

Şekil-8.11. Aktif s-C süzgeç yapısı.

8.3 CMOS OTA-C aktif süzgeçleri

İşlemsel kuvvetlendiricilerden daha geniş bandlı olmaları ve eğimlerinin kontrol edilebilir olması nedeniyle OTA'lar da gittikçe yaygınlaşarak kullanım alanı bulmaktadır. Yine, CMOS teknolojisi ile kolayca tümleştirilebilmeleri nedeniyle, OTA-C aktif süzgeçleri de yaygınlaşmakta ve bu alanda gerek OTA gerekse aktif süzgeç gerçekleştirilmesi için yeni devre topolojileri önerilmektedir.

Aktif süzgeç yapılarında kullanılmaya elverişli OTA yapılarından biri olan simetrik CMOS-OTA ve türevleri, geniş bandlı olmaları, eğimlerinin I_A kutuplama akımı ile kontrol edilebilmesi, yapılarının tümleştirmeye uygun ve basit olması gibi nedenlerden dolayı yaygın bir kullanım alanı bulmakta, OTA-C süzgeç yapılarının yanısıra, analog çarpma devreleri ve yüksek frekans osilatörlerinin gerçekleştirilmesi amacıyla da bu devre yapılarından yararlanılmaktadır.

Bu amaca yönelik çeşitli çalışmalarda, minimum sayıda OTA ve bir ucu topraklanmış kondansatörlerle kurulan bikuadratik aktif süzgeçler

gerçekleştirilmesi için devre sentezi yöntemleri önerilmiştir. Bilindiği gibi, bikuadratik genel transfer fonksiyonu

$$G(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + b_1 s + b_0}$$
(8.11)

biçimindedir. Bu transfer fonksiyonunu sağlayan genel devre yapısı Şekil-8.12'de verilmiştir.

Şekil-8.12. İkinci dereceden transfer fonksiyonunu gerçekleyen genel OTA-C aktif süzgeç yapısı.

Bu devrede tasarım eşitlikleri

$$\frac{g_{m_1}}{C_1} = \frac{b_0}{b_1}$$

$$\frac{g_{m_2}}{C_2} = \frac{b_1}{a_2}$$

$$\frac{g_{m_3}}{g_{m_4}} = a_2$$

$$\frac{g_{m_5}}{C_1} = \frac{a_0}{b_1}$$

$$\frac{g_{m_6}}{C_2} = \frac{a_1}{a_2}$$
(8.12)

Süzgeç	Transfer fonksiyonu	Eleman değerleri	
Şekil-8.13a	<i>a</i>	$\frac{g_{m1}}{g_{m1}} - \frac{b_0}{g_{m2}} - b = \frac{g_{m3}}{g_{m3}} - \frac{a_0}{a_0}$	
Alçak geçiren	$s^2 + b_1 s + b_0$	$C_1 \stackrel{-}{=} b_1 C_2 \stackrel{-}{=} b_1 C_1 \stackrel{-}{=} b_1$	
Şekil-8.13b	a_0	$a_{m} = b_{m} \frac{g_{m1}}{g_{m1}} - \frac{b_{0}}{g_{m2}} \frac{g_{m2}}{g_{m2}} - b_{m}$	
Alçak geçiren	$s^2 + b_1 s + b_0$	$a_0 = b_0$, $\overline{C_1} = \overline{b_1}$, $\overline{C_2} = b_1$	
Şekil-8.13c	a_1s	$g_{m1} = b_0 g_{m2} = b_0 g_{m3} = c$	
Band geçiren	$s^2 + b_1 s + b_0$	$\overline{C_1} = \overline{b_1}$ $\overline{C_2} = \overline{b_1}$ $\overline{C_2} = \overline{a_1}$	
Şekil-8.13d	a_2s^2	$g_{m1} - b_0 g_{m3} - a g_{m2} - b_1$	
y uksek geçiren	$\overline{s^2 + b_1 s + b_0}$	$C_1 = b_1 g_{m4} = a_2 C_2 = a_2$	
Şekil-8.13e	$a_1 s + a_0$	$g_{m1} - b_0 g_{m2} - b_0 g_{m3} - a_0$	
Band geçiren	$\overline{s^2 + b_1 s + b_0}$	$\frac{\overline{C_1}}{\overline{C_1}} = \frac{\overline{b_1}}{\overline{b_1}} \frac{\overline{C_2}}{\overline{C_2}} \equiv \overline{b_1} \frac{\overline{C_1}}{\overline{C_1}} = \frac{\overline{b_1}}{\overline{b_1}},$	
		$\frac{g_{m4}}{g_{m4}} = a$	
		$C_2 = u_1$	
Şekil-8.13.f	$\underline{a_1s + a_0}$	$\frac{g_{m1}}{g_{m1}} = \frac{b_0}{g_{m2}} = b$ $a = \frac{b_0}{g_{m1}} = b$	
Band geçiren	$s^2 + b_1 s + b_0$	$C_1 = b_1 = C_2 = b_1 = u_1 = b_1, u_0 = b_0$	
Şekil-8.13g	$a_2s^2 + a_0$	$\frac{g_{m1}}{g_{m1}} - \frac{b_0}{g_{m2}} - \frac{g_{m2}}{g_{m2}} - \frac{b_1}{g_{m2}} $	
söndüren	$s^2 + b_1 s + b_0$	$C_1 = b_1 + C_2 = a_2 + a_0 = b_0$,	
		$\frac{g_{m3}}{g_{m3}} = a_{m3}$	
		g_{m4}	
Şekil-8.13h	$a_2s^2 + a_0$	$\underline{g_{m1}} _ \underline{b_0} \underline{g_{m2}} _ \underline{b_1} \underline{g_{m5}} _ \underline{a_0}$	
söndüren	$s^2 + b_1 s + b_0$	$C_1 \stackrel{-}{=} b_1 C_2 \stackrel{-}{=} a_2 C_1 \stackrel{-}{=} b_1$	
		$\frac{g_{m3}}{g_{m3}} = a$	
		g_{m4} - a_2	
Şekil-8.13i Tümgəqirər	$s^2 + b_1 s + b_0$	$\frac{g_{m1}}{g_{m1}} - \frac{b_0}{g_{m2}} - \frac{g_{m2}}{g_{m2}} - \frac{b_1}{g_{m5}} - b_1$	
Tumgeçiren	$\overline{s^2 + b_1 s + b_0}$	$C_1 = b_1, C_2 = a_2, C_2 = b_1,$	
		$\frac{g_{m3}}{1} = 1$	
		g_{m4}	

Tablo-8.1. Şekil-8.13'deki süzgeçlerin transfer fonksiyonları ve eleman bağıntıları

biçimindedir. Bu bağıntılarda g_{mi} büyüklükleri i.ci OTA'nın eğimini göstermektedir.

Şekil-8.12'deki genel yapıya dayanan ve minimum sayıda OTA içeren çeşitli tipten ikinci derece aktif OTA-C süzgeci yapıları Şekil-8.13'de gösterilmiştir. Bu süzgeç yapılarına ilişkin transfer fonksiyonları ve tasarım büyüklükleri de Tablo-8.1'de belirtilmiştir.

(a) alçak geçiren süzgeç: $a_0 \neq b_0$

(b) alçak geçiren süzgeç: $a_0 = b_0$

(c) band geçiren süzgeç

(d) yüksek geçiren süzgeç

(e) band geçiren süzgeç

(f) band geçiren süzgeç

(g) band söndüren süzgeç $a_0 = b_0$

(h) band söndüren süzgeç $a_0 \neq b_0$

(i) tümgeçiren süzgeç

Şekil-8.13. OTA-C alçak geçiren, band geçiren, yüksek geçiren, band söndüren ve tüm geçiren aktif süzgeç yapıları.

Giriş işareti genliğini kısıtlayan etkenler

OTA-C süzgeçleri gerçekleştirilirken, giriş işareti seviyesinin belirlenmesi de önemli bir etken olarak kendini gösterir. Pratikte, bir OTA yapısı, çıkış işareti belirli değerlere ulaştığında, lineer olarak çalışamaz. Bir OTA'nın çıkış gerilimi seviyesi doymaya gitttiğinde, o OTA'nın çıkışından kırpılmış bir işaret alınır. Yine, bir OTA'nın çıkış akımının doyması durumunda da, OTA aktif süzgeçlerde olduğu gibi kapasitif yükle çalıştırılıyorsa, yükselme eğimi problemi ortaya çıkar ve çıkıştan testeredişi biçimli bir işaret elde edilir.

Bu bölümde, çıkışta kırpılma ve yükselme eğimi problemi oluşmaksızın, aktif süzgeç girişine uygulanabilecek maksimum giriş işareti seviyesinin ne şekilde belirlenebileceği ele alınacaktır.

Lineer çalışma bölgesi için giriş işareti seviyesi, tasarımcının belirlediği bir $\omega \in [\omega_1, \omega_2]$ frekans bandı içinde

8.17

$$|V_k| \le V_{ks}$$
, $k = 1, 2, ..., n$
 $|I_k| \le I_{ks}$, $k = 1, 2, ..., n$ (8.13)

şartı sağlanacak biçimde olmalıdır. Burada n büyüklüğü, tasarımda kullanılacak OTA'ların sayısını göstermektedir.

 $V_k = V_k(j\omega)$ ve $I_k = I_k(j\omega)$

büyüklükleri k. cı OTA'nın çıkışındaki gerilim ve akım fazörlerini belirtmektedir. Devredeki tüm OTA'ların birbirinin eşi olmaları ve aynı kutuplama akımıyla kutuplanmaları durumunda bu sınır değerler her OTA için birbirine eşit olur; başka bir deyişle

$$V_{1s} = \dots = V_{ns} = V_s$$
$$I_{1s} = \dots = I_{ns} = I_s$$

yazılabilir. Bu şartlar giriş işareti genliği cinsinden ifade edilirlerse

$$|V_i| |H_k| \le V_{ks} = V_s , k = 1, 2, ..., n$$

$$|V_i| |Y_k| \le I_{ks} = I_s , k = 1, 2, ..., n$$
(8.14)

bulunur. Bu bağıntılarda V_i büyüklüğü, süzgecin giriş geriliminin genliğidir. H_k = H_k(j ω) büyüklüğü, girişten k.cı OTA'nın çıkışına kadar olan transfer fonksiyonudur ve k.cı OTA'nın çıkış gerilimi fazörünün süzgecin giriş gerilimi fazörüne oranı olarak tanımlanır. Y_k = Y_k(j ω) ise transfer admitansı fonksiyonudur ve k.cı OTA'nın çıkış akımı fazörünün giriş gerilimi fazörüne oranı biçiminde tanımlanır.

Bütün bunlardan fark edilebileceği gibi, $\omega \in [\omega_1, \omega_2]$ frekans bandı içinde, giriş gerilimi genliğini sınırlayan 2n adet eşitsizlik bulunmaktadır:

$$|V_i| \leq = rac{V_s}{|H_k|}$$
, $k = 1, 2, ..., n$
 $|V_i| \leq rac{I_s}{|Y_k|}$, $k = 1, 2, ..., n$

Bu eşitsizliklerin ortak çözümü, çıkışta kırpılma ve yükselme eğimi problemi oluşmaksızın girişe uygulanabilecek maksimum giriş gerilimi genliğini verecektir:

$$|V_i|_{maks} = \min\left(\frac{V_s}{|H_k(j\omega)|_{maks}}, \frac{I_s}{|Y_k(j\omega)|_{maks}}\right), \ k = 1..n$$
(8.15)

Bu bağıntılarda $|H_k|_{maks}$ ve $|Y_k|_{maks}$ büyüklükleri $|H_k|$ ve $|Y_k|$ fonksiyonlarının $\omega \in [\omega_1, \omega_2]$ frekans bandı içinde alabilecekleri maksimum değerlerini göstermektedir.

Maksimum giriş genliğinin ne şekilde belirlenebileceği bir Butterworth alçak geçiren süzgeci ve transfer fonksiyonunun paydası birinci örnekle aynı olan bir tümgeçiren süzgeç (faz dengeleyici) üzerinde gösterilecektir.

Şekil-8.14. OTA-C süzgeci gerçekleştirilmesinde kullanılan simetrik OTA yapısı.

Tranzistor	W(µm)	L(µm)
T1	30	3
T2	12	3
T3	30	3
T4	12	3
T5	12	3
T6	36	3
T7	12	3
T8	36	3
Т9	45	3

Tablo-8.2. Simetrik OTA'da tranzistor boyutları

İlk önce, kesim frekansı 3 MHz olan bir Butterworth alçak geçiren süzgeci ele alınsın. (Şekil-8.13b). Bu süzgece ilişkin tasarım eşitliklerinden hareket edilirse

 $C_1 = 100 \text{ pF}$, $C_2 = 50 \text{ pF}$

şeklinde seçilen kapasite değerleri için OTA'ların eğimleri

 $g_{m1} = g_{m2} = 1,33 \text{ mA/V}$

olarak belirlenebilir. OTA'lar simetrik CMOS OTA olarak gerçekleştirilsin. Simetrik CMOS OTA yapısı Şekil-8.14'de tekrar verilmiştir. Eleman boyutları Tablo-8.2'de görülmektedir. \pm 5V'luk besleme gerilimlerinde, istenen eğim değerinin elde edilebilmesi için, OTA'nın kontrol girişine V_{GG} = -3.24V'luk bir gerilim uygulanması gerekeceği, SPICE simülasyonu ile bulunmuştur. OTA'nın doyma akımının ve doyma geriliminin OTA eğimine ne şekilde bağlı olduğu Şekil-8.15 ve Şekil-8.16'da gösterilmiştir. Bu eğrilerden yararlanılırsa

 $V_s = 3,27V$ ve $I_s = 560 \,\mu A$

bulunur. Öte yandan, seçilen süzgeç topolojisi için gerilim transfer fonksiyonu ve transfer admitans fonksiyonu

$$H_{I} = \frac{V_{I}}{V_{I}} = \left(1 + j\omega \frac{Q_{P}}{\omega_{P}}\right) H_{2}(j\omega)$$

$$H_{2} = \frac{V_{2}}{V_{I}} = \frac{\omega_{P}^{2}}{(j\omega)^{2} + (\frac{\omega_{P}}{Q_{P}}) (j\omega) + \omega_{P}^{2}}$$

$$Y_{I} = \frac{I_{I}}{V_{I}} = g_{m} (I - H_{2})$$

$$Y_{2} = \frac{I_{2}}{V_{I}} = g_{m} (H_{I} - H_{2})$$

biçimindedir. Bu fonksiyonlar kullanılırsa, geçirme bandı için

$$|H_1(j\omega)|_{maks} = 1.029$$

$$|H_2(j\omega)|_{maks} = 1$$

$$|Y_1(j\omega)|_{maks} = 1632 \,\mu A / V$$

$$|Y_2(j\omega)|_{maks} = 666 \,\mu A / V$$

elde edilir. Bütün bunların biraraya getirilmesiyle, giriş işareti genliğinin maksimum değeri için