ELE509E
 Current-Mode Analog Circuit Design

Homework 2 (31.10.2003)

Figure 1
A CMOS current amplifier is shown in Figure 1. The supply voltages and the biasing currents are given as $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V},-\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}, \mathrm{I}_{1}=\mathrm{I}_{2}=50 \mu \mathrm{~A}$. The transistor dimensions are illustrated in Table 1 and the model parameters of the MOS transistors are given in Table 2.
a) Realize the current sources I_{1} and I_{2} providing a biasing current of $50 \mu \mathrm{~A}$, determine the transistor dimensions.

Using SPICE simulation results
b) draw the the plot of $\mathrm{I}_{\text {Out }}$ against I_{IN},
c) specify the limits of the input current I_{IN} and the output current $\mathrm{I}_{\text {OUT }}$,
d) draw the frequency response of the current gain and determine the bandwidth of the amplifier,
e) draw the plot of the input impedance against the frequency,
f) draw the plot of the output impedance against the frequency,
g) investigate the large signal behaviour of the amplifier by applying a sinusoidal input current in the passband of the amplifier and observing the total harmonic distortion THD at the output for different input levels; draw the plot of THD against $i_{\text {in }}$,
h) investigate the dependence of the output voltage upon the load resistance R_{L} keeping the input level constant, observe the harmonic distortion THD at the output for each load resistance value; draw the plot of V_{O} against R_{L},
i) Give a detailed evaluation of your results.

Table 1. Transistor dimensions

Transistor	$\mathrm{L}[\mu \mathrm{m}]$	$\mathrm{W}[\mu \mathrm{m}]$
T1	1	$\mid 0$
T2	1	10
T3	1	10
T4	1	10
T5	1	10
T6	1	10
T7	1	100
T8	1	100

Table 2. Transistor parameters of $0.5 \mu \mathrm{~m}$ CMOS process
.MODEL NT NMOS LEVEL=3
$+\mathrm{UO}=460.5 \mathrm{TOX}=1.0 \mathrm{E}-8 \mathrm{TPG}=1 \mathrm{VTO}=.62 \mathrm{JS}=1.8 \mathrm{E}-6 \mathrm{XJ}=.15 \mathrm{E}-6 \mathrm{RS}=417 \mathrm{RSH}=2.73$
$\mathrm{LD}=0.04 \mathrm{E}-6 \mathrm{ETA}=0+\mathrm{VMAX}=130 \mathrm{E} 3 \mathrm{NSUB}=1.71 \mathrm{E} 17 \mathrm{~PB}=.761 \mathrm{PHI}=0.905$
THETA $=0.129$ GAMMA $=0.69$ KAPPA $=0.1 \mathrm{AF}=1+\mathrm{WD}=.11 \mathrm{E}-6 \mathrm{CJ}=76.4 \mathrm{E}-5 \mathrm{MJ}=0.357$
CJSW $=5.68 \mathrm{E}-10 \mathrm{MJSW}=.302 \mathrm{CGSO}=1.38 \mathrm{E}-10 \mathrm{CGDO}=1.38 \mathrm{E}-10+\mathrm{CGBO}=3.45 \mathrm{E}-10$
$\mathrm{KF}=3.07 \mathrm{E}-28$ DELTA $=0.42 \mathrm{NFS}=1.2 \mathrm{E} 11$
.MODEL PT PMOS LEVEL=3
$+\mathrm{UO}=100 \mathrm{TOX}=1 \mathrm{E}-8 \mathrm{TPG}=1 \mathrm{VTO}=-.58 \mathrm{JS}=.38 \mathrm{E}-6 \mathrm{XJ}=0.1 \mathrm{E}-6 \mathrm{RS}=886 \mathrm{RSH}=1.81$
$\mathrm{LD}=0.03 \mathrm{E}-6 \mathrm{ETA}=0+\mathrm{VMAX}=113 \mathrm{E} 3 \mathrm{NSUB}=2.08 \mathrm{E} 17 \mathrm{~PB}=.911 \mathrm{PHI}=0.905$
THETA $=0.120$ GAMMA $=0.76$ KAPPA $=2 \mathrm{AF}=1+\mathrm{WD}=.14 \mathrm{E}-6 \mathrm{CJ}=85 \mathrm{E}-5 \mathrm{MJ}=0.429$
CJSW $=4.67 \mathrm{E}-10 \mathrm{MJSW}=.631 \mathrm{CGSO}=1.38 \mathrm{E}-10 \mathrm{CGDO}=1.38 \mathrm{E}-10+\mathrm{CGBO}=3.45 \mathrm{E}-10$
$\mathrm{KF}=1.08 \mathrm{E}-29$ DELTA $=0.81 \mathrm{NFS}=0.52 \mathrm{E} 11$

