MAK 112E – Computer Aided Technical Drawing
Spring Semester 2009 (1+3) 2.5 credits

Lecturer
Dr. Serpil KURT, Assoc. Prof., M ech. Eng. Building (ITU) Room: 222,
Tel: 293 1300 - 2690, e-mail: kurtserp@itu.edu.tr

Assistants
Özlem SALMAN, Eren KAYA OĞLU, Research As., M ech. Eng. Building (ITU) Room: 221,
Tel: 293 1300 - 2449, e-mail: ozlemsalman@itu.edu.tr, kayaoglu@itu.edu.tr (www.mkn.itu.edu.tr/~kayaoglu)

Office Hours
Tue 09-16, Wed 09-18; Thu 14-16; Fri 9-13

Course Hours
Thursday 8:30-12:30 (406); Fridays 13:30-17:30 (406);

Prerequisite
RES 105

The text book

Recommended

(for design project)

Texts

Course description
Introduction to computer aided technical drawing. Geometric construction. Orthographic projection and multi-
view drawings. Hidden details and Scales. Pictorial drawings. Sections and sectional views. Half section, local
section, revolved section and removed section. Auxiliary views and intersections. Dimensioning fundamentals
and surface texture indication. Tolerances, limits and fits. Screw threads and engineering fasteners. Assembly
modeling and assembling drawing. Three dimensional design and solid modeling.

Objectives
This course of study aims to teach students: learning the standard techniques of preparing engineering drawings,
reading and interpreting drawings, and solving three-dimensional technical problems that require the
application of descriptive geometry and graphical analysis, computer aided drafting and modeling, how to print
and present standard 2D blueprint and solid models.

Caution
Students are reminded not to treat this course instruction manual as a comprehensive and solely sufficient
material for their studies since the purpose of this course manual is not meant to be a substitute for regularly
attending classes, reading relevant textbooks, recommended books. The course instruction manual is aimed at
providing a quick reference and a brief guidance for the students.

Content of
The Course
Graphical interpretation of orthographic projection to include auxiliary views, section views,
dimensioning, translation of design instructions into detail and assembly drawings, drawing conventions
including referencing and surface finish notation, election of tolerances based on design requirements.

Learning Outcomes
In successfully completing this course students will a) draw 2D drawings in standard 2D blueprint forms b) apply
dimensioning in 2D drawings, c) design and align given parts in an assembly, d) print out and present 2D
drawing, e) create solid model of a part.

General Skills
The course is designed to give undergraduate engineering student ability to read and write the language of
Engineering Graphics. It provides the undergraduate engineering student with a background in descriptive
geometry, orthographic projection, basic dimensioning, auxiliary and section views, and computer-aided
engineering graphics. Students are to learn to use a commercial CAD package.

Learning Experiences
Students will construct orthographic views of various components, exercises selected from the textbook.
Students will practice construction of orthographic drawings from given pictorial views using traditional drafting
instruments. Students will construct assembly views and add a simple part list. Students will select appropriate
fits for these assemblies and add tolerances to their detail drawings. Suitable surface textures will be selected and
the symbol added to the detail drawings. Students will gain knowledge and experience of an up to date version
of AutoCAD, Pro/E and SolidWorks.

Learning Methods
A variety of teaching and learning methods are used including formal lectures, cooperative learning, individual project,
laboratory practice, and homework, question and answer sessions. Lectures and practice will be in 406 Comp. Lab.
Students use many online sources, referring to online public domain references and reference books that are found at
local public libraries. Field trips are suggested and are accomplished within students’ local areas. Students will respect
each other’s personal beliefs and be committed to helping each other learn about the course objectives and themselves.
Students also are expected to help other students in improving their CAD/drafting abilities through one-on-one and
group activities. If you miss a class for any reason, you are responsible for obtaining any material and
announcement from other students. Instructor’s notes will not be given out. Also, students are required to read
the appropriate chapter before attending the class.
Academic Dishonesty
Cheating and plagiarism are serious academic matters and they will be handled by the following policy and by the University policy. A grade of zero is assigned for the entire assignment or exam. The case will be reported to the Dean of Students for disciplinary action.

Assessment
This course is very time consuming. This is a three credit hour course, so expect to work at least three hours outside of class for every one hour in class. The student should spend at least six hours per week on the computer outside of class. To successfully progress through the course, students must understand each of the topics in the order it is presented. Students missing class are still responsible for the material covered in class. Students are expected to comply with all requirements for the class. Drawing assignments and projects will be graded based on content and neatness. Grades are not given, they are earned. You are expected to accept all responsibility for your performance in the class.

Exams (20%)
There will be two midterm exams and one comprehensive final exam. No make-up exam will be given (a grade of zero will be assigned) except for a verified and written excuse. The instructor should be informed in advance or no later than 48 hours after the exam in case of an emergency. It is the instructor’s discretion to give the make-up exam.

Homework (10%)
Submit your homework both in hard copy form (print out) and upload to Ninova e-Learning System. Late homework is not evaluated. Homework should be submitted in due time with complete form. You must use engineering paper for all handwritten problems and projects.
http://www.mkn.itu.edu.tr/~mkimrak/MAK112E_homework.htm

Design Project (10%)
Design Project is designed as a comprehensive problem, (the instruction from “Engineering Design Graphics” [7] by Earle page 102. It is selected from the p.111, problem 78. ref.7) During the 2nd course week: The design team will be formed by 4 or 5 members; One of the team members will be selected as a team leader; The team activity schedule will be prepared; The course instructor will be informed about your team, the leader, and the team activity schedule; Otherwise, the design teams will be organized by the course instructor; Progress report will be submitted and presented during the 6th course week.

Assignments (20%)
It is compulsory to ATTEND at least 80% of the practice. Draw all assignments using a CAD package as a tool in Comp. lab. You are to stay in lab and work on your PC until they are completed and handed in or the class ends. It is up to each student to complete the work. No credit will be given for late work. Assignments will be collected within the last five minutes of class. Repeating the assignments is not possible. All computer assignments must be turned in on disk and hard copy. The student should print their name clearly on the disk. The hard copy must contain an appropriate title block as discussed in class.

Course Plan
Week 1 - Introduction to computer aided drawing
Week 2 - Parametric design & basic drawing functions
Week 3 - Orthographic projection and multi-view drawings
Week 4 - Principles of dimensioning
Week 5 - Creating sectional views
Week 6 - MIDTERM EXAM #1
Week 7 - Three dimensional design and creating parts in 3D drafting
Week 8 - Applying constraints and dimensioning in solid modeling
Week 9 - Extruding, modifying and redefining, feature construction
Week 10 - Transferring 3D parts to drafting detailing
Week 11 - MIDTERM EXAM # 2
Week 12 - Assembly modeling and assembling drawing
Week 13 - Surface modeling
Week 14 - Design Project Presentations

Evaluation and overall grading scale
Final grade will be awarded as following. However, the instructor may adjust the scale according to the class performance. The following grading scale is the suggested grading scale.

<table>
<thead>
<tr>
<th>Marking System</th>
<th>"AA"</th>
<th>"BA"</th>
<th>"BB"</th>
<th>"CB"</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 – 100</td>
<td>"CC"</td>
<td>92 – 85</td>
<td>71 – 84</td>
<td>61 – 70</td>
</tr>
<tr>
<td>92 – 85</td>
<td>"DC"</td>
<td>84 – 91</td>
<td>60 – 70</td>
<td>51 – 60</td>
</tr>
<tr>
<td>71 – 84</td>
<td>"DD"</td>
<td>45 – 59</td>
<td>44 – 49</td>
<td>< 40</td>
</tr>
</tbody>
</table>

Coordinator
Dr. C. Erdem İMRAK, Prof.

Date
January 2009
MAK 112E Computer-aided Technical Drawing
2008/09 Spring Semester

Homework #1 /multi-view
A pictorial drawing of a cast iron component (Gripper Rode Center) is given in (page 192 Fig.6.104) [7]. Using layout A3 (adjusted) draw in 1st angle projection, the following views:

a) a front elevation (view)
b) a plan (top) view
c) an end elevation (right side view)
d) give all necessary dimensions.

Homework #2 /sectional view
Two views of a cast iron component (Bracket) are given in (page 440 Fig.14.57) [1]. Using layout A2 (adjusted) draw half-size in 1st angle projection, the following views:

a) a front elevation (view)
b) a plan (top) view
c) an end elevation (right side view)
d) remove sections A-A and B-B
e) give all necessary dimensions.

Homework #3 /solid model
The views of a cast iron component (Support Base for Planer) are given in (page 439, Fig.14.54) [1]. Using layout A2 (adjusted) create a solid model of the component using SolidWorks then, create necessary views with orthographic projections (front view, top view, left side view in full section on A-A as indicated and removed section B-B) and give all necessary dimensions with surface finishing symbols (with the exception of the surface of the holes, all the surfaces are to have a maximum surface roughness value of 6.3 μm. the surface roughness of the holes is to lie between 0.4 and 1.0 μm). Make sure that all rounds, fillets and runouts are properly created.

Homework #4 /assembly
The details of a Valve Actuator assembly are given. Assemble all the components and draw full-size the following views

a) a sectional front elevation (view) of the assembly
b) a plan (top) view
c) an end elevation (left side view)
d) insert a title block and add a part list

use your judgment where dimensions have been omitted.

http://ninova.itu.edu.tr