
Computers & Industrial Engineering 56 (2009) 44–52
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
A genetic algorithm to solve the storage space allocation problem
in a container terminal

Mohammad Bazzazi a, Nima Safaei b,*, Nikbakhsh Javadian a

a Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
b Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Ont., Canada M5S 3G8
a r t i c l e i n f o

Article history:
Received 24 May 2007
Received in revised form 12 October 2007
Accepted 27 March 2008
Available online 4 April 2008

Keywords:
Storage space allocation problem
Container terminal
Genetic algorithm
0360-8352/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.cie.2008.03.012

* Corresponding author.
E-mail address: safaei@mie.utoronto.ca (N. Safaei)
a b s t r a c t

In this paper, an efficient genetic algorithm (GA) is presented to solve an extended storage space alloca-
tion problem (SSAP) in a container terminal. The SSAP is defined as the temporary allocation of the
inbound/outbound containers to the storage blocks at each time period with aim of balancing the work-
load between blocks in order to minimize the storage/retrieval times of containers. An extended version
of a SSAP proposed in the literature is considered in this paper in which the type of container affects on
making the decision on the allocation of containers to the blocks. In real-world cases, there are different
types (as well as different sizes) of containers consisting of several different goods such as regular, empty
and refrigerated containers. The extended SSAP is solved by an efficient GA for real-sized instances.
Because of existing the several equality constraints in the extended model, the implementation of the
GA in order to quick and facilitate achieve to the feasible solutions is one of the outstanding advantages
of this paper. The performance of the extended model and proposed GA is verified by a number of numer-
ical examples.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The temporary storage of the inbound and outbound containers
is one of the most important services at the container terminal that
is known as the storage space allocation problem (SSAP). The stor-
age area in the terminal is divided into the several blocks of con-
tainers. Each block consists of a number of side by side lanes
with each lane including a number of container stacks that are of
4–5 tiers of containers (Zhang, Liu, Wan, Murty, & Linn, 2003).

The fast storage and retrieval of containers at the blocks is
essential for the economic performance of container terminals
and also shipping companies. These issues affect directly on the
traffic of the handling equipment and consequently on the dwell
and turnaround time of vessels. The process of the storing (or
retrieving) of a container includes the time for adjusting RTGCs,
picking up container, moving toward the allocation place and
downloading container. Since a container must be allocated to
(or picked up from) a certain place at the block, it may be necessary
to relocate one or more other containers for accessing to that con-
tainer. This means a higher operating time and cost for RTGCs.
Thus, it can be stated that balancing workload between blocks is
critical element of the efficiency of the container terminal and it
ll rights reserved.

.

is important in reducing transportation costs and keeping shipping
schedules.

We extend the SSAP proposed in the literature (Zhang et al.,
2003) for a container terminal located at the south of Iran namely
Shahid Rajaei terminal. In this paper, the SSAP is extended in the
case that the type of containers is different such as regular, empty
and/or refrigerated containers. The difference between types of
containers is often resulted from the difference between goods
and items inside them such as foods, chemical substances, liquids,
etc. This issue means that similar containers must be (or must not
be) allocated to the same block, or a certain type of container must
be (or must not be) allocated to a certain block. For instance, refrig-
erated containers must be allocated to the blocks equipped by the
power point or empty containers must not be settled under a full
container or the containers with a same size should be allocated
to the same block. Thus, the allocation of the containers to blocks
may be restricted by above-mentioned limitations.

The SSAP can be formulated as a generalized assignment prob-
lem and therefore it belongs to the NP-hard problems category.
Thus, a genetic algorithm (GA) is proposed to solve the extended
SSAP for the real-sized instances. Because of existence numerous
equality constraints in the proposed model, the implementation
of the GA in order to facilitate and quick achieve to the feasible
solutions is one of the outstanding advantages of this paper.

The rest of this paper is organized as follows: a brief overview of
SSAP and related literature is presented in Section 2. The extended

mailto:safaei@mie.utoronto.ca
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52 45
SSAP is formulated in Section 3. The proposed GA is developed in
Section 3. Computational results are reported in Section 4 and
finally Section 5 covers the conclusion.
1 Rail Mounted Gantry Crane.
2 Twenty-foot Equivalent Unit.
2. Literature review

Various aspects of the operational problems in the container
terminal such as resource allocation problem (Imai, Nishimura,
& Papadimitriou, 2001), Quay crane scheduling (Lee, Wanga, &
Miao, 2008), berth planning optimization (Legato & Mazza,
2001), Human resources management (Legato & Monaco,
2004), stowage and load planning (Imai, Sasaki, Nishimura, &
Papadimitriou, 2006) and sequencing delivery and receiving
operations for storage space cranes (Kima, Leea, & Hwang,
2003) have been studied until now. A brief review of the opera-
tional problems in the container terminal can found in Zhang
et al. (2003) and Zhang et al. (2002).

The SSAP has been first formulated by Zhang et al. (2003) for
a container terminal in Hong Kong (Zhang et al., 2003). They
solved the SSAP using a rolling-horizon approach. For each plan-
ning horizon, they decomposed the problem into two levels
and formulated each level as a mathematical programming mod-
el. At the first level, the total number of containers to be placed
in each storage block in each time period of the planning hori-
zon is set to balance two types of workloads among blocks.
The second level determines the number of containers associated
with each vessel that constitutes the total number of containers
in each block in each period, in order to minimize the total dis-
tance to transport the containers between their storage blocks
and the vessel berthing locations. In this paper, only the first le-
vel is considered by assuming the different types of containers.
The rest of assumptions are the same as Zhang et al. (2003) ex-
cept to the transit containers do not exist in the considered con-
tainer terminal, i.e., Shahid Rajaei terminal.

No research has attempted to solve the SSAP by a meta-heuris-
tic approach. However, some operational problems have been
solved by novel optimization approaches especially GA. Imai
et al. (2006) solved a multi-objective simultaneous stowage and
load planning problem by GA (Imai et al., 2006). Imai, Nishimura,
Hattori, and Papadimitriou (2007) solved the berth allocation prob-
lem at indented berths for mega-containerships by GA (Imai et al.,
2007). Imai et al. (2006) used GA to solve the service allocation
problem at a container terminal (Cordeau, Gaudioso, Laporte, &
Moccia, 2007). Lee et al. (2008) used GA to solve the quay crane
scheduling problem.

3. Preliminary definitions and descriptions

The following definitions are frequently used throughput paper.
All definitions and explanations are adopted from Zhang et al.
(2003).

� Inbound (IB) container: a container that is discharged from the
vessel and transmitted to the storage space waiting for picking
up by customers.

� Outbound (OB) container: a container that is bought by customer
and transmitted to the storage space waiting for picking up by
vessel.

� Quay Crane (QC): is used to discharge IBs and transit them from
and load OBs and transit them to vessels.

� Internal truck (IT): is provided to transport containers between
the QCs and the storage blocks.

� External truck (XT): is provided to bring OBs from customers into
the storage space and pick up IBs from the storage space and
deliver them to customers.
Storage space crane (or RTGC1 in general): are used to handle the
containers in storage blocks. They load containers from trucks ITs or
XTs and stack them onto blocks, and retrieve containers from blocks
and load them onto trucks.

� Workload of vessel: the number of IB and OB containers must be
loaded on and unloaded from the vessel.

The container flows in a terminal are triggered by the vessel ar-
rival process. Each vessel arrives at a designated time with speci-
fied numbers of containers to be discharged and loaded at the
terminal. The berth allocation, where the vessel is to be berthed,
and the stowage plan, the sequences for discharging and loading
the containers of the vessel are determined well before the vessel’s
arrival. Thus, according to Zhang et al. (2003), containers to be allo-
cated to the blocks can be classified into the following four types
according to their status at different handling stages (Zhang
et al., 2003):

� Vessel discharge containers: IB containers on vessels before they
are unloaded and allocated to the storage space (C1).

� Container yard pickup containers: IB containers already in the
storage space waiting for picking up by customers (C2).

� Container yard grounding containers: OB containers before they
are brought in and stored in the storage space (C3).

� Vessel loading containers: OB containers already in the storage
space waiting for loading to vessels (C4).

These types of containers are measured in terms of the number
of containers.(TEU2) This unit is used throughout when we discuss
the SSAP. Since the arrivals of C1 and the departures of C4 containers
are directly triggered by vessel schedules, the time epochs to handle
these containers (by RTGCs or QCs) are known in advance. On the
other hand, we can only determine from historical data the distribu-
tions of the time epochs to handle C3 and C2 containers. There is a
free storage period for these containers, usually lasting for several
days before the arrivals and after the departures of the correspond-
ing vessels. This makes the time epochs to work on C3 and C2 con-
tainers imprecise.

In general, two main objectives of a classical SSAP are:

� to minimize the (average) vessel berthing time, which is a mea-
sure of the service of a terminal to ship liners,

� to maximize the (average) throughput of QCs, which is a mea-
sure of the productivity of a terminal.

The values of these objectives reflect whether a container termi-
nal is in a healthy operating condition. For example, given the
small storage space area and the high throughput of the container
terminal, a short berthing time or high QC throughput generally
come along with short XT turnaround times.

In the considered container terminal, 85% of the total workload
is related to the container types of C1 and C2, i.e., IB or import con-
tainers. OB containers (i.e., container types of C3 and C4) are allo-
cated to a single block close to the berth location of the vessels that
OB containers must be loaded on them. Therefore, this paper fo-
cuses only on container types of C1 and C2. The extended SSAP will
decide in which blocks to place the C1 and C2 containers of each
vessel by considering the type of container. We assume that the
vessels are allocated to the corresponding berths and also QCs
are allocated to the corresponding vessels to discharge the contain-
ers of each vessel. Thus, our problem is to determine the numbers

46 M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52
of C1 and C2 containers of each vessel stored in each block.
The pre-requisite is to determine the (expected) workload require-
ments (in terms of number of C1 and C2) for each time period of
the storage space. For this mean, we need to know the behaviors
or patterns of accumulation and dissipation of container types of
C1 and C2 related to a given vessel in the storage space at each
time period.

The duration of unloading and loading of a vessel can be as-
sumed to be a known quantity for a given vessel (with the pre-
specified workload). According to the empirically studies, in the
considered container terminal, the patterns of accumulation and
dissipation are stable over time. Consequently, for any vessel, given
the workload associated with it, we can deduce the (expected)
workload of the vessel for any time period. By superimposing the
workloads of all vessels, we can find the total workload for any
time period for the whole terminal. Given the total workload
requirement of the whole container terminal, we have a better idea
of the demand for RTGCs, QCs, XTs and ITs over time. Clearly, it
would be still too complex to consider the interaction of the stor-
age blocks, the travel of ITs, and the availability of RTGCs and QCs
all together. To overcome this problem, Zhang et al. (2003) broken
down the SSAP into two levels. The first level is aimed to minimize
vessel berthing times by balancing the workload of RTGCs and QCs
for vessels. With workloads of a vessel dispersing in different
blocks, the RTGCs in the blocks serve as parallel servers processing
jobs for the vessel, and the deberthing time of the vessel is the
maximal processing time of these parallel servers. Balancing the
workload of parallel servers generally works well to minimize
the completion times of vessels. Similar results on the RTGC
deployment problem confirm that balancing workloads of blocks
reduces delay in container handling (Zhang, Wan, Liu, & Linn,
2002). The second level determines the number of containers asso-
ciated with each vessel that constitutes the total number of con-
tainers in each block in each period, in order to minimize the
total distance to transport the containers between their storage
blocks and the vessel berthing locations. As mentioned earlier,
we consider only the first level in this paper by assuming the dif-
ferent types of IB containers. The second level is not considered be-
cause the OB containers constitute only a little portion of the total
workload of the container terminal.

Zhang et al. (2003) considered a fixed planning horizon and run
their method with the rolling-horizon approach (RHA). According to
the RHA, at each planning epoch, we plan for a fixed horizon in
immediate future and execute the plan accordingly up to the next
planning epoch; then we formulate a new plan based on the latest
information; this pattern goes on continually (see Fig. 1). There is a
trade-off between the length of the chosen planning horizon, com-
putational burden and power of prediction. A short planning hori-
zon means less computational burden but also less predictive
power about the future, while a long planning horizon may be
computationally unfeasible and may include too much uncertain
information. Zhang et al. (2003) settled on a planning horizon of
three days, with each day being divided into six 4-h periods.
Whereas, meta-heuristic approaches can process more computa-
day 1 day 2 day 3 day 4 day 5 day 6

Planning horizon on day 1

Planning horizon on day 2

1 2 3 4 5 6

Fig. 1. Rolling of the planning horizon.
tional burden than the classical methods within a unit time, we
settle on a planning horizon of four days, with each day being di-
vided into six 4-h periods that makes our predication more exact
than the three days planning horizon. At (the beginning of) day
1, a storage space allocation plan is formed for the 24 periods in
days 1–5. Only the first day of the plan is executed and a new
four-day plan is formed at the end of the first day (beginning of
the second day) based on the latest information. This goes on for
every day.

The maximum dwell times of IB containers approximately equal
the maximal free storage period, which is beyond the planning
horizon. Thus, there are containers with unknown departure times
at the moment of planning or containers with known departure
times beyond the planning horizon. Their workloads do not occur
in the planning horizon and consequently such containers are
not directly included in the storage allocation model. To account
for their possible effect in future, these containers are distributed
to blocks in proportion to their available storage capacities at the
beginning of the planning horizon so as to balance the block den-
sities. Such an approximation has a marginal effect on the overall
performance: The majority of containers of a vessel are accumu-
lated and dissipated in the planning horizon (within four days be-
fore or after the vessel’s berthing) and, in any case, most containers
are allocated under known information, since only the first day of
the four-day plan is implemented. By attention to the above-men-
tioned descriptions, four data types should be available for each IB
container as follows:

(1) The time period in which the container must be discharged
from vessel and brought to the storage blocks.

(2) The time period in which the container must be removed
from space blocks and loaded on the vessel.

(3) The type of each container.
(4) The allowable blocks for each container type.
4. Problem formulation

In this section, the extended SSAP is formulated as a mathemat-
ical programming model based on the following assumptions. Basi-
cally, we want to determine the numbers of C1 and C2 containers
stored in each block for each planning period.

4.1. Assumptions

(1) Only IB containers (i.e., container types of C1 and C2) are
considered as the workload that must be relocated between
the vessel berthing locations and storage space.

(2) There is enough resource, i.e., RTGC, QC and IT, to handle the
workload at the considered container terminal.

(3) Containers are of different types and sizes. Thus, the work-
load related to each type of container is counted in terms
of the number of that container type. The containers of dif-
ferent sizes and types can be mixed in blocks.

(4) The allowable blocks that a container type can be allocated
to them are known in advance.
4.2. Input parameters

B the total number of blocks in the storage space
T the total number of planning periods in a planning horizon,

T=24
R the number of container types
Ci the storage capacity of block i, 1 6 i 6 BeDtkr the expected number of C1 container type r that are dis-

charged from vessels in period t and to be picked up by
customers in period t + k, 1 6 t 6 T, 0 6 k 6 T � t

M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52 47
bitr the expected number of C1 container type r discharged
from vessels in period t, allocated to block i (determined
by the proportional method), with an unknown pickup
time or a pickup time beyond the planning horizon,
1 6 t 6 T, 1 6 i 6 B

P0
itr the expected total number of initial C2 container type r

that arrive at the container terminal in period t and to be
loaded onto the vessels in period t + k, 1 6 t 6 T,
0 6 k 6 T � t

Vir the initial inventory of container type r in block i, i.e., the
number of container type r in block i at the beginning of
the planning horizon, 1 6 i 6 B

Sir = 1 if container type r can be allocated to block i; otherwise
Sir = 0

g allowable density for each block
M an arbitrary positive big number
4.3. Decision variables

Ditkr the number of C1 container type r with full information
stored in block i that are discharged from vessels in per-
iod t and to be picked up in period t + k, 1 6 i 6 B,
1 6 t 6 T, 0 6 k 6 T � t

Ditr the total number of C1 container type r (with full or partial
information) stored in block i that are discharged from ves-
sels during period t, 1 6 i 6 B, 1 6 t 6 T

Pitr the total number of C2 container type r stored in block i
that are picked up by customers in period t, 1 6 i 6 B,
1 6 t 6 T

Vitr the number of container type r (consists of C1 and C2 con-
tainers) within block i at the end of period t, 1 6 i 6 B,
1 6 t 6 T
4.4. Mathematical model

4.4.1. Objective function
By attention to the above-mentioned notions and the explana-

tions presented in Section 3, the objective function of the model
is written as follow:

min Z ¼
XT

t¼1

XR

r¼1

w1 max
B

i¼1
fDitrg �min

B

i¼1
fDitrg

� ��

þw2 max
B

i¼1
fDitr þ Pitrg �min

B

i¼1
fDitr þ Pitrg

� ��
ð1Þ

Eq. (1) balances C1 containers and the total number of contain-
ers among blocks for each container type at each period. Generally,
the term ‘‘max(.) �min(.)” implies the imbalance between work-
load allocated to blocks. In other word, the term max(.) = min(.),
in a goal condition, means the containers are distributed between
blocks uniformly. The first term of the objective function focuses
on balancing container type C1 while the second term of the objec-
tive function focuses on balancing container types C1 and C2
simultaneously. The importance of each term is determined by
pre-determined weights. In this Equation, Ditr is the expected total
number of vessel related containers that need to be handled in
block i during period t and Ditr + Pitr is the expected total number
of containers (related to the vessel and customer) to be handled
in block iduring period t. Therefore, the two terms of Eq. (1) mea-
sure the imbalances of the discharging containers and of the total
number of containers in the blocks in each planning period, respec-
tively. w1 and w2, the weights of the two terms of Eq. (1), are ad-
justed according to the relative importance of the discharging
containers within the total number of containers as interpreted
by a terminal. Eq. (1) is the same objective function presented by
Lee et al. (2008) without considering C3 and C4 containers.
4.4.2. Constraints

(a) Container flow conservation constraints
XB

i¼1

Ditkr ¼ eDtkr r ¼ 1;2; . . . ;R; K ¼ 1;2; . . . ; T � t;

t ¼ 1;2; . . . ; T ð2Þ

Constraint (2) ensures that the expected total number of C1
containers type r with full information waiting for the alloca-
tion, Dtkr, is the sum of these containers assigned to all the
blocks.

Ditr ¼ bitr þ
XT�t

k¼0

Ditkr r ¼ 1;2; . . . ;R i ¼ 1;2; . . . ;B;

t ¼ 1;2; . . . ; T ð3Þ

Constraint (3) ensures that the expected total number of C1
containers type r allocated to block i during period t, Ditr, is the
sum of the total number of C1 containers with full information,
Ditkr, and of those containers with unknown departure times at
the planning horizon, bitr.

(b) Constraints on C2 container
Pitr ¼
Xt�1

k¼0

Diðt�kÞkr þ P0
itr i ¼ 1;2; . . . ;B; t ¼ 1;2; . . . ; T;

r ¼ 1;2; . . . ;R ð4Þ

Constraint (4) indicates that the number of C2 containers type r
handled in block i during period t, Pitr, consists of two parts. The
first part is the containers transferred from the corresponding C2
containers that arrived in the planning horizon. The second part
is C2 containers initially stored in block i to be loaded onto the ves-
sels in period t in the current planning horizon.

(c) Block density constraints
Vitr ¼ Viðt�1Þr þ eDitr � Pitr i ¼ 1;2; . . . ;B; t ¼ 1;2; . . . ;B;

r ¼ 1;2; . . . ;R ð5Þ
Vitr 6 gCi i ¼ 1;2; . . . ;B; t ¼ 1;2; . . . ;B; r ¼ 1;2; . . . ;R ð6Þ

Constraint (5) represents the updating of inventory, Vitr, from
period to period. Constraint (6) ensures that the inventory of each
block in each planning period will not exceed the allowable block
density. The block density implies this fact that a portion of the
block’s space is used to transfer containers within the block by
RTGCs and ITs.

(d) Container type allocation constraint
eDitr 6 M � Sir i ¼ 1;2; . . . ;B; t ¼ 1;2; . . . ;B; r ¼ 1;2; . . . ;R

ð7Þ

Constraint (7) ensures that each container type is allocated only
to the allowable blocks.

(e) Integer constraint

All decision variables take up non-negative integer values.
The proposed model is non-linear because of using functions

Max() and Min() in the objective function. It can be converted to
a linear model as depicted in Zhang et al. (2003).

5. Genetic algorithm implementation

As mentioned earlier, the main contribution of this paper is the
implementation of an evolutionary algorithm, say genetic algo-

48 M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52
rithm (GA), to solve an extended SSAP problem. Our reasons for
choosing GA as a solution approach are as follows:

1. We needed a stochastic approach with a strong exploration
ability to search the feasible space. As you will see, the most
of the model’s constraints are as equality form and, therefore,
obtaining of the feasible solutions is a hard task. In this case,
the probability of reaching infeasible solutions is more than fea-
sible solutions and therefore we need a population-based
approach such as GA to better exploration of the solution space.

2. GA is a well-known meta-heuristic that its efficiency is verified
for many problems in the literature.

3. The SSAP is not solved by any meta-heuristic until now.

GA are well-known meta-heuristic approach inspired by the
natural evolution of the living organisms. GAs work on a popula-
tion of the solutions simultaneously. They combine the concept
of survival of the fittest with structured, yet randomized, informa-
tion exchange to form robust exploration and exploitation of the
solution space. The exploration process is performed by a genetic
operator namely Crossover and the exploitation process in per-
formed by another genetic operator namely mutation. The trade-
off between these two processes is controlled by the parent selec-
tion and offspring acceptance strategies. The initial and most
important step of the GA implementation is the solution represen-
tation or chromosome design.

As can be seen in the model proposed in Section 4, most of the
model’s constraints are as equality, i.e., constraints No. (2)–(5).
This issue makes difficult the implementation of the GA and causes
GA spends so much time and efforts to access to the feasible solu-
tions especially by increasing the size of the problem. Thus, the
chromosome representation and genetic operators design are
two important tasks in the GA implementation for quick access
to the feasible space and an effective movement toward the opti-
mal solution neighborhood. Following subsections present how
implementation of the GA to solve the proposed model.

5.1. Solution representation

By considering the main decision variable of the proposed mod-
el, Ditkr, we use a four-dimension structure to represent the solu-
tion of the extended SSAP. These four dimensions indicate the
t=2 t=1
r=2 r=1 r=2 r=1

 D1112 D1111 k=1
 k=2
 k=3
 k=4

i=1

 D2112 D2111 k=1
 D2122 k=2

D2232 D2132 k=3
 D2142 k=4

i=2

Fig. 2. Solution re

i=1 i=2

D11=33 9 14 10 0 D21=32 9 14 0 9 D
D12=35 0 2 1 31 D22=36 0 9 20 7 D
D13=19 16 3 0 0 D23=20 19 1 0 0 D
D14=30 0 30 0 0 D24=30 20 10 0 0 D

Fig. 3. Typical
indexes related to the allocated block, period of discharging, period
of picking up and the type of the container. Fig. 2 shows a typical
solution representation as a two-dimension structure by assuming
B = 2, T = K = 4 and R = 2.

For example, to satisfy constraint (2), equationseD111 ¼ D1111 þ D2111, eD112 ¼ D1112 þ D2112, . . ., eD442 ¼ D1442 þ D2442

must be observed. Also, to satisfy Constraint (3), equationeD212 ¼ D2112 þ D2122 þ D2132 þ D2142 must be observed.

5.2. Initial solution generation procedure

To generate the random solutions for the initial population, the
procedure is as follow.

(1) Generate randomly Ditkr values within interval
½maxfeDtkrg;minfeDtkrg� where

PB
i¼1SirDitkr ¼ eDtkr8i, t, k, r. This

is simply possible by using the traditional linear combination.
(2) Calculate Ditr values by using constraint (3).
(3) Calculate Pitr values by using constraint (4).
(4) Calculate Vitr values by using constraint (5) and considering

constraint (6). If constraint (6) is violated, then, add value
k(Vitr � gCi) to the objective function as a penalty term in
which k indicates the penalty coefficient.

As a result, the fitness function of the chromosomes is defined
as: Eq. (1) plus the penalty term resulted from the violation of con-
straint (6).

Fig. 3 shows a randomly generated typical example by assum-
ing B = 4, T = K = 4, R = 1. For simplicity, we temporarily ignore
the container type in this example, i.e., R = 1. In Fig. 3, Ditk values
are generated randomly in such a way that constraints (2) and
(7) are satisfied.

By considering the information provided in Fig. 3, Dit values are
obtained as follows: For instance, assumebi1=0 "i, thus, we have:

D11 ¼
XT�1

k¼0

D11k þ b11 ¼ ð9þ 14þ 10Þ þ 0 ¼ 33þ 0 ¼ 33;

D21 ¼
XT�1

k¼0

D21k þ b21 ¼ 32

D31 ¼
XT�1

k¼0

D31k þ b31 ¼ 32; D41 ¼
XT�1

k¼0

D41k þ b41 ¼ 33; . . .
t=4 t=3
r=2 r=1 r=2 r=1

D2432 D2431 D2332
D2442

presentation.

i=3 i=4

31 9 0 18 5 D41=33 9 8 6 10

32=36
=33

14 11 11 0 D42=34 6 22 6 0

33=21 0 11 0 10 D43=20 0 10 10 0

34=30 30 0 0 0 D44=30 0 10 20 0

example.

M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52 49
Thus,

max
4

i¼1
fDi1g ¼ 43;min

4

i¼1
fDi1g ¼ 42

By assuming w1 = 1 and w2 = 0, the objective function value is
obtained as follow:

min Z ¼
XT

t¼1

½max
4

i¼1
fDitg �min

4

i¼1
fDitg� ¼ 1þ 2þ 2þ 0 ¼ 5:
5.3. Genetic operators design

5.3.1. Arithmetic crossover
It is important to maintain the feasibility of the newly gener-

ated offspring for the problem at hand. Thus, we use the arithmetic
crossover (AC) operator to explore the solution space and main-
taining the feasibility of the newly generated offspring simulta-
neously. The AC produces a new offspring as complimentary
linear combination of the parents as follow:

Offspring � k� Parent1þ ð1� kÞ � Parent2;

where k is a randomly generated number within interval (0,1).
Thus, Ditkr values in the newly generated offspring is obtained as:
Ditkr (Offspring) = k � Ditkr (Parent1) + (1 � k) � Ditkr(Patent2). The
AC guarantees the generated offspring will remain feasible if its par-
ents are feasible. Since, Ditkr are integer values, the integer part of Ditkr

(Offspring), i.e., [Ditkr(Offspring)], must be considered as a true value.
Thus, constraint (2) may be not satisfied and we incur an error as
e ¼

PB
i¼1½DitkrðoffspringÞ� � eDtkr . To overcome this problem, e value is

heuristically added to Ditkr with the minimum value, i.e., mini

{Ditkr} " t, k, r.

5.3.2. Stepping stone mutation
The main task of the mutation operator is to maintain the

diversity of the population in the successive generations and to
exploit the solution space. In this paper, a mutation operator,
called Stepping Stone mutation (SSM), is used that is inspired
by the Stepping Stone method for solving the classical transpor-
tation problem. The SSM guarantees the generated offspring will
remain feasible if its parent is feasible. The procedure of the SSM
is as follows:

(1) Select randomly a solution from current population.
(2) For each r, k and t let Dptkr ¼maxB

i¼1Ditkr , Dqtkr ¼minB
i¼1Ditkr

and dtkr = Dptkr � Dqtkr.
(3) Change values Dptkr and Dqtkr to Dptkr ! Dptkr � dtkr

2

� �
and

Dqtkr ! Dqtkr þ dtkr � dtkr
2

� �� 	
, respectively.

For example, consider the condition of the example presented in
Fig. 3 and assume D12 = 35, D22 = 36, D32 = 36 and D42 = 34. Thus,
according to Step 2, Dp1 = 36; p = 2, 3 and Dq1 = 34; q = 4 and there-
fore d11 = 36 � 34 = 2. Consequently, values of Dp1 and Dq1 are mu-
tated as follows:

Dp1 ¼ 36� 2
2

 �
¼ 35;Dq1 ¼ 34þ 2� 2

2

 ��
¼ 35:
5.4. Parent selection strategy

The parent selection strategy means that how to choose the
chromosomes in the current population that will create offspring
for the next generation. Generally, it is better that the best solu-
tions in the current generation have more chance for selected as
parents for creating offspring. The most common method for the
selection mechanism is the ‘‘roulette wheel” sampling, in which
each chromosome is assigned a slice of a circular roulette wheel
and the size of the slice is proportional to the chromosome’s fit-
ness. The wheel is spun Pop_Size times. On each spin, the chromo-
some under the wheel’s marker is selected to be in the pool of
parents for the next generation. Pop_size is the population size or
the number of chromosome at each population that is known in
advance.

5.5. Offspring acceptance strategy

We use a semi-greedy strategy to accept the offspring gener-
ated by the genetic operators. In this strategy, an offspring is ac-
cepted for the new generation if its fitness be less than the
average fitness of its parent(s). This strategy reduces the computa-
tional time of the algorithm and leads to a monotonous conver-
gence toward the optimum solution neighborhood (see Fig. 6 in
Section 6).

5.6. Stoppage rules

We use two criteria as stoppage rules: (1) maximum number of
elapsed generation (Gmax) that is a common criterion and (2) the
standard deviation of the fitness value of chromosomes in the cur-
rent generation (Tavakkoli-Moghaddam & Safaei, 2006). This
parameter implies the degree of diversity or similarity in the
current population in terms of the objective function value. If this
criterion reduces below an arbitrary constant, say e, then the
algorithm stopped. The standard deviation of the fitness value of
chromosomes in generation g is calculated as rg ¼

ð1=Pop SizeÞ
PPop Size

k¼1 Fk
g � Fg

� �2
� �1

2

where Fg
k is the fitness of kth

chromosome in generation g. Fg is average fitness of all chromo-
somes in generation g that is calculated as Fg ¼
ð1=Pop SizeÞ

PPop Size
k¼1 Fk

g . Therefore, if g > Gmax or rg 6 e then the algo-
rithm stopped (Tavakkoli-Moghaddam & Safaei, 2006).

6. Computational results

In this section, the performance of the proposed model and
developed GA are verified by 22 numerical examples in the dif-
ferent sizes. Small-sized examples are optimally solved by a
branch-and-bound (B&B) method under the LINGO 8.0 software
on a Personal Computer including two Intel� CoreTM2
T5600@1.83 GHz processors and 512 GB RAM. However, it is
not possible to obtain an optimal solution for the large-sized
examples in a reasonable CPU time. All examples are also solved
by GA and the obtained results are compared with the optimal
solutions in terms of the objective function value (OFV) and
CPU time. Each example is solved by GA 20 times and the mean
of OFV and CPU time are reported. For the large-sized problems,
the run time of LINGO is limited to 3 h. Thus, the best solution
obtained after 3 h is reported for the large-sized problems. This
limitation is determined based on the quality of the solutions
obtained by GA. However, it cannot be found a feasible solution
after 3 h for very large examples.

For better understanding and verifying the performance of the
proposed model, a typical example in the real environment is con-
sidered as follow. Assume that Vessel A is being discharged with
start of the previous planning horizon (i.e., previous four days). An-
other vessel, say, Vessel B arrives the terminal and it is ready to
berth. The discharging process for Vessel B will be stared at the
beginning of the first period of new planning horizon. Third vessel,
say, Vessel C arrives the terminal and will stay in queue to dis-
charge for the second period of new planning horizon. In general,
the birthing time in the considered terminal is averagely 4 h (i.e.,

Table 4
The initial inventory of each block for each container type and container type
allocation constraint

Sir > vir

i r i r

1 2 1 2

1 0 1 1 0 260
2 1 0 2 54 0
3 1 0 3 44 0
4 1 0 4 34 0

50 M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52
equal to the one period). Without loss of generality, the birthing
time is ignored in the proposed model because it can be inter-
preted as the availability time of the vessel that is the same value
for all vessels. The considered terminal has four blocks and three
berthing locations which Vessel A berthed in one of locations,
say, location 2. Also, two types container, i.e., regular and refriger-
ated containers, are considered in this terminal that must be allo-
cated to the allowable blocks. The remaining information and data
sets are provided in Tables 1–5. Column ‘‘a” in Tables 1–3 is related
to the containers with a known pickup time while Column ‘‘b” is
related to the containers with an unknown pickup time. The data
provided in Tables 1–3 are used to compute parameter birt. For in-
stance, consider the bolded values in Tables 2 and 3, i.e., values 100
and 0 so that 100 + 0 = 100 is equal to the total number of contain-
ers type 1 with unknown pickup time loaded on Vessels B and C
that must be discharged in current planning horizon. As mentioned
in Section 3, to account for the possible effect of the containers
with the unknown pickup time, these containers are distributed
to blocks in proportion to their available storage capacities at the
beginning of the planning horizon so as to balance the block den-
sities. Thus, these 100 containers should be proportionally distrib-
uted between the allowable blocks of container type 1, i.e., blocks
2, 3 and 4 (see Table 4). Consequently, values b111, b211 and b311 are
set to 35, 30 and 35, respectively, as shown in Table 5 (i.e., under-
lined values). The optimum solution resulted from data provided in
Tables 1–5 is presented in Table 6. This table shows the values of
decision variable Ditkr. The corresponding objective function value
is obtained as 0.7.

The comparison between optimum and GA results for small and
large-sized instances are shown in Tables 7 and 8, respectively. The
average of the relative gap between B&B and GA in terms of the
Table 1
Data related to the containers loaded on Vessel A with a known or unknown pickup time

t = 4 t = 3 t = 2

r = 2 r = 1 r = 2 r = 1 r = 2

b a b a b a b a b

20 20

Table 2
Data related to the containers loaded on Vessel B with a known or unknown pickup time

t = 4 t = 3 t = 2

r = 2 r = 1 r = 2 r = 1 r = 2

b a b a b a b a b

60 50 50
60 50
60 50
60 40

Table 3
Data related to the containers loaded on Vessel C with a known or unknown pickup time

t = 4 t = 3 t

r = 2 r = 1 r = 2 r = 1 r

b a b a b a b a b

10 60 50 30 30
60 50
60 50
50 30
OFV for small-sized instances is obtained about 4% with a standard
deviation 2.26 that is a promising result. However, as you can see
in Fig. 4, the CPU times of B&B and GA are not obviously compara-
ble. The exponential trend of the B&B’s CPU time by increasing the
size of instances is tangible in Fig. 4.

As shown in Table 8, only in six of eleven instances, B&B
could access to the feasible space within 3 h. However, the aver-
age of the relative gap between GA and the best solution ob-
tained by B&B in terms of the OFV for six above-mentioned
instances is obtained about 5%. In this case, as you can see in
Fig. 5, GA’s CPU time shows a polynomial behavior when the
size of the instance increases. As discussed in Section 5.5,
Fig. 6 shows a typical convergence of GA during 20 successive
generations related to a single run.

7. Conclusion

This paper proposed an efficient genetic algorithm (GA) to solve
an extended storage space allocation problem (SSAP) specified for a
within

t = 1 k

r = 1 r = 2 r = 1

a b a b a b a

50 50 50 50 1
50 50 2
50 50 3
40 40 4

t = 1 k

r = 1 r = 2 r = 1

a b a b a b a

50 50 100 50 1
50 50 2
50 40 3
40 4

within

= 2 t = 1 k

= 2 r = 1 r = 2 r = 1

a b a b a b a

40 50 0 1
50 2
50 3
50 4

Table 5
Data related to parameters P0

itr , eDtkr and bitr

eDtkr bitr P0
itr

t 1 2 3 4 t 1 2 3 4 t 1 2 3 4
k r k r k r

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 50 0 100 0 80 50 60 60 1 0 0 35 0 30 0 35 0 1 0 100 0 0 0 0 0 0
2 50 0 100 0 50 50 60 60 2 0 0 30 0 30 0 30 0 2 0 60 15 0 10 0 15 0
3 40 0 100 0 50 50 60 60 3 0 0 25 0 30 0 25 0 3 0 50 0 0 0 0 0 0
4 0 0 90 0 40 30 60 50 4 0 10 0 0 0 0 0 0 4 0 50 0 0 0 0 0 0

Table 6
Optimum solution of the typical example (Ditkr values)

t k i = 1 i = 2 i = 3 i = 4

r = 1 r = 2 r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

1 1 0 0 35 0 20 0 15 0
2 0 0 30 0 20 0 0 0
3 0 0 0 0 10 0 30 0
4 0 0 0 0 0 0 0 0

2 1 0 0 20 0 30 0 50 0
2 0 0 26 0 44 0 30 0
3 0 0 28 0 40 0 32 0
4 0 0 56 0 16 0 18 0

3 1 0 50 48 0 19 0 13 0
2 0 50 0 0 38 0 12 0
3 0 50 0 0 0 0 50 0
4 0 30 27 0 13 0 0 0

4 1 0 60 0 0 0 0 60 0
2 0 60 20 0 20 0 20 0
3 0 60 0 0 60 0 0 0
4 0 50 60 0 0 0 0 0

Table 7
Comparison between the optimum and GA runs for the small-sized instances

No. Problem information B&B

B T K R CPU time (s)

1 2 2 2 2 2
2 3 2 2 2 35
3 4 2 2 2 68
4 5 2 2 2 150
5 6 2 2 2 240
6 3 3 3 2 750
7 4 3 3 2 840
8 5 3 3 2 980
9 6 3 3 2 1,120

10 4 4 4 2 4,400
11 5 4 4 2 5,740

Average

Table 8
Comparison between Optimum and GA runs for large-sized instances

No. Problem information B&B

B T K R CPU time (s)

1 6 4 4 2 7,650
2 7 5 5 2 10,800
3 8 6 6 2 10,800
4 9 7 7 2 10,800
5 10 8 8 2 10,800
6 11 9 9 2 10,800
7 12 10 10 2 10,800
8 13 11 11 2 10,800
9 14 12 12 2 10,800

10 15 13 13 2 10,800
11 16 14 14 2 10,800

Average

* Best solution found after 3 h.

Fig. 4. Comparison between B&B and GA’s CPU times.

M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52 51
container terminal. The extended SSAP considers the type of con-
tainer as well as other advantages included in the problem. In
real-world cases, there are different types (as well as different
sizes) of containers such as regular, empty or refrigerated contain-
ers. The type of container may be affect on the making the decision
GA

OFV Mean of CPU time (s) Mean of OFV Gap (%)

0 5 0 0
1.2 7.5 1.2 0
2.2 8 2.3 4.54
2.8 9.2 2.9 3.57
3 10 3.2 6.67
4 10.3 4.2 5.00
4.4 12.4 4.6 4.54
4.8 14 5 4.16
5.2 16.2 5.5 5.76
5.6 18 5.8 3.57
6 24 6.4 6.67

4.04

GA

OFV Mean CPU time(s) OFV Gap (%)

6.4 30 6.7 4.68
7.8* 80 8.2 5.12

10* 150 10.4 4.00
13.6* 270 14.2 4.41
20.6* 310 21.8 5.82
25.8* 360 27 4.65

– 440 35.4 –
– 635 48.6 –
– 852 60.2 –
– 970 67 –
– 1100 80 –

4.78

Fig. 5. Polynomial trend of the GA’s CPU time for the large-sized problems.

Fig. 6. Typical convergence of GA during 20 successive generations related to a single run.

52 M. Bazzazi et al. / Computers & Industrial Engineering 56 (2009) 44–52
on the allocation of containers to the storage blocks. For instance,
refrigerated containers must be allocated to the blocks equipped
by the power point or empty containers must not be settled under
a full container or the containers with a same size should be allo-
cated to the same block. Thus, it is necessary to consider the type of
container in the SSAP.

The extended SSAP is solved by an efficient GA for real-sized in-
stances. Because of existing the several equality constraints in the
extended model, the solution representation and operators design
are two important factors in order to better exploration and exploi-
tation of the feasible space. A typical example is optimally solved
to verify the extended model and the performance of the proposed
GA is verified by a number of numerical examples. The obtained re-
sults showed a relative gap about 5% between GA and optimum
solution in terms of the objective function value.

References

Cordeau, J. F., Gaudioso, M., Laporte, G., & Moccia, L. (2007). The service allocation
problem at the Gioia Tauro Maritime Terminal. European Journal of Operational
Research, 176(2), 1167–1184.

Imai, A., Sasaki, K., Nishimura, E., & Papadimitriou, S. (2006). Multi-objective
simultaneous stowage and load planning for a container ship with container
rehandle in yard stacks. European Journal of Operational Research, 171(2),
373–389.

Imai, A., Nishimura, E., Hattori, M., & Papadimitriou, S. (2007). Berth allocation at
indented berths for mega-containerships. European Journal of Operational
Research, 179(2), 579–593.

Imai, A., Nishimura, E., & Papadimitriou, S. (2001). The dynamic berth
allocation problem for a container port. Transportation Research Part B,
35(4), 401–417.

Kima, K. H., Leea, K. M., & Hwang, H. (2003). Sequencing delivery and receiving
operations for yard cranes in port container terminals. International Journal of
Production Economics, 84, 283–292.

Lee, D. H., Wanga, H. Q., & Miao, L. (2008). Quay crane scheduling with non-
interference constraints in port container terminals. Transportation Research
Part E: Logistics and Transportation Review, 44(1), 124–135.

Legato, P., & Mazza, R. M. (2001). Berth planning and resource planning
optimization at a container terminal via discrete even simulation. European
Journal Operational Research, 133, 537–547.

Legato, P., & Monaco, M. F. (2004). Human resources management at a marine
container terminal. European Journal of Operational Research, 156, 769–781.

Tavakkoli-Moghaddam, R., & Safaei, N. (2006). An evolutionary algorithm for a
single-item resource-constrained aggregate production planning problem. In
IEEE Congress on Evolutionary Computation, Sheraton Vancouver Wall Centre
Hotel, Vancouver, BC, Canada, July 16–21.

Zhang, C., Liu, J., Wan, Y. W., Murty, K. G., & Linn, R. J. (2003). Storage space
allocation in container terminals. Transportation Research Part B, 37,
883–903.

Zhang, C., Wan, Y.-w., Liu, J., & Linn, R. (2002). Dynamic crane deployment in
container storage yards. Transportation Research B, 36(6), 537–555.

	A genetic algorithm to solve the storage space allocation problem in a container terminal
	Introduction
	Literature review
	Preliminary definitions and descriptions
	Problem formulation
	Assumptions
	Input parameters
	Decision variables
	Mathematical model
	Objective function
	Constraints

	Genetic algorithm implementation
	Solution representation
	Initial solution generation procedure
	Genetic operators design
	Arithmetic crossover
	Stepping stone mutation

	Parent selection strategy
	Offspring acceptance strategy
	Stoppage rules

	Computational results
	Conclusion
	References

