Quiz-1

Problem: During a portion of a vertical loop, an airplane flies in an arc of radius $\rho=600 \mathrm{~m}$ with a constant speed $v=400 \mathrm{~km} / \mathrm{h}$. When the airplane is at A, the angle made by \vec{v} with the horizontal is $\beta=30^{\circ}$, and radar tracking gives $r=800 \mathrm{~m}$ and $\theta=30^{\circ}$.
(a) Calculate v_{r}, v_{θ}, a_{r}, and $\ddot{\theta}$ for this instant.

Ans. $v_{r}=96.2 \mathrm{~m} / \mathrm{s}, v_{\theta}=55.6 \mathrm{~m} / \mathrm{s}$

$$
a_{r}=10.29 \mathrm{~m} / \mathrm{s}^{2}, \ddot{\theta}=-0.0390 \mathrm{rad} / \mathrm{s}^{2}
$$

(b) Find the position vector of the airplane at point A in the $x y$ frame.
(c) Calculate the magnitudes of velocity and acceleration vectors at the point A.

If possible,
(d) find v_{x}, v_{y}, a_{x}, and a_{y};
(e) find the components of the velocity and acceleration vectors in spherical coordinates; (r and θ are given in the figure, $\phi=$?)
(f) find the tangential and normal components of the resultant acting on the airplane at the point A, if the mass of the airplane is $m=10.000 \mathrm{~kg}$;
(g) find the rate of work done by the resultant at the point A;
(h) find the rate of work done by weight of the airplane at the point A.

If you think it is not possible to find exact values of the quantities given above then explain why.

