation of fault tolerant system possible. 

 

 Another advantage of the system is its being based on JVM, which ensures portability across 

a variety of hardware and software platforms . 

 

DJO design can be enhanced with certain features. The current implementation does not 

employ a memory management algorithm for replicas on a node. Since the size of the shared 

memory region on a node is physically bounded, only a limited number of replicas can be 

held. The system rejects requests when this limit is reached. However, a better approach 

would be to  remove  replicas to free some  memory space. As future work, we intend to study 

memory replacement algorithms, concentrating on locating objects that are particularly 

suitable for removal.  

 

Another feature which we wish to include in our work is extending shared objects with 

support for security and persistence. The creator of the object can specify a security policy 

 18



during registration and the  system can control access accordingly.  Providing support for 

persistent shared objects would also ease code development  significantly. 
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rd  - readobject  
acq - acquireobject  
rel  - releaseobject  
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             acquire     

  



Table 1.  

 

 

Interface Call Semantics 
Int djo.CreateObject(Objectdsmobject, String 

ObjName) 
Registers a new shared object 

boolean  djo.RemoveObject (String   ObjName) Removes local replica 
Object   djo.ReadObject   (String ObjName) Creates a local replica and permits 

read-only access 
Object  djo.AcquireObject (String ObjName) Provides a locked local replica and 

permits caller to proceed into its 

critical region 
boolean djo.ReleaseObject (Object dsmobject, 

String objName)
Updates local replica and releases 

the lock 
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                               Table 2. 
 

Operation Elapsed Time (ms) 
Initialization 
 

2160 

Creating new object 
 

30 

Read-only access 
     i) local replica 
    ii) remote replica 
 

 
17 
38 

Receive exclusive-access 215 
 

Release exclusive-access 
 

84 
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APPENDIX 

Class declaration for shared Java object penguin:penguin.java 
 
public class penguin implements java.io.Serializable 
{ 
  private int    age; 
  public  int    height; 
  private String nickname; 
  public  String name; 
 
  public penguin() 
  { 
    age = 0; 
    height = 20; 
  } 
  public void setAge( int i ) 
  { 
    age = i; 
  }   
  public int getAge( ) 
  { 
    return age; 
  }   
    public void setHeight( int i ) 
  { 
    height = i; 
  }   
  public int getHeight( ) 
  { 
    return height;  }   
} 
 
Sample code  that creates a shared object named "pepe": 
 
..... 
pepe = new  penguin( ) ; 
pepe.setAge ( 1 ) ; 
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pepe.set.Height ( 25 ) ; 
try  
{ 
   status = djo.CreateObject ( pepe,  "pepe" ) ; 
} 
catch (Exception e ) { .... } 
if ( status != 0 ) { ..... error.... 
.... 
 
 
Sample code  to  read access  the shared object "pepe"  on a node i: 

.... 

int age; 
int height; 
… 
pepe1 = new  penguin( ) ; 
pepe1 = (penguin) djo.ReadObject ( "pepe"); 
age = pepe1.getAge ( ); 
height = pepe1.getHeight ( ); 
..... 
 
Sample code to read/write access the shared object "pepe" in a critical section on a node j: 

….. 

boolean status; 

pepe2 = new  penguin( ) ; 
pepe2 = (penguin) djo.AcquireObject ( "pepe"); 
    pepe2.setAge ( 3 ); 
    pepe2.setHeight ( 40 ); 
 status = (penguin) djo.ReleaseObject ( pepe2, "pepe"); 
...........  
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Captions of figures and tables 
 

 

Figure 1. Overview of replicated object software architecture 

 

Figure 2. Interactions in the Communication Management Module 
 

Figure 3.  State transition of an object replica 

 

 

Table 1.  The User Interface 

 

Table 2.  Measured Performance Figures of DJO 
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