PROJECT \# 1

The two-dimensional Laplace equation on a domain $[0,1] \times[0,1]$ is given by

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{1}
\end{equation*}
$$

with the Drichlet boundary conditions:

$$
\begin{align*}
\psi(x, 0) & =0 \tag{2}\\
\psi(x, 1) & =\left(x-x^{2}\right) \tag{3}\\
\psi(0, y) & =0 \tag{4}\\
\psi(1, y) & =0 \tag{5}
\end{align*}
$$

Use the second-order accurate finite difference discretization with uniform $41 \times 41,81 \times 81$ and 161×161 Cartesian meshes to solve the above Laplace equation. For this purpose

1. Implement Jacobi, Gauss-Seidel and SOR algorithms and compare their convergence rates with the iteration numbers.
2. Implement the fully implicit solution algorithm and use a direct solver (LU factorization) to solve.
3. Plot Error function versus the mesh space Δx in a log-log scale. Compute the spatial convergence rate.

The error function is given by

$$
\begin{equation*}
\text { Error }=\frac{\left\|u_{i, j}-u_{\text {analytic }}\right\|_{2}}{\sqrt{i_{\max } j_{\max }}} \tag{6}
\end{equation*}
$$

[^0][^1]
[^0]: Several useful MATLAB commands:
 Crate a sparse matrix
 $i=[]$;
 $j=[]$;
 $s=[] ;$
 $m=100$;
 $n=100$;
 $A=\operatorname{sparse}(i, j, s, m, n)$;
 To solve a sparse linear system
 $x=A \backslash b$;

[^1]: ${ }^{0}$ UUT510E, Return date: 2 April 2015

