HOMEWORK \#4 - SOLUTION

PROBLEM: Consider the program given below:

```
program determinant
real, dimension(3,3) :: a
real :: ratio
integer :: i, j, s, n=3
a = reshape((/1.,0.,7.,2.,5.,8.,3.,6.,9./),(/3,3/))
print "(3f5.1)", (a(i,:), i=1,3)
print *, ""
do s = 1, 3
    do i = s+1, n
    ratio = a(i,s) / a(s,s)
        do j= s, n
        a(i,j) = a(i,j) - ratio * a(s,j)
        end do
    end do
end do
print "(3f5.1)", (a(i,:), i=1,3)
end program determinant
```

The program changes the matrix

$$
a_{3 \times 3}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

into upper triangular form by row and column operations to become

$$
a_{3 \times 3}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 5 & 6 \\
0 & 0 & -4.8
\end{array}\right]
$$

Since multiplying a row and adding the result to another row doesn't change the determinant of a matrix, the two matrices have the same determinant. The determinant of a in upper triangular form will be equal to the product of the diagonal elements. This program does not calculate the determinant of matrix a. However, it is obvious that making it into a program that does find the determinant is not difficult at all.

The problem here in this homework is to write a module containing a function that finds the determinant of a square matrix ($n \times n$) and a driver program to test the function.

SOLUTION:

program determinant
use hesaplar
real, dimension(3,3) :: a
real :: ratio
integer :: i, j, s, n=3
a = reshape((/1.,0.,7.,2.,5.,8.,3.,6.,9./),(/3,3/))
print "(3f5.1)", (a(i,:), $\mathrm{i}=1,3$)
print *,""
print *, "D =", deter(a)
end program determinant
module hesaplar
public :: deter
contains
function deter(a) result(det)
real, intent(in) :: a(:,:)
real :: b(size(a,1), size(a,2))
real :: ratio, det
integer :: s, i , j, n
$\mathrm{n}=\operatorname{size}(\mathrm{a}, 1)$
b = a
det $=b(1,1)$
do $s=1, n-1$
do $\mathrm{i}=\mathrm{s}+1, \mathrm{n}$
ratio $=b(i, s) / b(s, s)$
do $j=s, n$
$b(i, j)=b(i, j)-r a t i o * b(s, j)$
end do
end do
$\operatorname{det}=\operatorname{det}^{*} b(s+1, s+1)$
end do
end function deter
end module hesaplar

