Problem: One of the three landing pads for the Mars Viking lander is shown in the figure with its approximate dimensions. The mass of the lander is 600 kg .
(a) Compute the force in each leg when the lander is resting on a horizontal surface on Mars. Assume equal support by the pads.
(b) The actuator is capable of retracting and extending the leg $C D$ between the limits $l_{C D}=1000 \mathrm{~mm}$ and $l_{C D}=1500 \mathrm{~mm}$ when unconstrained. Considering the facts that the bottom of the lander is not to touch the surface and the leg $C D$ cannot be positioned beyond the vertical position, find the minimum and maximum values of the x-coordinate of the point C. $\left(x_{C, \text { min }}\right.$ and $\left.x_{C, \max }\right)$
(c) Determine the forces in each leg as a function of x_{C}.
(d) Draw the $F_{C D}-x_{C}$ and $F_{A C}-x_{C}$ diagrams for the

Dimensions in Millimeters interval $\left[x_{C, \text { min }}, x_{C, \text { max }}\right\rangle$.
(e) What are the minimum and maximum values of the forces in the legs?

