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Basic Terminology 

Experience has shown that some basic metrological terms are often confused. What is the 
difference between accurate and precise, resolution and sensitivity, instability and noise? 
We'll use some graphics to illustrate. Firstly, there are some archery or shooting targets. Four 
marksmen were aiming for the center "bulls-eye". This is analogous to making a perfect 
measurement with the "bull" being the conventional, "true value". So, take aim and fire five 
rounds........  

 
 

Looking at the first target (above left), the shots are widely distributed and mostly off-target -- 
this guy's obviously a beginner, both inaccurate and unrepeatable. However, is the second 
marksman (above right) much better? These shots are closely grouped but they've all missed 
the target completely! He's precise but inaccurate. On to the third (below left) and our man has 
reliably hit the target but the shots are dispersed -- so we have accuracy (two in the "bull") but 
imprecision. Of course, the final target shows the way it should be done -- an Olympic 
champion's performance perhaps -- little deviation from "true" every time, showing both 
accuracy and precision.  

 
 

As far as calibration is concerned, the attribute accurate often also implies precise but it's 
worth remembering it may not be the case. Conversely, the salesman who claims his product 
is precise may not be making any claim at all for its correctness (relationship to national 
standards) -- be warned! 

The degree of accuracy and precision results from the combined effect of measuring 
equipment, technique, environmental conditions and the characteristics of the item being 
tested. If a series of repeated measurements were made and the data plotted as a histogram 
(bar graph), the shape described by the bar-heights represents the distribution.  
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Sometimes resolution is mistaken to be the same as accuracy. This misconception often 
relates to instruments with digital read-outs where a similar assumption is that, for example, a 
frequency counter with 11 digits must be 100 times more accurate than one with 9 digit 
resolution. Resolution is just the discrimination that the instrument can show.  

 
 

Look at this metric ruler; its resolution is 2 millimeters (one fifth of a centimeter) even though 
it can readily be used to measure the length of the red line with better estimated resolution 
(certainly to 1mm and possibly 0.1mm with magnification). However, our ability to visually 
subdivide between the marked graduations contributes to the uncertainty of the measurement. 
From inspection the evidence is that the line is between 2.6 and 2.8cm and, considering only 
the resolution, it would be reported as 2.6±0.2cm. If some form of magnification were 
available, the measured value might be stated as 2.65±0.05cm.  

But what of sensitivity and resolution? Whereas resolution is a measure of the smallest change 
in output (indication) that is possible, sensitivity relates to the smallest change in the input 
(stimulus) that causes a discernible change in the output. So there is an association between 
these two terms.  

Likewise, instability and noise are both qualifications of change over time but might be best 
differentiated by considering "stability" to be most commonly used over periods of a second 
or more and "noise" for shorter intervals. Stability is sometimes also interchanged with drift 
and, in relation to quartz oscillator specification, the specialized term ageing rate. You can 
learn more about ageing rate in an article about oscillator calibration from our Articles 
section.  
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Error Analysis 

Introduction 

The knowledge we have of the physical world is obtained by doing experiments and making 
measurements. It is important to understand how to express such data and how to analyze and 
draw meaningful conclusions from it.  

In doing this it is crucial to understand that all measurements of physical quantities are subject 
to uncertainties. It is never possible to measure anything exactly. It is good, of course, to 
make the error as small as possible but it is always there. And in order to draw valid 
conclusions the error must be indicated and dealt with properly.  

Take the measurement of a person's height as an example. Assuming that her height has been 
determined to be 176.5 cm, how accurate is our result?  

Well, the height of a person depends on how straight she stands, whether she just got up (most 
people are slightly taller when getting up from a long rest in horizontal position), whether she 
has her shoes on, and how long her hair is and how it is made up. These inaccuracies could all 
be called errors of definition. A quantity such as height is not exactly defined without 
specifying many other circumstances.  

Even if you could precisely specify the "circumstances," your result would still have an error 
associated with it. The scale you are using is of limited accuracy; when you read the scale, 
you may have to estimate a fraction between the marks on the scale, etc.  

If the result of a measurement is to have meaning it cannot consist of the measured value 
alone. An indication of how accurate the result is must be included also. Indeed, typically 
more effort is required to determine the error or uncertainty in a measurement than to 
perform the measurement itself. Thus, the result of any physical measurement has two 
essential components: (1) A numerical value (in a specified system of units) giving the best 
estimate possible of the quantity measured, and (2) the degree of uncertainty associated with 
this estimated value. For example, a measurement of the width of a table would yield a result 
such as 95.3 ± 0.1 cm.  

Significant Figures 

The significant figures of a (measured or calculated) quantity are the meaningful digits in it. 
There are conventions which you should learn and follow for how to express numbers so as to 
properly indicate their significant figures.  

• Any digit that is not zero is significant. Thus 549 has three significant figures and 
1.892 has four significant figures.  

• Zeros between non zero digits are significant. Thus 4023 has four significant figures.  
• Zeros to the left of the first non zero digit are not significant. Thus 0.000034 has only 

two significant figures. This is more easily seen if it is written as 3.4x10-5.  
• For numbers with decimal points, zeros to the right of a non zero digit are significant. 

Thus 2.00 has three significant figures and 0.050 has two significant figures. For this 
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reason it is important to keep the trailing zeros to indicate the actual number of 
significant figures.  

• For numbers without decimal points, trailing zeros may or may not be significant. 
Thus, 400 indicates only one significant figure. To indicate that the trailing zeros are 
significant a decimal point must be added. For example, 400. has three significant 
figures, and  has one significant figure.  2104x

• Exact numbers have an infinite number of significant digits. For example, if there are 
two oranges on a table, then the number of oranges is 2.000... . Defined numbers are 
also like this. For example, the number of centimeters per inch (2.54) has an infinite 
number of significant digits, as does the speed of light (299792458 m/s).  

There are also specific rules for how to consistently express the uncertainty associated with a 
number. In general, the last significant figure in any result should be of the same order of 
magnitude (i.e.. in the same decimal position) as the uncertainty. Also, the uncertainty should 
be rounded to one or two significant figures. Always work out the uncertainty after finding 
the number of significant figures for the actual measurement.  

For example,  

9.82 ± 0.02 
10.0 ± 1.5 
4 ± 1  

The following numbers are all incorrect.  

9.82 ± 0.02385 is wrong but 9.82 ± 0.02 is fine 
10.0 ± 2 is wrong but 10.0 ± 2.0 is fine 
4 ± 0.5 is wrong but 4.0 ± 0.5 is fine  

In practice, when doing mathematical calculations, it is a good idea to keep one more digit 
than is significant to reduce rounding errors. But in the end, the answer must be expressed 
with only the proper number of significant figures. After addition or subtraction, the result is 
significant only to the place determined by the largest last significant place in the original 
numbers. For example,  

89.332 + 1.1 = 90.432  

should be rounded to get 90.4 (the tenths place is the last significant place in 1.1). After 
multiplication or division, the number of significant figures in the result is determined by the 
original number with the smallest number of significant figures. For example,  

(2.80) (4.5039) = 12.61092  

should be rounded off to 12.6 (three significant figures like 2.80).  
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The Idea of Error 

The concept of error needs to be well understood. What is and what is not meant by "error"?  

A measurement may be made of a quantity which has an accepted value which can be looked 
up in a handbook (e.g.. the density of brass). The difference between the measurement and the 
accepted value is not what is meant by error. Such accepted values are not "right" answers. 
They are just measurements made by other people which have errors associated with them as 
well.  

Nor does error mean "blunder." Reading a scale backwards, misunderstanding what you are 
doing or elbowing your lab partner's measuring apparatus are blunders which can be caught 
and should simply be disregarded.  

Obviously, it cannot be determined exactly how far off a measurement is; if this could be 
done, it would be possible to just give a more accurate, corrected value.  

Error, then, has to do with uncertainty in measurements that nothing can be done about. If a 
measurement is repeated, the values obtained will differ and none of the results can be 
preferred over the others. Although it is not possible to do anything about such error, it can be 
characterized. For instance, the repeated measurements may cluster tightly together or they 
may spread widely. This pattern can be analyzed systematically.  

 

Classification of Error 

Generally, errors can be divided into two broad and rough but useful classes: systematic and 
random.  

Systematic errors are errors which tend to shift all measurements in a systematic way so 
their mean value is displaced. This may be due to such things as incorrect calibration of 
equipment, consistently improper use of equipment or failure to properly account for some 
effect. In a sense, a systematic error is rather like a blunder and large systematic errors can 
and must be eliminated in a good experiment. But small systematic errors will always be 
present. For instance, no instrument can ever be calibrated perfectly.  

Other sources of systematic errors are external effects which can change the results of the 
experiment, but for which the corrections are not well known. In science, the reasons why 
several independent confirmations of experimental results are often required (especially using 
different techniques) is because different apparatus at different places may be affected by 
different systematic effects. Aside from making mistakes (such as thinking one is using the 
x10 scale, and actually using the x100 scale), the reason why experiments sometimes yield 
results which may be far outside the quoted errors is because of systematic effects which were 
not accounted for.  

Random errors are errors which fluctuate from one measurement to the next. They yield 
results distributed about some mean value. They can occur for a variety of reasons.  
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• They may occur due to lack of sensitivity. For a sufficiently a small change an 
instrument may not be able to respond to it or to indicate it or the observer may not be 
able to discern it.  

• They may occur due to noise. There may be extraneous disturbances which cannot be 
taken into account.  

• They may be due to imprecise definition.  
• They may also occur due to statistical processes such as the roll of dice.  

Random errors displace measurements in an arbitrary direction whereas systematic errors 
displace measurements in a single direction. Some systematic error can be substantially 
eliminated (or properly taken into account). Random errors are unavoidable and must be lived 
with.  

Many times you will find results quoted with two errors. The first error quoted is usually the 
random error, and the second is called the systematic error. If only one error is quoted, then 
the errors from all sources are added together. (In quadrature as described in the section on 
propagation of errors.)  

A good example of "random error" is the statistical error associated with sampling or 
counting. For example, consider radioactive decay which occurs randomly at a some 
(average) rate. If a sample has, on average, 1000 radioactive decays per second then the 
expected number of decays in 5 seconds would be 5000. A particular measurement in a 5 
second interval will, of course, vary from this average but it will generally yield a value 
within 5000 ± . Behavior like this, where the error,  

ectednn exp=∆ , (1)  

is called a Poisson statistical process. Typically if one does not know n it is assumed 
that,  

ectedexp

ectedmeasured nn exp= ,  

in order to estimate this error.  

A. Mean Value  
Suppose an experiment were repeated many, say N, times to get,  

Nk xxxx ,...,,...,, 21  

N measurements of the same quantity, x. If the errors were random then the errors in these 
results would differ in sign and magnitude. So if the average or mean value of our 
measurements were calculated,  

N

x

N
xxxxx

N

k
k

Nk
∑
==

+++++
= 121 ...... , (2)  
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some of the random variations could be expected to cancel out with others in the sum. This is 
the best that can be done to deal with random errors: repeat the measurement many times, 
varying as many "irrelevant" parameters as possible and use the average as the best estimate 
of the true value of x. (It should be pointed out that this estimate for a given N will differ from 
the limit as the true mean value; though, of course, for larger N it will be closer to the 
limit.) In the case of the previous example: measure the height at different times of day, using 
different scales, different helpers to read the scale, etc.  

∞→N

Doing this should give a result with less error than any of the individual measurements. But it 
is obviously expensive, time consuming and tedious. So, eventually one must compromise 
and decide that the job is done. Nevertheless, repeating the experiment is the only way to gain 
confidence in and knowledge of its accuracy. In the process an estimate of the deviation of the 
measurements from the mean value can be obtained.  

B. Measuring Error 

There are several different ways the distribution of the measured values of a repeated 
experiment such as discussed above can be specified.  

• Maximum Error 

The maximum and minimum values of the data set, maxx∆ and minx∆ , could be 
specified. In these terms, the quantity,  

2
minmax

max
xxx −

=∆ , (3)  

is the maximum error. And virtually no measurements should ever fall 
outside maxxx ∆± .  

• Probable Error 

The probable error, , specifies the range probx∆ probxx ∆± which contains 50% of the 
measured values.  

• Average Deviation 

The average deviation is the average of the deviations from the mean,  

N

xx
x k

k

ad

∑ −
=∆ . (4)  

For a Gaussian distribution of the data, about 58% will lie within adxx ∆± .  

• Standard Deviation 
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For the data to have a Gaussian distribution means that the probability of obtaining the 
result x is,  

( )
22

2
0

2
1)( σ
πσ

xx

exP

−
−

=  (5)  

where is most probable value and 0x σ , which is called the standard deviation, 
determines the width of the distribution. Because of the law of large numbers this 
assumption will tend to be valid for random errors. And so it is common practice to 
quote error in terms of the standard deviation of a Gaussian distribution fit to the 
observed data distribution. This is the way you should quote error in your reports.  

It is just as wrong to indicate an error which is too large as one which is too small. In the 
measurement of the height of a person, we would reasonably expect the error to be ±1/4" if a 
careful job was done, and maybe ±3/4" if we did a hurried sample measurement. Certainly 
saying that a person's height is 5' 8.250"±0.002" is ridiculous (a single jump will compress 
your spine more than this) but saying that a person's height is 5' 8"± 6" implies that we have, 
at best, made a very rough estimate!  

C. Standard Deviation  
The mean is the most probable value of a Gaussian distribution. In terms of the mean, the 
standard deviation of any distribution is,  

N

xx
k

k∑ −
=

2)(
σ . (6)  

The quantity , the square of the standard deviation, is called the variance. The best 
estimate of the standard deviation is the sample standard deviation ( also shown by S

2σ
x) 

1

)( 2

−

−
=
∑

N

xx
k

k

xσ . (7)  

The reason why we divide by N to get the best estimate of the mean and only by N-1 for the 
best estimate of the standard deviation needs to be explained. The true mean value of x is not 
being used to calculate the variance, but only the average of the measurements as the best 
estimate of it. Thus, 2)( xxk − as calculated is always a little bit smaller than 2)( truek xx − , the 
quantity really wanted. In the theory of probability (that is, using the assumption that the data 
has a Gaussian distribution), it can be shown that this underestimate is corrected by using N-1 
instead of N.  

If one made one more measurement of x then (this is also a property of a Gaussian 
distribution) it would have some 68% probability of lying within xx σ± . Note that this means 
that about 30% of all experiments will disagree with the accepted value by more than one 
standard deviation!  
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However, we are also interested in the error of the mean, which is smaller than Sx if there 
were several measurements. An exact calculation yields,  

)1(

)( 2

−

−
=

∑
NN

xx

N
k

k
x

x
σ

σ , (8)  

for the standard error of the mean. This means that, for example, if there were 20 
measurements, the error on the mean itself would be = 4.47 times smaller then the error of 
each measurement. The number to report for this series of N measurements of x is xx σ±  

where 
N
x

x
σ

σ = . The meaning of this is that if the N measurements of x were repeated there 

would be a 68% probability the new mean value of would lie within xx σ±  (that is between 

xx σ+ and xx σ− ). Note that this also means that there is a 32% probability that it will fall 
outside of this range. This means that out of 100 experiments of this type, on the average, 32 
experiments will obtain a value which is outside the standard errors.  

For a Gaussian distribution there is a 5% probability that the true value is outside of the 
range xx σ2± , i.e. twice the standard error, and only a 0.3% chance that it is outside the range 
of xσ3± . 

 

Examples 
Suppose the number of cosmic ray particles passing through some detecting device every hour 
is measured nine times and the results are those in the following table.  

Thus we have = 900/9 = 100 and = 1500/8 = 188 or 2
xσ xσ = 14. Then the probability that 

one more measurement of x will lie within 100 ± 14 is 68%.  

The value to be reported for this series of measurements is 100±(14/3) or 100 ± 5. If one were 
to make another series of nine measurements of x there would be a 68% probability the new 
mean would lie within the range 100 ± 5.  

Random counting processes like this example obey a Poisson distribution for which 
xx =σ . So one would expect the value of xσ  to be 10. This is somewhat less than the 

value of 14 obtained above; indicating either the process is not quite random or, what is more 
likely, more measurements are needed.  

i                       (          ix 2)mi xx −
------------------------------------------ 
1             80            400            
2             95            25             
3             100           0              
4             110           100            
5             90            100            
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6             115           225            
7             85            225            
8             120           400            
9             105           25             
S             900           1500           
------------------------------------------ 
 

The same error analysis can be used for any set of repeated measurements whether they arise 
from random processes or not. For example in the Atwood's machine experiment to measure g 
you are asked to measure time five times for a given distance of fall s. The mean value of the 
time is,  

55
54321

5

1 ttttt
t

t i
i ++++
==

∑
=  (9)  

and the standard error of the mean is,  

)1(
)( 2

−

−
= ∑

nn
tti

tσ , (10) 

where n = 5.  

For the distance measurement you will have to estimate ∆s, the precision with which you can 
measure the drop distance (probably of the order of 2-3 mm).  

 

Propagation of Errors  
Frequently, the result of an experiment will not be measured directly. Rather, it will be 
calculated from several measured physical quantities (each of which has a mean value and an 
error). What is the resulting error in the final result of such an experiment?  

For instance, what is the error in Z = A + B where A and B are two measured quantities with 
errors and A∆ B∆ respectively?  

A first thought might be that the error in Z would be just the sum of the errors in A and B. 
After all,  

 

)()()()( BABABBAA ∆+∆++=∆++∆+  (11)  

and  

)()()()( BABABBAA ∆+∆−+=∆−+∆− . (12) 
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But this assumes that, when combined, the errors in A and B have the same sign and 
maximum magnitude; that is that they always combine in the worst possible way. This could 
only happen if the errors in the two variables were perfectly correlated, (i.e.. if the two 
variables were not really independent).  

If the variables are independent then sometimes the error in one variable will happen to cancel 
out some of the error in the other and so, on the average, the error in Z will be less than the 
sum of the errors in its parts. A reasonable way to try to take this into account is to treat the 
perturbations in Z produced by perturbations in its parts as if they were "perpendicular" and 
added according to the Pythagorean theorem,  

22 )()( BAZ ∆+∆=∆ . (13) 

 

That is, if A = (100 ± 3) and B = (6 ± 4) then Z = (106 ± 5) since 22 43 +=5 .  

This idea can be used to derive a general rule. Suppose there are two measurements, A and B, 
and the final result is Z = F(A, B) for some function F. If A is perturbed by A∆  then Z will be 
perturbed by  

A
A
F

∆






∂
∂  

where (the partial derivative) ∂  is the derivative of F with respect to A with B held 
constant. Similarly the perturbation in Z due to a perturbation in B is,  

AF ∂/

B
B
F

∆






∂
∂ .  

Combining these by the Pythagorean theorem yields  

 

2
2

2
2

)()( B
B
FA

A
FZ ∆







∂
∂

+∆






∂
∂

=∆ , (14) 

 

In the example of Z = A + B considered above,  

 1and1 =
∂
∂

=
∂
∂

B
F

A
F , 

so this gives the same result as before. Similarly if Z = A - B then,  
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 1and1 −=
∂
∂

=
∂
∂

B
F

A
F , 

which also gives the same result. Errors combine in the same way for both addition and 
subtraction. However, if Z = AB then,  

A
B
FB

A
F

=
∂
∂

=
∂
∂ and , 

so  

2222 )()( BAABZ ∆+∆=∆ , (15) 

Thus  

22 )()(
B
B

A
A

AB
Z

z
Z ∆

+
∆

=
∆

=
∆ , (16) 

or the fractional error in Z is the square root of the sum of the squares of the fractional errors 
in its parts. (You should be able to verify that the result is the same for division as it is for 
multiplication.) For example,  

. 40600
6
4.0

100
3.0600600)4.06)(3.0100

22

±=





+






±=±±( . 

It should be noted that since the above applies only when the two measured quantities are 
independent of each other it does not apply when, for example, one physical quantity is 
measured and what is required is its square. If Z = A2 then the perturbation in Z due to a 
perturbation in A is,  

AAA
A
FZ ∆=∆
∂
∂

= 2 . (17)  

Thus, in this case,  







 ∆
±=∆±=∆±

A
AAAAAAA 212)( 222  (18) 

and not A2 (1 ± /A) as would be obtained by misapplying the rule for independent 
variables. For example,  

A∆

(10 ± 1)2 = 100 ± 20 and not 100 ± 14.  

If a variable Z depends on (one or) two variables (A and B) which have independent errors 
( andA∆ B∆ ) then the rule for calculating the error in Z is tabulated in following table for a 
variety of simple relationships. These rules may be compounded for more complicated 
situations.  
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Relation between Z      Relation between errors Z∆      
    and(A,B)                 and ( A∆ , B∆ )                     
---------------------------------------------------------------- 
1      Z = A + B                                      222 )()( BAZ ∆+∆=∆
2      Z = A - B                                      222 )()( BAZ ∆+∆=∆

3      Z = AB           22
2

)()(
B
B

A
A

z
Z ∆

+
∆

=





 ∆                               

4      Z = A/B          22
2

)()(
B
B

A
A

z
Z ∆

+
∆

=





 ∆                         

5      Z = An           
A
An

z
Z ∆
=

∆                               

6      Z =  ln A        
A
A

z
Z ∆
=

∆                              

7      Z  =  eA         A
z
Z

∆=
∆                           

---------------------------------------------------------------- 
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