

A Distributed Execution Environment

for Shared Java Objects

Nadia Erdogan, Yunus Emre Selcuk, Ozgur Sahingoz

Computer Engineering Department

Electrical-Electronics Engineering Faculty

Istanbul Technical University

80686, Ayazaga, Istanbul-TURKEY

e-mail: erdogan@cs.itu.edu.tr

selcukyu@itu.edu.tr

o.sahingoz@hho.edu.tr

Abstract

This paper discusses the implementation of a distributed execution environment, DJO, which

supports the use of shared Java objects for parallel and distributed applications and provides

the Java programmer with the illusion of a network-wide shared object space on loosely-

coupled distributed systems. DJO supports shared objects through an implementation of

multiple reader/single writer write-invalidate DSM protocol in software, providing the

shared memory abstraction at object granularity. Object distribution and sharing are

implemented through the replication mechanism, transparently to application. The system

enforces mutual consistency among replicas of an object. The main benefits of DJO are

enhanced availability and performance due to the replicated object model and easier

application design, as the underlying software takes care of distribution and memory

consistency issues.

Keywords: replication, consistency management, concurrency control, distributed object

system, Java.

 1

mailto:erdogan@cs.itu.edu.tr
mailto:selcukyu@itu.edu.tr
mailto:o.sahingoz@hho.edu.tr

1 INTRODUCTION

In a distributed system, processes and users require access to shared data for meaningful

cooperation. Traditional high performance computing often uses message passing to share

information in parallel applications on distributed environments [22],[17]. With this

approach, the developer has the advantage to control communication occurring in these

applications and can adjust it to avoid unnecessary latency which can effect overall

performance. This control, however, implies a responsibility to plan every communication

detail. As a result, application development becomes extremely difficult and time consuming

[10].

As an alternative to message passing, the shared memory paradigm offers an attractively

simple programming model for application development. It has been extended to distributed

memory machines where it is usually referred to as distributed shared memory (DSM)

[18],[16]. DSM provides a logical single address space which is transparently partitioned

over a set of physically distinct nodes. Programming with this model removes the need to

explicitly consider communications, as this is handled by the DSM service, thus reducing

application development complexity. Transparency is achieved by applying consistency

models that take care of propagating changes to the shared information in the distributed

environment.

This paper presents a distributed execution environment for shared Java objects (DJO) with

its underlying software architecture [19], [20] . DJO is an effort to provide the distributed

shared memory abstraction at object granularity. It supports the use of shared Java objects for

parallel and distributed applications, thus providing the Java programmer with the illusion of

a network-wide shared object space on loosely-coupled distributed systems.

 During DJO design, we have adapted some of the techniques used in software based

implementations of DSM systems to address the problems for sharing objects in a distributed

object system. The design of DJO is based on the replicated object model. Replicated objects

are local copies of logically shared Java objects. They allow for object methods to be invoked

locally, eliminating the need to contact the remote object. DJO software architecture

implements the multiple reader/single writer write-invalidate protocol to provide a memory

consistency model which guarantees a consistent view of shared object state that matches

programmer expectations.

 2

DJO distributed execution environment consists of a collection of interconnected nodes,

where each node executes a number of basic components that collectively form the runtime

system. The runtime system is responsible for cashing replicas of objects and also for

propagating invalidation requests and local updates of an object to the other replicas. An

application interested in accessing a shared object contacts its local runtime system, which

obtains a replica of the object and maps it into the application’s address space. The

application can then access the object through local method calls. A critical region encloses

method invocations that modify the object state. Applications on other nodes can not access

the replicas of the object until the control of the critical region is released. Entry and exit to a

critical region is specified by special operations which alert the system, that, in turn, notifies

all other nodes that maintain a replica of the shared object through invalidation messages on

an entry and saves local changes on object state on an exit.

DJO is implemented in Java, and shared objects are a direct extension of Java objects. The

main extension is that object state is distributed, which is implemented without modifying the

Java runtime environment. The target application domain of the system includes all types of

collaborative applications, including groupware and program development environments.

The layout of the body of the paper is as follows: Section 2 briefly discusses requirements and

related work. Section 3 describes the read-replication algorithm on which the design of DJO

is based, followed by the consistency model and coherency protocol that have been

implemented. Section 4 presents the design of the software architecture. Section 5 provides

detailed information on the user interface of the system. Section 6 presents some performance

measures, and finally Section 7 concludes the paper with directions for future research.

2 REQUIREMENTS AND RELATED WORK

A distributed application allows an artibrary number of running components (programs)

across any number of address spaces and nodes, cooperating as peers in implementing the

application. Components of an object-based distributed application communicate and

cooperate through shared objects. Shared objects are fine-grained, fully encapsulated

passive entities that consist of private internal state and a set of operations by which that state

can be accessed and modified. Each shared object is an instance of a class. Users of shared

objects have several requirements:

• Location transparent access

 3

• Efficient access

• High performance

• High availability

• Fault tolerance

Implementation of DJO makes active use of replication to address the performance and

availability requirements mentioned above. The system transparently maintains replicas of

shared Java objects in the address spaces of applications that access them. A replica

encapsulates a local copy of the replicated object state and offers an interface to manipulate

this state. Access to a replica is through local method invocations. Thus, by allowing a local

rather than a remote copy to be accessed, replicas decrease access times, as delays in

retreiving and updating the object are minimized. Furthermore, replication of shared objects

also improves performance as concurrent accesses to replicas on several nodes become

possible.

Replicas improve availability by making it possible for applications to progress even when

one or more replicas become temporarily unavailable. Fault tolerance is achieved by ensuring

that object data is kept consistent. Loss of any one replica does not result in updates being

lost, if other replicas have copies of the same updates.

When a sytem concurrently maintains several copies of the same object, their consistency

should be guaranteed. Different levels of consistency exist. Recent studies show that the

overhead of coherence protocol messages limits the performance of a system considerably

[11],[8]. Weak consistency protocols delay moving data and consistency information until

absolutely required to do so by the memory model, thus reducing communication

requirements significantly. DJO implements release consistency, which is a variant of weak

consistency protocol, through the write-invalidate policy to lower the cost of coherence. DJO

further tries to hide communication cost by using multithreading to overlap communication

with computation.

Over the past decade, many software distributed shared memory systems such as Ivy [15],

Midway [5], Munin [6] and TreadMarks [2] have been implemented on top of message

passing hardware or on network of workstations. Early systems were page-based, just

providing a linear memory of bytes and relied on the underlying memory management unit

and operating system software for implementation. Recent advances in DSM systems are

providing increasingly more support for the sharing of objects rather than portions of

 4

memory. Several object systems that have been described in the literature provide facilities

similar to those provided by DJO. Generally, they are based on new language/operating

system solutions whereas DJO is implemented on Java Virtual Machine, thus providing a

portable execution environment independent of any hardware/software. Some of these object

systems are outlined below.

Munin [6] is a shared-variable DSM and offers the application developer a set of consistency

maintenance algorithms. Each algorithm is targeted to a group of shared variables with

specific characteristics. Indigo [14] is a software DSM system that is implemented on a PVM

[22] platform. CVM [12] implements a shared memory system based on a user-level library,

which provides the developer with primitives for synchronization and allocation of shared

memory. The user can choose between a set of given consistency models. Disom [7] presents

an object oriented framework for object sharing. Classes are made sharable by inheriting from

particular super-classes, which define methods that facilitate the exchange of updates among

interested nodes. The framework provides an implementation of entry consistency. Mushroom

[13] supports a framework of replicated objects written in Java. Communication is based on

events, and programmers use events to describe a change that effects the replicas of an object.

Orca [4] supports object replication and migration with strong consistency guarantees.

However, all objects in this system must be written in a special Orca language.

Based on the observation that large and complex systems cause overhead that offsets their

benefits, we have tried to keep the design of DJO as simple as possible. Instead of supporting

multiple consistency models, as many other systems do, a single consistency model, one that

we think suits groupware applications the most, is provided. We aim at an execution

environment that is easy to use and does not burden the application developer with

unwanted/unneeded abstractions and functionality. However, if needed, more complex

services could be built on top of those provided.

3 READ-REPLICATION ALGORITHM

Several algorithms have been developed for implementing the shared data model [10]. These

algorithms can be classified according to the strategy they use to distribute the shared

entities: migration or replication. Migration implies that only a single copy of an objects

exists at any time, so the object should move to the requesting node for exclusive access.

Replication, on the other hand, allows for multiple copies of the same object to reside in

several address spaces. Replication reduces the cost of read operations that do not alter the

 5

object state, since it is possible to simultaneously execute such operations locally on multiple

nodes. However, operations that modify the state of the shared object become more

expensive because its replicas have to be invalidated or updated to maintain consistency. If

the ratio of reads over writes is large, this extra expense may be offset. DJO implements the

Read-Replication : multiple readers/single writer [1] strategy to distribute shared objects.

Object invocations are divided into two types: read accesses that do not change the state of

the object and write accesses that modify the object. DJO allows for either:

• multiple nodes with read-only replicas of the shared object - the object is replicated

on two or more nodes and each node has read access to its copy while none of the

nodes have write access, or

• one node with a read/write replica - no two nodes may be modifying separate copies

of an object at the same time.

On a request for a read access on a shared object that is currently not local, the system

communicates with remote nodes to get a read-only replica of the object into the caller’s

address space, which may only be possible if no writable replica exists in the system. A

request for a write access to a shared object that is either not local or for which the local node

has no write permission may only proceed after all replicas at other nodes are invalidated,

thus preventing them from being accessed. The read-replication algorithm is consistent

because a request for a read access always returns a replica with an internal state that reflects

the results of the most recent write access.

3.1 Consistency Maintenance

As stated in Section 2, replication improves performance by allowing concurrent access to

replicas at multiple nodes. However, if the concurrent accesses are not controlled, they may

be executed in an order different from that expected. A memory is coherent if the value

returned by a read access is always the value that was expected. [1]. Thus, to maintain the

coherence of shared objects, a mechanism that controls or synchronizes the accesses is

necessary. A consistency model defines a specific kind of coherence provided by the system

while a coherency protocol is responsible for managing object data so that the required level

of consistency is actually provided.

 6

3.1.1 The Consistency Model: Release Consistency

Consistency models define the order in which accesses to shared memory are seen by

interested parties. A number of different models have been proposed in the literature such as

sequential consistency, causal consistency, PRAM consistency, weak consistency, release

consistency, and entry consistency [1]. Consistency models can be divided into two major

categories: strict models and relaxed models. In general, the stronger the consistency level,

the higher is the latency its implementation produces [3]. Strict consistency models order

each access operation individually, while relaxed models combine a set of operations and

impose an order on these sets. With strict consistency models, every write access results in an

invalidation/update operation on all replicas. However, not all applications require to see all

updates to a shared object, in which case relaxed consistency models perform better [3].

Relaxed models allow replicas to become inconsistent and perform coherence operations at

specific user defined synchronization points within the program. The overall effect is reduced

network traffic. One disadvantage, however, is that the programmer is expected to label

programs with synchronization operations that act to separate conflicting sets of access

operations.

DJO implements Release Consistency which is a variant of relaxed consistency model. [9] to

maintain the coherence of shared objects. In a release consistent environment, object

invocations that modify the object (write accesses) require synchronization. Two

synchronization operations are defined to differentiate between entry and exit to critical

regions which enclose write accesses to shared objects: an acquire operation tells the system

that a critical region is about to be entered and a release operation indicates that a critical

region has just been exited. DJO requires the programmer to determine, for every operation,

if it modifies the object to which it applies, and to explicitly use these special operations on

the target object to signify the beginning and end of a set of object invocation which result in

modifications on object state. In the current implementation, each shared object that is to be

write accessed is associated with a synchronization variable, actually a lock, to enforce

concurrent accesses to happen sequentially. The system meets the following conditions, with

the support of the underlying coherency protocol, to achieve release consistency.

• It does not allow an acquire access to perform until an up-to-date copy of the shared

object associated with the lock is brought into the address space of the requesting

application.

 7

• It is ensured that no replica is accessible by any other application even in read access

mode while an application is active in a critical region.

• After a release operation on an object has been completed, all read access requests of

other applications are not allowed to proceed until they all receive an updated replica

into their address space.

3.1.2 The Coherency Protocol

The coherency protocol is responsible for managing shared objects so that the conditions to

provide release consistency are satisfied. The main issue is the synchronization of write

accesses to objects in such a way as to insure no application reads old data once a write access

has been completed on some replica of the object. There are two approaches: write-update

and write invalidate [21]. Write-update broadcasts the effects of all write accesses to all

nodes that have replicas of the shared object. This approach is usually considered to be

expensive since a broadcast is needed on every write. In the write-invalidate scheme, on the

other hand, invalidations are sent and modifications are requested. The basic concept is to

send an invalidation message to all nodes that hold a replica before doing an update.

Applications ask for updates as they need them.

DJO adopts the write-invalidate protocol and implements it in the following way:

• An object accessed in read-only mode can be replicated on multiple nodes.

• When an application requests a write access to an object through an acquire

operation, a multicast message is sent to all nodes that have a read-only replica of the

object to invalidate them, and all invalidations are acknowledged before acquire can

proceed. This approach prevents the other applications from reading object data that

is out of date.

• Any application that requests to read access an object is not allowed to if a writer to

the object already exists.

With this scheme, updates are propagated only on requests for object access. Therefore, an

invalidated replica on a certain node is updated only when it receives an access request.

Meanwhile, several updates to the object may have taken place on other nodes before

communication for state transfer becomes necessary. Furthermore, it should also be noted

 8

that, several invalidated replicas with different state data may exist in the system at any time,

but all valid replicas will hold the same object state data.

4 REPLICATED OBJECTS SOFTWARE ARCHITECTURE

Figure 1. shows the software architecture that implements the replicated shared object design

discussed in the previous sections. A runtime system executes on each node and is

responsible for replica management, and propagation of updates and invalidation requests.

After completing initialization tasks, the system starts listening to a given address for

incoming request messages and spawns a new thread to fulfill each request. Applications

interested in shared objects contact their local runtime systems.

A main concern in the design has been to minimize communication overhead, which brings a

major limitation on performance. We try to hide communication cost by using Java

multithreading to overlap communication and computation whenever possible. All data

structures and management routines are thread-safe.

The software is structured in layers. At the lowest level is the Communication Management

Module. It is responsible for providing elementary communication mechanisms. Next, the

Coherency Protocol layer provides routines to perform elementary actions such as transfering

object state, invalidating replicas, etc. The Synchronization Module at the same level

implements a locking mechanism to guarantee exclusive access to shared objects. Finally, at

the highest layer, the Consistency Manager is responsible for implementing the consistency

semantics.

4.1 Communication Management Module

The Communication Management Module provides local and remote communication support.

Communication between system components takes place through messages that carry

requests and resulting management information between local and remote threads. A single

message format has been used for simplicity. Each message contains information about the

request type, the unique object name, IP addresses identifying either the source or destination

of the requesting node, and other fields containing management information required by the

request type. Each request interprets those fields differently, extracting information

relevant to its type. Communication is carried out through UDP sockets and RMI [23] calls.

UDP sockets are used for internal messaging between system components. RMI calls are

 9

used to contact remote nodes, for example, when transferring the state of an object. Multiple

threads are created for communication via sockets. Threads resolve the received messages and

take the necessary actions, which could be generating a reply message providing the

information asked to another thread, or calling a remote method of a runtime system resident

on another node. Threads use a particular port to listen to replies to their requests from other

threads. Figure 2. shows the interactions in the communication module.

4.2 The Coherency Protocol

The coherency protocol is implemented by three management components: memory

management component, ownership management component, and distribution management

component.

4.2.1 Memory Management Component

Memory on each node in the system is effectively a part of the total shared object space

and continues to exist as long as the node takes active part in the DJO environment. The

Memory Management Component is responsible for the management of replicas that are

resident in the shared address space of each node. It resolves a given object descriptor,

its system-wide unique name, into a location in this address space and processes access

operations. Each application has direct access to a local memory region which is private

to the application (heap area), and an indirect access to a shared memory region which is

the shared address space on the node where storage is allocated for object replicas. An

invocation on a shared object requires the copying of the replica from the shared memory

region into the local memory region, thus enabling local method calls on the object.

The shared memory region on a node is organized into two Java Hashtables, ObjStateTable

and ObjInfoTable, that hold, respectively, current state and management information for the

replicas that are located on that particular node. ObjStateTable treats objects as if they had no

specific type, dealing with them as being of type Object, root class of all classes in Java.

Thus, shared objects of any type can be put in the table. As the type information is lost, a cast

to the correct form has to be performed while retrieving the object from the table.

 10

A valid replica of an object is retrieved from the ObjStateTable on local or remote demand.

Modification on state of a replica, either resulting from local invocations or transferred from a

remote node, is stored in this table.

ObjInfoTable contains management information that is used to locate and transfer object state

and to invalidate replicas. An entry in the table consists of the following fields:

name: Applications that share an object call it by the same name, which is unique across all

replicated copies. The name of an object is a user defined character string. The hash tables

ObjStateTable and ObjInfoTable are actually manipulated using unique object names as the

keys.

probable owner: Each shared object in the system has a single owner. The owner of an

object is a unique node which is either the creator of the object or holds the only writable

copy of the object. The probable owner field either points to the true owner of an object or

provides a hint through which the true owner of an object may be located.

copyset: Copyset is a set of nodes that hold valid replicas of an object. It is maintained by the

owner node.

status: A replica of an object may be in one of the following states at any time.

 invalid: an invalidated replica is present on the node.

 readable: a valid replica is available and is not locked.

 writable: a locked replica is available and its other replicas are invalidated.

Figure 3. shows the resulting state transitions of an object replica on different operations.

Memory Management Component also maintains a data structure, ServerList, which keeps

information about the set of nodes that are currently participating the system. The ServerList

carries addressing information that is needed to contact the run time systems resident on

those nodes.

4.2.2 Ownership Management Component

The Ownership Management Component is responsible for the administration of the

ownership of replicas. DJO adopts the dynamic-distributed scheme for ownership

management [10]. The owner of an object is not fixed and moves around the system, hence

 11

introducing the problem of locating it. To address this problem, the concept of probable

owner has been used. The probable owner need not own an object but is responsible for

tracking its current owner. Each node associates a probable owner with each replica. This

information is just a hint. If the relevant field contains the address of the local node, then that

node is the true owner of the object. Otherwise, it provides the beginning of a sequence of

nodes through which the true owner may be located. Requests are forwarded until the true

owner is reached. The probable owner field is updated whenever an up-to-date copy of the

object is received. The main activity of this unit is to identify the location of the true owner of

an object.

4.2.3 Distribution Management Component

Distribution Management Component has the functionality required to send and receive

replicas of objects from remote nodes and is closely linked to the Communication Module. A

transfer operation accepts an object’s name and returns its current internal state and

management information. It should be noted that, we assume the receiving application to

already possess the required operation code for the object (its class declaration) and thus,

transfer only object state. Otherwise, the class declarations would need to be dynamically

loaded, too.

The Distribution Management Component is also responsible for sending out invalidation

messages before a write access to an object is permitted to proceed. Copyset is passed along

with the ownership property as a node becomes the new owner of an object. Invalidation

messages are sent to all nodes on the copyset to prevent access to old data. The copyset at

different nodes may be different. However, the owner node knows precisely the set of nodes

that currently hold a replica of the object.

4.3 Synchronization Module

Most parallel applications need to use some kind of synchronization mechanism to order and

control concurrent access to shared objects in cases where access results in modification of

the object state. DJO provides locking primitives to achieve mutual exclusion. When an

application possesses a lock on an object, it can be sure that it will be granted exclusive

access to a recent copy of the object. Only the owner of an object can lock it. Therefore,

ownership of the object has to be gained before applying for a lock. A lock is assigned to an

application following its request to acquire an object and is set free on its next release request

 12

on that object. It is the programmer’s responsibility to take care so that an object does not

remain locked forever.

4.4 Consistency Manager

The Consistency Manager implements the release consistency semantics described in the

previous section, which includes access and synchronization operations on shared objects.

The access operations are directed to the underlying coherency protocol. Synchronization

operations are, in turn, mapped to corresponding operations provided by the synchronization

module.

 The Consistency Manager also supports acquire and release operations on shared objects.

The acquire operation allows entry into a critical region by acquiring a lock from the

synchronization module. The operation specifies the target object as the parameter of the

acquire process and, with this information, the synchronization module can determine if it

conflicts with another action. For example, some other application may already be holding a

lock on that particular object. The release operation ends the critical region by notifying the

coherence protocol to save the object state in the nodal replica. Local modifications made to

the object copy in the local memory region are transmitted to the corresponding entry in the

ObjStateTable. After the operation completes, the lock is released.

5 USER INTERFACE

Shared Java objects in the distributed environment become accessible regardless of their

location through a small yet powerful set of calls that is supported by the underlying software

architecture. They implement the release-consistent memory model, allowing new objects

and replicas to be created, and replicas to be updated, invalidated or destroyed. They return

either the desired resulting information or an error code. The user should check the return

code to insure correct program flow.

The user interface consists of the calls listed in Table 1. The functionality of each is described

in detail in the following sections and the Appendix section includes sample code that

demonstrates their use in program context.

 13

5.1 Create a Shared Object

Int djo.CreateObject(Object dsmobject, String ObjName)

Naming as well as shared memory space allocation is achieved with the CreateObject call. An

application that wishes to introduce a new shared object uses this call to register it within the

system. The caller provides the unique name of the object, a string, with the class data, in the

parameter list. Any other application on a remote node may share access to the object if it

knows this unique name (identity) of the object. The local runtime system consults local and

remote directories to see if an object with the given identity already exists. If an object with

the given name already exists, the call returns with a nonzero value. If not, an entry is

allocated for the object in the ObjInfoTable, where management information is stored. The

caller node gets the initial ownership of the object. Similarly, a new entry is allocated in the

ObjStateTable, where a copy of the object state is stored. Thus any remote application that

requests access to the object can have a replica of it retrieved from the ObjStateTable. A

replica created on a node remains there until it is explicitly removed.

5.2 Remove a Shared Object

boolean djo.RemoveObject (String ObjName)

This call removes a local replica and discards all relevant information if it is not in locked

state. No action is taken for its replicas on remote nodes. The call returns true on success and

false on failure.

5.3 Access a Shared Object in Read-Only Mode

Object djo.ReadObject(String ObjName)

An application issues a ReadObject call before an attempt to read access an object. The

ReadObject call brings a copy of the object into the local memory region of the caller so that

local method invocations can be carried out. The runtime system returns the requested object

if a valid replica in the unlocked state already exists on the shared memory region of the

calling node. If not, one of the following cases will be true:

i) It may be the first time a node which is not the owner of an object is trying to

access it. Therefore, the local node does not possess a replica yet.

 14

ii) An invalid replica exists on the node. That is, an access to the object is requested

after it has been invalidated due to coherence actions. This means that changes

have been made to the state of the object, and these changes should be

transmitted to the local replica before it may be accessed again. As a replica

already exists, the probable owner may be contacted.

Case i: A query message is broadcast to all remote nodes on the ServerList, asking for the

object. Nodes that hold a valid replica respond to this message. No reply received implies an

access error to a nonexistent object, in which case the call returns null. Otherwise, the first

node that responds to the broadcast message is contacted. This node is either the true owner of

the target object or, is not the owner but holds a valid copy. In the first case, if the owner has

restricted access to the object by locking it, null is returned. Otherwise, the owner node adds

the identity of the caller to the copyset directly. In the second case, the call initiates an

operation that locates the true owner and has the identity of the caller added to its copyset.

Next, object state and management information are transferred from the owner node to the

shared memory region of the caller node. The call proceeds to update the probable owner

field with the current owner of the object, changes object state into readable and returns the

object to the caller.

Case ii: Starting with the probable owner field of the object, a sequence of nodes is scanned

until a node which is either the true owner of the object or holds a valid copy is located. Next,

the call proceeds following the steps described in case i.

After the ReadObject call returns with success, the caller receives a copy of the object into

its local memory region and may issue local method invocations, which are expected to

access the object state in read-only mode as changes in object state will have no global effect.

Readers are expected to contact the system by issuing the read-object call before each access

(or, after some user-definable period of time) to find out if they still hold a valid copy of the

object and, if not, to have it updated.

5.4 Receive Exclusive Access to the Shared Object

Object djo.AcquireObject(String ObjName)

Through the AcquireObject call, an application gets permission to enter a critical region . If

the call returns with success, the caller obtains both the most recent version of the object

copy into its local memory region and a lock on the object that ensures exclusive access.

 15

From then on, the caller may issue several updating method calls on the object. The call

proceeds to consult the true owner of the target object to ask for its ownership if the caller is

not already its owner. The current owner rejects the request if it already holds a lock on the

object. If this is not the case, the current owner puts the object into invalid state and removes

itself from the copyset. This eliminates the invalidation it would have otherwise received

from the new owner of the object. It hands over ownership after updating the probable owner

field of the object with the identity of the requesting node and returns object management

information along with object state data, which is requested only in the case when a valid

replica is not present on the caller’s address space. Upon receiving the ownership of the target

object, the new owner node locks the object, putting it into writable state. However, all valid

replicas of the object need to be invalidated before allowing access to the object to guarantee

that no conflicting copies exist. Invalidation messages are sent to all nodes on the copyset of

the object. The call waits for invalidations to be acknowledged to prevent the existence of old

copies. After the invalidation process completes, the call purges the copyset as those nodes no

longer possess a valid replica, inserts the identity of the local node into the copyset of the

object and returns the object to the caller, which can then proceed into its critical region.

Now, method invocations that result in changes in the object state may be issued. It should be

noted that these modifications take place on the copy of the object located in the local

memory region of the application and are not transmitted to the replica that resides on the

shared memory region of the node (and therefore will have no global effect) until the critical

region is exited through a ReleaseObject call.

5.5 To Release Exclusive Access and Save Modified Object State

boolean djo.ReleaseObject(Object Dsmobject,String ObjName)

ReleaseObject call ends activity in a critical region after transmitting local modifications of

object state to the only replica of the object on the shared memory region. The call proceeds

to verify that the caller is the true owner of the object and returns error if there is a conflict.

Next, the entry allocated to the object in the ObjStateTable is replaced with the new state data

provided by the caller. Finally, as the object is unlocked, the status field in the ObjInfoTable

is updated to readable to reflect the current state.

Normally, a lock is released upon an application’s request to exit a critical region. Therefore,

the application should take special care so that the object would not remain locked forever.

The system has no timeout mechanism to automatically release locks.

 16

6 PERFORMANCE EVALUATION

We have performed simple tests to evaluate the performance of DJO system on a LAN

environment of five INTEL architecture machines (Pentium II 350 MHz with 128 MB RAM)

connected through a 10 Mbps Ethernet and running Windows 98 SE. JDK 1.3 was used in the

testing environment. The data was obtained by subtracting the values returned by

System.currentTimeMillis() method, which was invoked just before and right after DJO calls.

The tests were repeated 10 times for 15 different objects and the arithmetic average of the

measurements are reported. Table 2. presents the resulting performance figures, in

milliseconds.

The tests included a simple application that involved concurrent access, either read or write,

to shared Java objects by all participating nodes. Objects had a size of approximately 100

bytes. Each node acquired mutual exclusion before a write-access to an object and released it

after completion. The measured figures account for the times spent in system calls, as

described below.

Initialization: time taken to initialize a local runtime system before a node participates the

DJO environment. Most of the measured time is consumed by the initiation of the Java

"rmiregistery" process.

Creating new object: time taken to create an object with a unique name and register it within

the system.

Read-only access: time taken to retrieve a i) locally available or ii) remotely available valid

replica into the address space of the caller process.

Receive exclusive-access: The total time taken to receive a valid replica in locked state after

obtaining ownership of object. It includes the time spent to send invalidation messages to 5

valid object replicas and waiting for arrival of acknowledgement messages.

Release exclusive-access: time taken to transmit local object state to nodal replica and to

unlock object.

The results presented suggest that DJO can perform well. They were achieved without any

specific optimization and it should be possible to make significant improvements on them.

 17

We further plan to run the system on a larger number of nodes to test it for scalability and to

observe effects on its performance.

7 CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of a distributed execution environment for

shared Java objects. Object sharing is implemented through the replication mechanism. Each

application requesting access to a shared object receives a copy into its local address space.

Object access is through invocation of methods provided by the object interface. The system

enforces mutual consistency among replicas of an object transparently. A prototype

implementation of the system has been completed.

DJO distributed execution environment has several advantages. One main advantage of the

system is that it simplifies distributed application design. Programmers may concentrate on

the application logic and receive the benefits of a distributed execution environment through

a simple yet powerful user interface, as issues related to distribution, access and consistency

of shared objects are handled transparently by the underlying system. Programmers do not

need to write any extra code for object sharing and distribution.

 The replication strategy employed in the distribution of shared objects not only decreases

access times and increases parallelism, thus resulting in better application performance, but

also makes the implementation of fault tolerant system possible.

 Another advantage of the system is its being based on JVM, which ensures portability across

a variety of hardware and software platforms .

DJO design can be enhanced with certain features. The current implementation does not

employ a memory management algorithm for replicas on a node. Since the size of the shared

memory region on a node is physically bounded, only a limited number of replicas can be

held. The system rejects requests when this limit is reached. However, a better approach

would be to remove replicas to free some memory space. As future work, we intend to study

memory replacement algorithms, concentrating on locating objects that are particularly

suitable for removal.

Another feature which we wish to include in our work is extending shared objects with

support for security and persistence. The creator of the object can specify a security policy

 18

during registration and the system can control access accordingly. Providing support for

persistent shared objects would also ease code development significantly.

8 REFERENCES

[1] S.V. Adve, K. Gharachorloo, Shared Memory Consistency Models: A Tutorial, IEEE

Computer, 29(12), (1996) 66-76.

[2] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H.Lu, R. Rajamony, W. Yu, W.

Zwaenepoel, TreadMarks: Shared Memory Computing on Networks of Workstations,

IEEE Computer, 29(2), (1996) 18-28.

[3] H. Attiya, J. Welch, Sequential Consistency versus Linearizability, ACM Trans. on

Computer Systems, 12(2), (1994) 91-122.

[4] H. Bal, F. Kaashoek, A. Tanenbaum , Orca: a Language for Parallel Programming of

Distributed Systems, IEEE Trans. on Software Eng.,18(3), (1992) 190-205.

[5] B. Bershad, M. Zekauskas, W. Sawdon, The Midway Distributed Shared Memory

System, Proc. 38th IEEE Int’l Compcon Conf., (1993) 528-537.

[6] J. Carter, J.Bennet, W. Zwaenepoel, Implementation and Performance of Munin,

Proc.13th ACM Symp. on Operating Systems Principles, (1991) 152-164.

[7] M. Castro, P.Guedes, M. Sequeira, M.Costa, Efficient and Flexible Object Sharing,

Proc. 1996 Int’l Conf. On Parallel Processing (ICPP’96) (1), (1996) 128-137.

[8] A. L. Cox, P. Keleher, H.Lu, R. Rajamony, W. Zwaenepoel, Software versus

Hardware Shared Memory Implementation, Proc. 21st Annual Symp. On Computer

Architecture, (1994) 106-117.

[9] S.Dwarkadas S, P. Keleher, A.L. Cox, W. Zwaenepoel, Evaluation of Release

Consistent Software Distributed Shared Memory on Emerging Network Technology,

Proc. 20th Ann. Symp.on Computer Architecture, (1993) 144-155.

[10] A. Judge, P.A. Nixon, V.J.Cahill, B. Tangney, S. Weber, Overview of Distributed

Shared Memory, Tech. Report TCD-CS-1998-24,

http://www.cs.tcd.ie/publications/tech-reports/

[11] P. Keleher, A. L. Cox, W. Zwaenepoel, Lazy Consistency for Software Distributed

Shared Memory, Proc. 19th Annual Symp. On Computer Architecture, (1992) 13-21.

[12] P. Keleher, C-W. Tseng, Enhancing Software DSM’s for Compiler Parallelized

Applications, Proc. 11th Int’l Parallel Processing Symp. (IPPS’97) (1997).

[13] T. Kindberg, G. Coulouris, J. Dollimore, J.Heikkinen, Sharing Objects over the

Internet: the Mushroom Approach, Proc. IEEE Global Internet, (1996) 67-71.

 19

http://www.cs.tcd.ie/publications/tech-reports/
ftp://ftp.dcs.qmw.ac.uk/pub/distrib/publications/Mushroom/GlobalInternet96.ps.gz
ftp://ftp.dcs.qmw.ac.uk/pub/distrib/publications/Mushroom/GlobalInternet96.ps.gz

[14] P. Kohli, M. Ahamad, K. Schwan, Indigo: User-level Support for Building

Distributed Shared Abstractions, Concurrency:Practice and Experience, 8(10), (1998)

1-29.

[15] K.Li, Ivy: A Shared Virtual Memory System for Parallel Computing, Proc. of

ICPP’88, 2, (1988) 94-101.

[16] K. Li, P. Hudak, Memory Coherence in Shared Virtual Memory Systems, ACM

Trans. On Computer Systems, 7(4), (1989) 321-359.

[17] Message Passing Interface Forum, http://www.mpi-forum.org/

[18] L. Nitzberg, V. Lo, Distributed Shared Memory: A Survey of Issues, IEEE Computer,

24(8), (1991) 52-60.

 [19] O. K. Sahingoz, Implementation of a DSM System Based on Read Replication

Algorithm, Ms.C. Thesis, Istanbul Technical University, 1998.

[20] Y. E. Selcuk, Implementation of a Distributed Shared Memory System, Ms.C. Thesis,

Istanbul Technical University, 2000.

[21] P. Stenstrom, A Survey of Cash Coherence Schemes for Multiprocessors, IEEE

Computer, 23(6), (1990) 12-24.

[22] V. S. Sunderam, PVM: A Framework for Parallel Distributed Computing,

Concurrency: Practice and Experience, 2(4), (1990) 315-339.

[23] Sun Microsystems, Java Remote Method Invocation Specification. Technical Report,

Sun microsystems, Mountain Vıew, CA, USA, 1996.

 20

 21

Application

Local
Memory
Region

Communication
Management Module

Coherency Protocol

Synchron.
Manag.

Memory
Manag.

Distrib.
Manag.

Ownership
Manag.

Consistency Manager

Shared Memory Region

Obj State Table Obj Info Table

Figure 1.

J

V

M

Listening Socket

Remote Methods

Listening Socket

Remote Methods

Node i

........

threads

Node j

....
threads

22
Figure 2.

rd

inv
rel

acqacq

acq

ee e

invalid

rd

rd

Figure 3.

 23
writabl
readablreadabl
acq
rd - readobject
acq - acquireobject
rel - releaseobject
inv - invalidate on an
 acquire

Table 1.

Interface Call Semantics
Int djo.CreateObject(Objectdsmobject, String

ObjName)
Registers a new shared object

boolean djo.RemoveObject (String ObjName) Removes local replica
Object djo.ReadObject (String ObjName) Creates a local replica and permits

read-only access
Object djo.AcquireObject (String ObjName) Provides a locked local replica and

permits caller to proceed into its

critical region
boolean djo.ReleaseObject (Object dsmobject,

String objName)
Updates local replica and releases

the lock

 24

 Table 2.

Operation Elapsed Time (ms)
Initialization

2160

Creating new object

30

Read-only access
 i) local replica
 ii) remote replica

17
38

Receive exclusive-access 215

Release exclusive-access

84

 25

APPENDIX

Class declaration for shared Java object penguin:penguin.java

public class penguin implements java.io.Serializable
{
 private int age;
 public int height;
 private String nickname;
 public String name;

 public penguin()
 {
 age = 0;
 height = 20;
 }
 public void setAge(int i)
 {
 age = i;
 }
 public int getAge()
 {
 return age;
 }
 public void setHeight(int i)
 {
 height = i;
 }
 public int getHeight()
 {
 return height; }
}

Sample code that creates a shared object named "pepe":

.....
pepe = new penguin() ;
pepe.setAge (1) ;

 26

pepe.set.Height (25) ;
try
{
 status = djo.CreateObject (pepe, "pepe") ;
}
catch (Exception e) { }
if (status != 0) { error....
....

Sample code to read access the shared object "pepe" on a node i:

....

int age;
int height;
…
pepe1 = new penguin() ;
pepe1 = (penguin) djo.ReadObject ("pepe");
age = pepe1.getAge ();
height = pepe1.getHeight ();
.....

Sample code to read/write access the shared object "pepe" in a critical section on a node j:

…..

boolean status;

pepe2 = new penguin() ;
pepe2 = (penguin) djo.AcquireObject ("pepe");
 pepe2.setAge (3);
 pepe2.setHeight (40);
 status = (penguin) djo.ReleaseObject (pepe2, "pepe");
...........

 27

Captions of figures and tables

Figure 1. Overview of replicated object software architecture

Figure 2. Interactions in the Communication Management Module

Figure 3. State transition of an object replica

Table 1. The User Interface

Table 2. Measured Performance Figures of DJO

 28

