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ABSTRACT

This study introduces the Differential Transform Method (DTM) to analyse the free vibration response of a rotating, closed section, composite, Timoshenko beam which features material coupling between flapwise bending and torsional vibrations due to ply orientation. The governing differential equations of motion are derived using Hamilton’s principle and solved by applying DTM. The natural frequencies are calculated and the effects of the bending-torsion coupling, the slenderness ratio and several other parameters on the natural frequencies are investigated using the computer package, Mathematica. Wherever possible, comparisons are made with the studies in open literature. 

COMPOSITE BEAM MODEL
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A straight composite beam with length 
[image: image1.wmf]L

, height 
[image: image2.wmf]h

 and breadth 
[image: image3.wmf]b

 is shown in Fig. 1. In the right-handed Cartesian coordinate system, the 
[image: image4.wmf]x

-axis is the centroidal axis of the beam. The flapwise displacement, 
[image: image5.wmf])
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 and the torsional rotation, 
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,
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 occur about the 
[image: image7.wmf]y

-axis and the 
[image: image8.wmf]x

-axis, respectively. Here, 
[image: image9.wmf]x

 and 
[image: image10.wmf]t

, respectively denote the spanwise coordinate and the time. The beam rotates with a constant angular velocity, 
[image: image11.wmf]W

. Since the cross-sections of the beam have symmetry in both planes, the 
[image: image12.wmf]x

-axis is also the locus of the geometric shear centers of the beam cross-sections. Therefore, the beam features material coupling between flapwise bending and torsional vibrations only due to ply orientation. 
Figure 1. Configuration of a Uniform, Rotating, Composite, Timoshenko Beam
FORMULATION
Potential and Kinetic Energy Expressions
The total potential energy expression, 
[image: image13.wmf]U

 is given by Ref.[1] and derivation of the kinetic energy expression, 
[image: image14.wmf]Á

 is made in this study. As a result, the following expressions are obtained for a rotating, composite Timoshenko beam
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where primes and dots denote differentiation with respect to spanwise coordinate 
[image: image17.wmf]x

 and time 
[image: image18.wmf]t

, respectively. Here 
[image: image19.wmf]r

 is the material density; 
[image: image20.wmf]A

 is the cross sectional area; 
[image: image21.wmf]A

r

 is the mass per unit length, 
[image: image22.wmf]y

I

 and 
[image: image23.wmf]z

I

 are the second moments of inertia of the beam cross section about the 
[image: image24.wmf]y

 and 
[image: image25.wmf]z

 axes respectively; 
[image: image26.wmf]I

a

 is the polar mass moment of inertia per unit length about the 
[image: image27.wmf]x

 axis; 
[image: image28.wmf]y

EI

, 
[image: image29.wmf]GJ

, 
[image: image30.wmf]K

 and 
[image: image31.wmf]kGA

 are the flapwise bending rigidity, torsional rigidity, bending–torsion coupling rigidity and shear rigidity of the composite beam, respectively. 

Governing Equations of Motion

The governing differential equations of motion and the associated boundary conditions are obtained applying the Hamilton’s principle to the energy expressions given by Eqs. (1a) and (1b).

Equations of motion:
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where 
[image: image35.wmf]T

 is the centrifugal force that is given by
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Boundary Conditions: 

· The geometric boundary conditions at the cantilever end, 
[image: image37.wmf]0
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, of the composite beam, 
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· The natural boundary conditions at the free end, 
[image: image39.wmf]L
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, of the composite beam,

Bending moment:
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Shear force:
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Torque:
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Exponential Solution and Dimensionless Equations of Motion
A sinusoidal variation of 
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 with a circular natural frequency 
[image: image46.wmf]w

 is assumed and the functions are approximated as exponential solutions.
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Additionally, the following dimensionless parameters are used to be able make comparisons with the studies in open literature
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Substituting Eq.(5) into Eqs.(1a)-(1c) and using the dimensionless parameters, equations of motion can be rewritten as follows 
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where the dimensionless coefficients are 
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APPLICATION OF THE DIFFERENTIAL TRANSFORM METHOD

The Differential Transform Method is a transformation technique based on the Taylor series expansion and it is a useful tool to obtain analytical solutions of the differential equations. In this method, certain transformation rules are applied and the governing differential equations and the boundary conditions of the system are transformed into a set of algebraic equations in terms of the differential transforms of the original functions and the solution of these algebraic equations gives the desired solution of the problem with great accuracy. The application procedure of this method can be found in Ref.[2]. Applying the Differential 
Transform Method to Eqs. (7a)-(7b), the following transformed equations of motion are obtained.
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where 
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 are the transformed functions of 
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, respectively.
Additionally, transformed boundary conditions are obtained as follows by applying DTM to Eqs.(4a)–(4d) 
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RESULTS AND DISCUSSIONS
The computer package Mathematica is used to write a program for the expressions given by Eqs.(9a)-(10d). In order to validate the computed results, an illustrative example that studies a nonrotating composite Timoshenko beam is taken from Ref. [3] is solved by using the formulas given above. When the results are compared with the ones given in Ref. [3], it is seen that there is a very good agreement between the results. Additionally, effect of the rotation speed on the natural frequencies is examined and the related graphic is plotted.
The beam model that is studied in Ref.[3] is a uniform, nonrotating, cantilever glass-epoxy composite beam with a rectangular cross section with width = 12.7 mm and thickness = 3.18 mm. Unidirectional plies each having fiber angles of 
[image: image88.wmf]0

15

+

are used in the analysis. The data used for the analysis are as follows:
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In Table 1, the calculated results are compared with the ones given by Ref. [2] and a vewry good agreement is observed. 
Table 1. Validation of the Calculated Results
	Natural Frequencies

	DTM
	Ref.[3]

	30.7471
	30.747

	189.779
	189.779

	518.791
	518.791

	648.169
	648.169

	986.199
	986.199

	1564.75
	1564.751
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In Fig.2, mode shapes of a rotating composite Timoshenko beam are plotted. 
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In Table 2., effect of the rotational speed on the natural frequencies is given. 

	
	Rotatinal Speed ( (rad / sec)

	
	0
	50
	100
	150
	200
	250
	300

	Natural Frequencies
	30.747
	32.363
	36.808
	43.273
	51.081
	59.827
	69.313

	
	189.779
	189.733
	189.597
	189.376
	189.081
	188.733
	188.368

	
	518.791
	518.461
	517.459
	515.743
	513.242
	509.847
	505.408

	
	648.169
	648.231
	648.116
	647.923
	647.651
	647.298
	646.861

	
	986.199
	985.756
	984.415
	982.144
	978.886
	974.561
	969.059

	
	1564.751
	1564.237
	1562.684
	1560.066
	1556.335
	1551.425
	1545.248

	
	1944.309
	1944.231
	1943.997
	1943.604
	1943.051
	1942.334
	1941.447

	
	2241.307
	2240.888
	2239.557
	2237.104
	2233.289
	2228.004
	2221.298
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