ELE509E
 Current-Mode Analog Circuit Design

Homework 3 (21.11.2003)

Figure 1. Circuit symbol of DOCCII.
A dual output current conveyor (DOCCII) is described by
$\left[\begin{array}{c}V_{X} \\ I_{Y} \\ I_{Z 1} \\ I_{Z 2}\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ k & 0 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{c}I_{X} \\ V_{Y} \\ V_{Z 1} \\ V_{Z 2}\end{array}\right]$
$\mathrm{k}= \pm 1$. For $\mathrm{k}=1$ a DOCCII with two noninverting Z outputs is obtained. For $\mathrm{k}=-1$ the Z_{2} terminal yields an inverted output signal.

Design a CMOS dual output current conveyor with inverting and noninverting outputs..

1. Terminal output resistances $\mathrm{R}_{\mathrm{Z}}, \mathrm{R}_{\mathrm{Z} 2}, \mathrm{R}_{\mathrm{Y}}>25 \mathrm{M}$. Ohms, $\mathrm{R}_{\mathrm{X}}<10$ Ohms.
2. Voltage tracking error $\varepsilon_{V}<0.1 \%$, current tracking error $\varepsilon_{I}<0.1 \%$,
3. $B W$ of the voltage gain $\left(A_{V}=v_{x} / v_{y}\right) f_{V 3 d b}>10 \mathrm{MHz}$,
4. BW of the current gain $\left(A_{I 1}=i_{z 1} / i_{x}, A_{12}=i_{z 2} / i_{x}\right) f_{13 d b}>50 \mathrm{MHz}$,

The supply voltages are given as $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V},-\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$. The model parameters of the MOS transistors are given in Table 1.
a - Specify the CMOS DOCCII structure, determine transistor dimensions.
Using SPICE simulation results
a) draw the the plots of V_{X} against $\mathrm{V}_{\mathrm{Y}}, \mathrm{I}_{\mathrm{Z} 1}$ and $\mathrm{I}_{\mathrm{Z} 2}$ against I_{X},
b) specify the limits of the operation region,
c) draw the frequency response of the voltage gain and determine the bandwidth,
d) draw the frequency response of the current gain and determine the bandwidth,
e) draw the plot of the terminal impedances against the frequency,
f) investigate the large signal behaviour of the DOCCII by applying to Y terminal a sinusoidal input voltage in the passband and observing the total harmonic distortion THD at the $\mathrm{X}, \mathrm{Z} 1$ and Z 2 terminals for different input levels; draw the plot of THD against $\mathrm{i}_{\text {in }}$ for each terminal. (Connect adequate load resistances to the $\mathrm{X}, \mathrm{Z} 1$ and Z 2 terminals.
g) Give a detailed evaluation of your results.

Table 1. Transistor parameters of $0.5 \mu \mathrm{~m}$ CMOS process

.MODEL NT NMOS LEVEL=3
$+\mathrm{UO}=460.5 \mathrm{TOX}=1.0 \mathrm{E}-8 \mathrm{TPG}=1 \mathrm{VTO}=.62 \mathrm{JS}=1.8 \mathrm{E}-6 \mathrm{XJ}=.15 \mathrm{E}-6 \mathrm{RS}=417 \mathrm{RSH}=2.73$
$\mathrm{LD}=0.04 \mathrm{E}-6 \mathrm{ETA}=0+\mathrm{VMAX}=130 \mathrm{E} 3 \mathrm{NSUB}=1.71 \mathrm{E} 17 \mathrm{~PB}=.761 \mathrm{PHI}=0.905$
THETA $=0.129$ GAMMA $=0.69$ KAPPA $=0.1 \mathrm{AF}=1+\mathrm{WD}=.11 \mathrm{E}-6 \mathrm{CJ}=76.4 \mathrm{E}-5 \mathrm{MJ}=0.357$
CJSW $=5.68 \mathrm{E}-10 \mathrm{MJSW}=.302 \mathrm{CGSO}=1.38 \mathrm{E}-10 \mathrm{CGDO}=1.38 \mathrm{E}-10+\mathrm{CGBO}=3.45 \mathrm{E}-10$
$\mathrm{KF}=3.07 \mathrm{E}-28$ DELTA=0.42 NFS=1.2E11
.MODEL PT PMOS LEVEL=3
$+\mathrm{UO}=100 \mathrm{TOX}=1 \mathrm{E}-8 \mathrm{TPG}=1 \mathrm{VTO}=-.58 \mathrm{JS}=.38 \mathrm{E}-6 \mathrm{XJ}=0.1 \mathrm{E}-6 \mathrm{RS}=886 \mathrm{RSH}=1.81$
$\mathrm{LD}=0.03 \mathrm{E}-6 \mathrm{ETA}=0+\mathrm{VMAX}=113 \mathrm{E} 3 \mathrm{NSUB}=2.08 \mathrm{E} 17 \mathrm{~PB}=.911 \mathrm{PHI}=0.905$
THETA $=0.120$ GAMMA $=0.76$ KAPPA $=2 \mathrm{AF}=1+\mathrm{WD}=.14 \mathrm{E}-6 \mathrm{CJ}=85 \mathrm{E}-5 \mathrm{MJ}=0.429$
CJSW $=4.67 \mathrm{E}-10 \mathrm{MJSW}=.631 \mathrm{CGSO}=1.38 \mathrm{E}-10 \mathrm{CGDO}=1.38 \mathrm{E}-10+\mathrm{CGBO}=3.45 \mathrm{E}-10$
$\mathrm{KF}=1.08 \mathrm{E}-29$ DELTA $=0.81 \mathrm{NFS}=0.52 \mathrm{E} 11$

