Prof. Dr. H. Hakan Kuntman

ELE509E Current-Mode Analog Circuit Design Final Project

Design a current operational amplifier using n-well $0.5\mu m$ CMOS technology. The circuit symbol of the current operational amplifier is illustrated in Figure 1.

The definition equations are given by

V_{IN+}	=	0	0	0	0	$\begin{bmatrix} I_{IN+} \end{bmatrix}$
V_{IN-}		0	0	0	0	I _{IN-}
I_{O^+}		K	-K	0	0	V_{O+}
I_{O-}		$\lfloor -K \rfloor$	Κ	0	0	$\begin{bmatrix} V_{O-} \end{bmatrix}$

where K is the open-loop gain; V_{IN+} , V_{IN-} I_{IN+} , I_{IN-} are the voltages and currents of the input terminals, V_{O+} , V_{O-} I_{O+} , I_{O-} denote the voltages and currents of the output terminals. The current operational amplifier to be designed must provide the following properties given in Table 1.

Table 1

Open-loop gain (dB)	> 80
Unity gain bandwidth (MHz)	>50
İnput resistance (k. Ohm)	< 1
Output resistance (M.Ohm)	>10
Supply voltages	$\pm 2.5 V$

Design a current operational amplifier providing the above mentioned properties with n-well $0.5\mu m$ CMOS technology.

a- Determine the dimensions and biasing currents of the transistors.

Using SPICE simulations :

b- Plot the DC transfer characteristic of the circuit; $I_{O} = f(I_{IN+}-I_{IN-})$, $I_{O} = f(I_{IN+}-I_{IN-})$. c- Plot the open-loop frequency response the current gain $\{I_{O+}/(I_{II+}-I_{II-}), I_{O-}/(I_{II+}-I_{II-})\}$ without applying any compensation, determine the poles of the transfer function. d- Compensate the frequency response to obtain a slope of -20dB/dec. Investigate the stability of the circuit. e- Investigate the DC transfer characteristics $V_{O+} = f(I_{IN+}-I_{IN-})$, $V_{O-} = f(I_{IN+}-I_{IN-})$ for several load resistance values,

f- Investigate the frequency response of input and output impedances.

h- Summarize the performance parameters of the current operational amplifier in a Table.

i- Evaluate your design and your results.

Explanations: The current operational amplifier can be realized by the use of the blocks illustrated in Figure 2. (DO-CCII structure designed in a previous homework can be also used for the output stage).

References:

[1] G. Palmisano, G. Palumbo and S. Pennisi, CMOS Current Amplifiers, Sec. 1., pp. 1-44, Kluwer Academic Publishers, 1999.

[2] *A.T. Bekri*, Current Mode Amplifiers, Current Operational Amplifiers (Seminar Notes for ELE509E: Current-Mode Analog Circuit Design, İstanbul Technical University, 2004.

[2] I. Myderrizi, Cascadable Current Mode Multipurpose Filters Employing Current Differencing Amplifier (CDBA), Seminar Notes for ELE509E: Current-Mode Analog Circuit Design, Istanbul Technical University, 17. 12.2004.

[4] N. Tarin, H. Kuntman, "A High Performance Current Differencing Buffered Amplifier", Proceedings of the 13th International Conference on Microelectronics (ICM'2001), pp.153-156, Rabat, Morocco, October 29-31, 2001.

[5] U. Çam and H. Kuntman, A new CMOS realisation of four terminal floating nullor (FTFN), International Journal of Electronics, Vol. 87, No.7, pp 809-817, 2000.

[6] S. Kılınç, U. Çam, Current-Mode Oscillator Configuration Using Single Current Operational Amplifier, ELECO 2003: Third International Conference on Electrical and Electronics Engineering, pp.107-111, Dec., 2003, Bursa, Turkey

[7] Acar C., Özoğuz S., "A new versatile building block: current differencing amplifier suitable for analog signal-processing filters". Microelectronics Journal 30 (1999) 157-160