PROJECT \# 2

The two-dimensional heat equation is given on a domain $[0,1] \times[0,1]$ by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\alpha\left[\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}\right] \tag{1}
\end{equation*}
$$

with the Drichlet boundary conditions:

$$
\begin{align*}
\psi(x, 0, t) & =0 \tag{2}\\
\psi(x, 1, t) & =\left(x-x^{2}\right) \tag{3}\\
\psi(0, y, t) & =0 \tag{4}\\
\psi(1, y, t) & =0 \tag{5}
\end{align*}
$$

and initial condition of $u(x, y, 0)=0$. The α parameter is equal to 0.1 .

Use the following numerical methods

1. Galerkin finite element method with Euler explicit
2. Galerkin finite element method with Euler implicit
3. Galerkin finite element method with Crank-Nicolson

The error function is given by

$$
\begin{equation*}
\text { Error }=\frac{\left\|u_{i, j}-u_{\text {analytic }}\right\|_{2}}{\sqrt{i_{\max } j_{\max }}} \tag{6}
\end{equation*}
$$

Employ uniform $i_{\max } \times j_{\max }=41 \times 41,81 \times 81$ and 161×161 grid resolutions. For the time step use $4 \alpha \Delta t / \Delta x^{2}=0.5,4 \alpha \Delta t / \Delta x^{2}=1$ and $4 \alpha \Delta t / \Delta x^{2}=2$. Compute the numerical solutions at $t=1.0$. Then compute the steady state solution for $t \rightarrow \infty$. Finally, draw the error versus mesh resolution and determine the spatial convergence rate. For the solution of the linear algebraic systems use GMRES algorithm (Saad and Schultz 1986) with the incomplete LU preconditioner (optional). Compare the magnitude of error with the finite difference solution from the first project.

[^0]Several useful MATLAB commands:
Crate a sparse matrix
$i=[]$;
$j=[] ;$
$s=[] ;$
$m=100$;
$n=100$;
$A=\operatorname{sparse}(i, j, s, m, n)$;
To solve a sparse linear system
$x=A \backslash b$;
For incomplete ilu preconditioner
$[L, U]=\operatorname{luinc}(A, 1 \mathrm{e}-5)$;
For $\operatorname{GMRES}(m)$ solver
$x=\operatorname{gmres}\left(A, b, m, r_{t o l}\right.$, maxit $\left., M 1, M 2, x_{0}\right)$;

```
Read Mesh Vetices
for }i\leftarrow1\mathrm{ to np do
    read x[i],y[i],z[i]
end
```

```
Read Mesh Connectivity
```

Read Mesh Connectivity
for }i\leftarrow1\mathrm{ to ne do
for }i\leftarrow1\mathrm{ to ne do
read nec[i,1],nec[i,2],nec[i,3],nec[i,4]
read nec[i,1],nec[i,2],nec[i,3],nec[i,4]
end

```
end
```


Create Global Coefficient Matrix

for $i \leftarrow 1$ to $n e$ do
call Mass_Matrix(i, $\mathrm{x}, \mathrm{y}, \mathrm{nec},[\mathrm{M}]$)
call Stiffness_Matrix (i,x,y,nec, $[\mathrm{K}]$)
$[A]:=[A]+[M] * \frac{1}{\Delta t}+[K]$
$\{R H S\}:=\{R H S\}+[M] * \frac{1}{\Delta t}\{u\}$
end

Impose Drichlet Boundary Conditions

for $i \leftarrow 1$ to $n p$ do
if Dirichlet boundary condition is valid for i then
$A[i, *]:=0$
$A[i, i]:=1$
$R H S[i]:=0$
end
end

Solve Ax=RHS

Table 1: The structure of the Galerkin FEM code with Euler implicit.

```
for \(p \leftarrow 1\) to \(n-1\) do
    \(d:=1 / a_{p, p}\)
    for \(i \leftarrow p+1\) to \(n\) do
        if \((i, p) \in S\) then
            \(e:=a_{i, p} * d\)
            \(a_{i, p}:=e\)
            for \(j \leftarrow p+1\) to \(n\) do
                if \((i, j) \in S\) and \((p, j) \in S\) then
                \(a_{i, j}:=a_{i, j}-e * a_{p, j}\)
                end
            end
        end
    end
end
```

Table 2: The algorithm for computing $\operatorname{ILU}(0)$ for a n by n matrix A is given above. Here S represents the set of elements of matrix A.

[^0]: ${ }^{0}$ UUT510E, Return date: 24 April 2014

