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Abstract

We investigate the frame bounds of iterated non-perfect reconstruction filter banks.
We provide frame bounds valid for iterated FBs with an arbitrary number of stages
using the frame bounds of the underlying frame on the real line. Conversely, given
the frame bounds of the iterated FB, we derive bounds for the underlying wavelet
frame.
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1 Introduction

Transform based discrete-time signal processing applications typically employ
an analysis filter bank (FB), a processing step operating on the output of the
analysis filter bank and a synthesis filter bank, as illustrated in Figure 1. Here,
the analysis and synthesis filter banks may be regarded as the analysis and
synthesis operators of an underlying frame for l2(Z). Usually, it is desired that
one be able to, at least approximately, reconstruct the input, in the absence
of a processing step. In other words, it is desired that the FBs employ tight,
or at least snug frames (in which cases we will call the FB a tight or snug
FB). A particular type of FB that has received interest, due to its relation
to wavelet frames, is the iterated filter bank, obtained by iterating an FB on
its lowpass channel (see for example Figure 3). In general, conditions that
ensure an FB is tight are equality constraints on the filter coefficients, which
imply rather ‘thin’ solution sets. This has the undesirable consequence that
tightness is sometimes incompatible with other requests. For example, for 2-
channel critically sampled FBs (like the one shown in Figure 3), there are
no real-valued, symmetric FIR solutions other than the Haar FB. Another
example is regarding the double-density FB, shown in Figure 2 (see [10] for
a discussion). This FB, despite its advantages over the conventional critically
sampled FB, cannot be a tight frame if FIR filters are used. These motivate the
use of snug iterated FBs in certain applications. However, even though snug
FB design is a well-studied subject (see [6,12]), it is not clear whether the
snugness of the FB would be preserved under iterations. This letter provides a
partial answer to this question. In particular, we show a relation between the
frame bounds of dyadic iterated FBs and dyadic wavelet frames. This relation
allows one to deduce (non-optimal) frame bounds for the iterated FB (with
an arbitrary number of stages) from a knowledge of the frame bounds of the
underlying frame on the real line and vice versa.

To be more precise, consider an iterated FB as in Figure 3. Suppose that the
FB in the dashed rectangle is orthonormal (i.e. {h(n−2k)}k∈Z∪{g(n−2k)}k∈Z
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Fig. 1. Transform based discrete time signal processing applications usually employ
an analysis filter bank, a processing step on the analysis FB coefficients followed by
a synthesis filter bank.
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H(z) ↓2

G(z)

H(z) ↓2
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H(z) ↓2
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. . . H(z) ↓2

G(z) ↓2

Fig. 1. A critically sampled FB obtained by iterating the lowpass branch of a criti-
cally sampled two channel FB.

We also define the dilation and translation operators Dj and T k as,

Djf(t) = 2j/2 f(2jt), (5)

T kf(t) = f(t− k), (6)

for j, k ∈ Z. For sets of functions we use Dj{fi}i∈Λ = {Djfi}i∈Λ.

For a discrete-time function h(n), H(z) denotes its z-transform given by
H(z) =

∑
n h(n) z−n.

3 From the Frame Bounds of the Wavelet Frame to the Frame
Bounds of the Iterated FB

In this section we will show that the frame bounds of the underlying frame
on the real line implies bounds on the frame bounds of the iterated FB with
arbitrary stages. We distinguish between the critically sampled and oversam-
pled cases. This is due to the fact that it is only for critically sampled FBs
that the underlying frame on the real line is a Riesz basis, which thus has an
analysis operator mapping L2(R) onto l2(Z). We start with critically sampled
FBs.
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Fig. 2. This filter bank can not generate a tight frame for l2(Z) if FIR filters are
used (also see [10] for a further discussion).

is an orthonormal basis for l2(Z)). In this case, it follows that the iterated FB
is also orthonormal, regardless of how many times it is iterated and it can
be regarded as the analysis operator of an orthonormal basis, the elements
of which are determined by the number of stages (see Section 3.1). On the
other hand, if the FB is not orthonormal, the underlying basis for the iter-
ated FB will not be orthonormal either. In this case, given the number of
stages, along with the filters, we can compute the frame bounds of this basis.
However, since the iterated FB is a rather delicate function of the number of
stages (see Section 3.1), it is not clear how the frame bounds evolve when the
FB is iterated. In particular, Stanhill and Zeevi [11] have given non-optimal
frame bounds where the bound ratio grows exponentially with the number of
stages. This might suggest (or at least does not rule out the possibility) that
the frame bounds of the bases associated with iterated FBs deteriorate under
iteration. Nevertheless, Stanhill and Zeevi also demonstrated through numer-
ical examples that the optimal frame bounds do not get looser beyond some
point, indicating a possible convergence. Our result provides an explanation
for that.

Continuing our example, let φ(t) and ψ(t) be the scaling function and wavelet
associated with the filters h(n) and g(n) (defined by (7), (8)). We will show
that if {φ(t−k)}k∈Z∪{2n/2 ψ(2nt−k)}n∈N,k∈Z is a snug Riesz basis for L2(R),
then the iterated FB is also a snug Riesz basis for l2(Z) and vice versa. The
Riesz basis {φ(t− k)}k∈Z ∪ {2n/2 ψ(2nt− k)}n∈N,k∈Z is shift-invariant like the
quasi-affine system introduced by Ron and Shen [9] in order to study the frame
properties of the wavelet basis ({2n/2 ψ(2nt− k)}n∈Z,k∈Z). However, unlike the
quasi-affine system, we will show that the aforementioned frame is ‘looser’
than the wavelet frame (see Lemma 10). Despite this, it lends itself more
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easily for the investigation of the frame bounds of iterated FBs. We will also
provide a generalization for overcomplete wavelet frames by slightly modifying
the arguments.

2 Preliminary and Notation

A sequence {fk}∞k=1 of elements in a Hilbert space H is a frame for H if there
exist constants A,B > 0 s.t.

A‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2, ∀f ∈ H. (1)

In this case, B and A are called the upper and lower frame bounds respectively.
The particular A, B pair that minimize B−A is said to be optimal. The frame
is tight if A = B, snug if A ≈ B.

For a frame {fk}∞k=1 in H, the operator F : H → l2, defined as

F f = {〈f, fk〉}∞k=1 . (2)

is called the analysis operator. The adjoint of this operator F ∗ : l2 → H, called
the synthesis operator is given by

F ∗ {ck}∞k=1 =
∞∑
k=1

ck fk (3)

More details can be found in [3,4]. We also refer to [2,5] for discussions on
filter banks viewed as frames for l2(Z).

For f(t) ∈ L2(R), f̂(ω) denotes its Fourier transform, where for f ∈ L1(R) ∩
L2(R), we use the definition,

f̂(ω) =
1√
2π

∫ ∞
−∞

f(t)ejωtdt. (4)

We also define the dilation and translation operators Dj and T k as,

Djf(t) = 2j/2 f(2jt), (5)

T kf(t) = f(t− k), (6)

for j, k ∈ Z. For sets of functions we use Dj{fi}i∈Λ = {Djfi}i∈Λ.

For a discrete-time function h(n), H(z) denotes its z-transform given by
H(z) =

∑
n h(n) z−n.
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Fig. 1. A critically sampled FB obtained by iterating the lowpass branch of a criti-
cally sampled two channel FB.

We also define the dilation and translation operators Dj and T k as,

Djf(t) = 2j/2 f(2jt), (5)

T kf(t) = f(t− k), (6)

for j, k ∈ Z. For sets of functions we use Dj{fi}i∈Λ = {Djfi}i∈Λ.

For a discrete-time function h(n), H(z) denotes its z-transform given by
H(z) =

∑
n h(n) z−n.

3 From the Frame Bounds of the Wavelet Frame to the Frame
Bounds of the Iterated FB

In this section we will show that the frame bounds of the underlying frame
on the real line implies bounds on the frame bounds of the iterated FB with
arbitrary stages. We distinguish between the critically sampled and oversam-
pled cases. This is due to the fact that it is only for critically sampled FBs
that the underlying frame on the real line is a Riesz basis, which thus has an
analysis operator mapping L2(R) onto l2(Z). We start with critically sampled
FBs.

3.1 Critically Sampled Filter Banks

Suppose we are given the filters h(n), g(n) for the FB in Fig. 1. We define the
scaling function and wavelet as,

φ(t) =
√

2
∑

n∈Z
h(n)φ(2t− n), (7)

ψ(t) =
√

2
∑

n∈Z
g(n)φ(2t− n), (8)

3

Fig. 3. A critically sampled FB obtained by iterating the lowpass branch of a criti-
cally sampled two channel FB.

We remark that if h(n) is the convolution of h1(n) and h2(n) (i.e. h(n) =∑
k h1(k)h2(n− k)), then H(z) = H1(z)H2(z).

Also if h1(n) = h2(Mn), then H1(z) = H2(zM). For further details see [12].

Throughout the letter, we assume that all of the discrete-time sequences are
real valued.

3 From the Frame for L2(R) to the Iterated Filter Bank

In this section we will show that the frame bounds of the underlying frame
on the real line implies bounds on the frame bounds of the iterated FB with
arbitrary stages. We distinguish between the critically sampled and oversam-
pled cases. This is due to the fact that it is only for critically sampled FBs
that the underlying frame on the real line is a Riesz basis, which thus has an
analysis operator mapping L2(R) onto l2(Z). We start with critically sampled
FBs.

3.1 Critically Sampled Filter Banks

Suppose we are given the filters h(n), g(n) for the FB in Figure 3. We define
the scaling function and wavelet as,

φ(t) =
√

2
∑
n∈Z

h(n)φ(2t− n), (7)

ψ(t) =
√

2
∑
n∈Z

g(n)φ(2t− n), (8)

The iterated FB with m stages is equivalent to the m+1 channel FB in Figure
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〈f, DjT−nφ〉 H(m)(z) ↓2m 〈f, Dj−mT−nφ〉

G(m)(z) ↓2m 〈f, Dj−mT−nψ〉

G(m−1)(z) ↓ 2m

2 〈f, Dj−m−1T−nψ〉

...

G(1)(z) ↓2 〈f, Dj−1T−nψ〉

Fig. 2. The iterated FB in Fig. 1 with m stages is equivalent to the m + 1 channel
FB above.

2, where

H(0)(z) = 1, (9)

H(k)(z) = H(k−1)(z)H(z2k−1
), (10)

G(k)(z) = Hk−1(z)G(z2k−1
). (11)

These can be shown using noble identities [7]. This FB computes the in-
ner products of an input x(n) ∈ l2(Z) with {h(m)(n − 2mk)}k∈Z, {g(j)(n −
2jk)}m

j=1,k∈Z. It can be shown that provided {h(n−2k)}k∈Z∪{g(n−2k)}k∈Z is
a Riesz basis for l2(Z), then so is {h(m)(n− 2mk)}k∈Z ∪ {g(j)(n− 2jk)}m

j=1,k∈Z,
albeit with different bounds. 1 In that sense, the m-channel FB in Fig. 2 (or
equivalently the FB in Fig. 1 with m stages) can be regarded as the analy-
sis operator for {h(m)(n − 2mk)}k∈Z ∪ {g(j)(n − 2jk)}m

j=1,k∈Z. We denote this
operator by Fm : l2(Z) → l2(Z).

For f ∈ L2(R), it is well-known that (see for example [2]), if we input 〈f, DjT−nφ〉
to the m-stage iterated FB (the discrete time variable being ’n’), then the low-
pass channel outputs 〈f, Dj−mT−nφ〉, and the kth bandpass channel outputs
〈f, Dj−kT−nψ〉 (see Fig. 2). In this case, we can write,

‖Fm〈f, DjT−nφ〉‖2 =
∑

n∈Z
|〈f, Dj−mT−nφ〉|2 +

j−1∑

k=j−m

∑

n∈Z
|〈f, DkT−nψ〉|2. (12)

Given these definitions, the main result of this subsection is,

Theorem 1 If {T k φ}k∈Z ∪ {Dj T k ψ}j∈N,k∈Z is a Riesz basis for L2(R) with
bounds A, B, then the iterated FB is a Riesz basis for l2(Z) with bounds A/B,

1 For fixed m, the optimal frame bounds can be computed by an eigenanalysis of
the corresponding polyphase matrix evaluated on the unit circle – see [9].
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Fig. 4. The iterated FB in Figure 3 with m stages is equivalent to the m+1 channel
FB above.

x(n) H(z) ↓M y(n)

H(z) ↓2

G(z) ↓2

H(z) ↓2

G(z) ↓2

. . . H(z) ↓2

G(z) ↓2

Fig. 1. A critically sampled FB obtained by iterating the lowpass branch of a criti-
cally sampled two channel FB.

We also define the dilation and translation operators Dj and T k as,

Djf(t) = 2j/2 f(2jt), (5)

T kf(t) = f(t− k), (6)

for j, k ∈ Z. For sets of functions we use Dj{fi}i∈Λ = {Djfi}i∈Λ.

For a discrete-time function h(n), H(z) denotes its z-transform given by
H(z) =

∑
n h(n) z−n.

3 From the Frame Bounds of the Wavelet Frame to the Frame
Bounds of the Iterated FB

In this section we will show that the frame bounds of the underlying frame
on the real line implies bounds on the frame bounds of the iterated FB with
arbitrary stages. We distinguish between the critically sampled and oversam-
pled cases. This is due to the fact that it is only for critically sampled FBs
that the underlying frame on the real line is a Riesz basis, which thus has an
analysis operator mapping L2(R) onto l2(Z). We start with critically sampled
FBs.

3.1 Critically Sampled Filter Banks

Suppose we are given the filters h(n), g(n) for the FB in Fig. 1. We define the
scaling function and wavelet as,

φ(t) =
√

2
∑

n∈Z
h(n)φ(2t− n), (7)

ψ(t) =
√

2
∑

n∈Z
g(n)φ(2t− n), (8)

3

Fig. 5. This system computes 〈x(·), {h(Mn− ·)}n∈Z.

4, where

H(0)(z) = 1, (9)

H(k)(z) = H(k−1)(z)H(z2k−1

), (10)

G(k)(z) = Hk−1(z)G(z2k−1

). (11)

These can be shown using noble identities [12].

To understand the action of this FB on the input, consider a system as shown
in Figure 5, consisting of a filter followed by a downsampler. The output of
this system can be written as,

y(n) =
∑
k∈Z

x(k)h(Mn− k) = 〈x(·), h(Mn− ·)〉. (12)

In words, the system may be regarded as a device that computes the inner
products of the input with {h(Mk − ·)}k∈Z.

To that end, the FB in Figure 4 computes the inner products of an input
x(n) ∈ l2(Z) with {h(m)(2mk−n)}k∈Z, {g(j)(2jk−n)}mj=1,k∈Z. It can be shown
that provided {h(2k − ·)}k∈Z ∪ {g(2k − ·)}k∈Z is a Riesz basis for l2(Z), then
so is {h(m)(2mk−·)}k∈Z∪{g(j)(2jk−·)}mj=1,k∈Z, albeit with different bounds. 1

In that sense, the m-channel FB in Figure 4 (or equivalently the FB in Figure
3 with m stages) can be regarded as the analysis operator for {h(m)(2mk −
·)}k∈Z ∪{g(j)(2jk− ·)}mj=1,k∈Z. We denote this operator by Fm : l2(Z)→ l2(Z).

1 For fixed m, the optimal frame bounds can be computed by an eigenanalysis of
the corresponding polyphase matrix evaluated on the unit circle – see [2].
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For f ∈ L2(R), it is well-known that (see for example [7]), if we input 〈f,DjT−nφ〉
to the m-stage iterated FB (the discrete time variable being ’n’), then the low-
pass channel outputs 〈f,Dj−mT−nφ〉, and the kth bandpass channel outputs
〈f,Dj−kT−nψ〉 (see Figure 4). In this case, we can write,

‖Fm〈f,DjT−nφ〉‖2 =
∑
n∈Z
|〈f,Dj−mT−nφ〉|2 +

j−1∑
k=j−m

∑
n∈Z
|〈f,DkT−nψ〉|2. (13)

Given these definitions, the main result of this subsection is,

Theorem 1 If {T k φ}k∈Z ∪ {Dj T k ψ}j∈N,k∈Z is a Riesz basis for L2(R) with
bounds A, B, then the iterated FB is a Riesz basis for l2(Z) with bounds A/B,
B/A, regardless of the number of stages.

We will use the following lemma.

Lemma 2 Let {fk}k∈Z be a frame for L2(R). {fk}k∈Z has the same frame
bounds as Dm{fk}k∈Z.

Proof of Thm. 1: Since Dm
{
{T k φ}k∈Z ∪ {Dj T k ψ}j∈N,k∈Z

}
is a Riesz basis

(by Lemma 2), its analysis operator maps L2(R) onto l2(Z). As such, suppose
we are given an arbitrary x(n) ∈ l2(Z). We can find f ∈ L2(R) s.t.

〈f,Dm T−nφ〉 = x(n), (14)

〈f,Dm+r T−nψ〉 = 0 for r ≥ 0. (15)

Again by Lemma 2,Dm
{
{T k φ}k∈Z ∪ {Dj T k ψ}j∈N,k∈Z

}
has the frame bounds

A, B. Thus,

A ≤ ‖x(n)‖2

‖f‖2
≤ B. (16)

Now notice that

∑
n

|〈f, T−nφ〉|2 +
m−1∑
k=0

∑
n∈Z
|〈f,Dk T−nψ〉|2 = ‖Fmx(n)‖2. (17)

Noting the frame bounds of {T k φ}k∈Z ∪ {Dj T k ψ}j∈N,k∈Z, this implies

A ≤ ‖Fm x(n)‖2

‖f‖2
=
‖Fm x(n)‖2

‖x(n)‖2

‖x(n)‖2

‖f‖2
≤ B, (18)

Noting (16), we get,
A

B
≤ ‖Fmx(n)‖2

‖x(n)‖2
≤ B

A
(19)
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H(z) ↓2

G1(z) ↓2

...

GL(z) ↓2

H(z) ↓2

G1(z) ↓2

...

GL(z) ↓2

. . . H(z) ↓2

G1(z) ↓2

...

GL(z) ↓2

Fig. 3. An overcomplete FB obtained by iterating the lowpass branch of an over-
complete L + 1 channel FB.

By the arbitrariness of x(n), it follows that the iterated FB with m stages has
the frame bounds A/B, B/A. Notice that the bounds are independent of the
number of stages.

!

Remark 3 The resulting bounds on the iterated FB with arbitrary number of
stages are not necessarily tight. We will return to this issue in the Section
4, where we provide a result in the converse direction. This being so, it can
be derived from this theorem that if the underlying frame on the real line is
orthonormal, then the FB is orthonormal too. Even though this is well known,
this indicates that the provided bounds are indeed not too loose.

3.2 Overcomplete Filter Banks

Consider now the overcomplete iterated FB in Fig. 3. We will denote the
analysis operator for the iterated FB with m stages as Fm as in the previous
subsection. We define the scaling and wavelet functions as,

φ(t) =
√

2
∑

n∈Z
h(n)φ(2t− n), (21)

ψi(t) =
√

2
∑

n∈Z
gi(n)φ(2t− n), i = 1, 2, . . . , L. (22)

Using the scaling function, the approximation spaces are defined as,

Vn = Dn span{T kφ(t)}k∈Z. (23)

We also define
Φ(ω) =

∑

k∈Z
|φ̂(ω + k2π)|2. (24)

6

Fig. 6. An overcomplete FB obtained by iterating the lowpass branch of an over-
complete L + 1 channel FB.

By the arbitrariness of x(n), it follows that the iterated FB with m stages has
the frame bounds A/B, B/A. Notice that the bounds are independent of the
number of stages.

�

Remark 3 The resulting bounds on the iterated FB with an arbitrary number
of stages are not necessarily tight. We will return to this issue in the Section
4, where we provide a result in the converse direction. This being so, it can
be derived from this theorem that if the underlying frame on the real line is
orthonormal, then the FB is orthonormal too. Even though this is well known,
this indicates that the provided bounds are indeed not too loose.

3.2 Overcomplete Filter Banks

Consider now the overcomplete iterated FB in Figure 6. We will denote the
analysis operator for the iterated FB with m stages as Fm as in the previous
subsection. We define the scaling and wavelet functions as,

φ(t) =
√

2
∑
n∈Z

h(n)φ(2t− n), (20)

ψi(t) =
√

2
∑
n∈Z

gi(n)φ(2t− n), i = 1, 2, . . . , L. (21)

Using the scaling function, the approximation spaces are defined as,

Vn = Dn span{T kφ(t)}k∈Z. (22)

We also define

Φ(ω) =
∑
k∈Z
|φ̂(ω + k2π)|2. (23)
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We remark that Dm
{
{T k φ(t)}k∈Z ∪ {Dj T k ψi(t)}Li=1,j∈N,k∈Z

}
is not a Riesz

basis for L2(R). However, provided there exist a, b > 0 s.t a < Φ(ω) < b,
Dm{T kφ(t)}k∈Z is a Riesz frame sequence for Vm (see [1] and [3], Chp. 7) and
its analysis operator maps Vm onto l2(Z).

Theorem 4 Let {T k φ(t)}k∈Z∪{Dj T k ψi(t)}Li=1,j∈N,k∈Z be a frame with bounds
A, B, associated with the iterated FB in Figure 6. Suppose a < Φ(ω) < b
almost everywhere where ∞ > b, a > 0. Set

α = sup
f∈V0

1

‖f‖2

L∑
i=1

∞∑
j=0

∑
k∈Z
|〈f,DjT kψi〉|2. (24)

If A > α, then the iterated FB is a frame for l2(Z) with frame bounds (A −
α)/B, B/(A− α), regardless of the number of stages.

Proof: The proof follows along the same lines as the proof of Thm 1, with
the necessary adjustments.

Since Dm{T kφ(t)}k∈Z is a Riesz frame sequence for Vm, given an arbitrary
x(n) ∈ l2(Z), we can find f ∈ Vm s.t.

〈f,Dm T−n φ(t)〉 = x(n), (25)

By the definition of α and a scaling argument as in Lemma 2, we obtain

L∑
i=1

∞∑
j=m

∑
k∈Z
|〈f,Dj T k ψi〉|2 ≤ α‖f‖2. (26)

Since Dm
{
{T k φ(t)}k∈Z ∪ {Dj T k ψi(t)}Li=1,j∈N,k∈Z

}
has the frame bounds A,

B, we thus have

A− α ≤ ‖x(n)‖2

‖f‖2
≤ B. (27)

Now notice

∑
n

|〈f, T−n φ〉|2 +
L∑
i=1

m−1∑
j=0

∑
n∈Z
|〈f,Dj T−n ψi〉|2 = ‖Fmx(n)‖2. (28)

Noting the frame bounds of {T k φ(t)}k∈Z∪{Dj T k ψi(t)}Li=1,j∈N,k∈Z, this implies

A− α ≤ ‖Fm x(n)‖2

‖f‖2
=
‖Fm x(n)‖2

‖x(n)‖2

‖x(n)‖2

‖f‖2
≤ B, (29)

Noting (27), we get,

A− α
B

≤ ‖Fm x(n)‖2

‖x(n)‖2
≤ B

A− α
(30)
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Remark 5 Even though this theorem provides bounds similar to Thm. 1, the
bounds are somewhat looser, for when given a snug frame on the real line,
the implied bounds for the iterated FB will be loose. This stems from the fact
that for overcomplete FBs, the lowpass filter needs to satisfy the inequality
|H(ejω)|2 + |H(ejω+π)|2 ≤ 2 (see e.g. [8,10]). This in turn means that H(ejω)
is concentrated on a subset [−aπ, aπ] with a < 1/2, implying that φ̂(ω) is
concentrated on [−2aπ, 2aπ]. As such, Φ(ω) is far from being a constant and
{φ(t − k)}k∈Z is not a snug frame sequence for V0. Thus, in order for the
overall frame {T kφ(t)}k∈Z ∪ {DjT kψ(i)(t)}Li=1,j∈N,k∈Z to be snug, α should not
be too small. Consequently, (A− α)/B and B/(A− α) cannot be very close.

Remark 6 Tighter bounds for the iterated FB can be obtained when attention
is restricted to a subspace of l2(Z). To see this, take V ′0 ⊂ V0. Then we will
have

α′ = sup
f∈V ′0

1

‖f‖2

L∑
i=1

∑
j∈N,k∈Z

|〈f,DjT kψi〉|2 < α. (31)

Thus for the subspace X = {x(n) : ∃f ∈ V ′0 s.t. x(n) = 〈f, φ(t − n)〉}, the
iterated FB provides a frame sequence with frame bounds (A−α′)/B, B/(A−
α′).

4 From the Iterated Filter Bank to the Wavelet Frame

In this section, we derive results in the converse direction. Given frame bounds
for iterated FBs valid for an arbitrary number of stages, we will obtain frame
bounds for the underlying frame on the real line. Unlike the last section, we
will not need to discriminate between the overcomplete and critically sampled
cases. Therefore the results are stated for overcomplete FBs, implying the
same for the critically sampled case.

We adopt the definitions in Section 3.2.

Theorem 7 If the iterated FB in Figure 6 is a frame for l2(Z) with bounds A,
B, regardless of the number of stages, and Φ(ω) is continuous at ω = 0 with
Φ(0) = c, then {T k φ(t)}k∈Z ∪ {Dj T k ψi(t)}Li=1,j∈N,k∈Z is a frame for L2(R)
with bounds cA, cB.

As a corollary of this (and also an auxiliary result), it follows also that

Theorem 8 If the iterated FB in Figure 6 is a frame for l2(Z) with bounds
A, B, regardless of the number of stages, and Φ(ω) is continuous at ω = 0
with Φ(0) = c, then {Dj T k ψi(t)}Li=1,j∈Z,k∈Z is a frame for L2(R) with bounds
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cA, cB.

We prove Thm. 7 by modifying the proof of the unitary extension principle
given by Benedetto and Treiber [1].

Proof of Thm 7: Suppose the iterated FB has the frame bounds A, B,
regardless of the number of stages. Pick ε > 0. Let f ∈ L2(R) be given s.t.
f̂ is continuous and compactly supported. Since Φ(ω) is continuous at 0 with
Φ(0) = c, we can find N ∈ Z (see for example Lemma 14.2.2 in [3]) s.t. if
m ≥ N ,

(c− ε)‖f‖2 ≤
∑
k∈Z
|〈f,DmT kφ〉|2 ≤ (c+ ε)‖f‖2. (32)

We can also find K ∈ Z s.t.

L∑
i=1

∞∑
j=K

∑
k∈Z
|〈f,DjT kψi〉|2 ≤ ε‖f‖2 (33)

Set M = max{N,K}. Notice

∑
k∈Z
|〈f, T kφ〉|2 +

L∑
i=1

M−1∑
j=0

∑
k∈Z
|〈f,DjT kψi〉|2 = ‖FM〈f,DMT−kφ〉‖2. (34)

Since A‖x(n)‖2 ≤ ‖FMx(n)‖2 ≤ B‖x(n)‖2, this implies that

A(c− ε)‖f‖2 ≤
∑
k∈Z
|〈f, T kφ〉|2 +

L∑
i=1

M−1∑
j=0

∑
k∈Z
|〈f,DjT kψi〉|2 ≤ B(c+ ε)‖f‖2.

(35)
Adding (33), we get

A(c− ε)‖f‖2 ≤
∑
k∈Z
|〈f, T kφ〉|2 +

L∑
i=1

∑
j∈N

∑
k∈Z
|〈f,DjT kψi〉|2 ≤ (B(c+ ε)+ ε)‖f‖2.

(36)
By the arbitrariness of ε and f , it follows that {T kφ(t)}k∈Z∪{DjT kψi(t)}Li=1,j∈N,k∈Z
is a frame with bounds cA, cB for the set of functions f ∈  L2(R) which have
compactly supported and continuous Fourier transforms. Since this set is dense
in L2(R), the theorem follows (by Lemma 5.1.7 in [3]).

�

Remark 9 Now that we have a converse to Thm. 1, we can test whether they
can be used to obtain optimal frame bounds, or not. Suppose that Thm. 7 gives
the optimal bounds for the underlying frame on the real line. That is, if our
FB is critically sampled and A, B are the optimal bounds valid for arbitrary
number of stages, then the bounds implied for the underlying Riesz basis on

11



the real line are also optimal. This implies that the bounds given in Thm 1
are not optimal. For if we start with a critically sampled FB bounded by A,
B, the underlying Riesz basis has the bounds cA, cB according to Thm 7. But
now Thm. 1 implies that the FB is bounded by A/B, B/A, which cannot be
optimal unless B = A = 1. A similar argument yields that Thm. 7 cannot give
optimal bounds if Thm. 1 can.

Thm. 8 is a corollary of this theorem and the following lemma.

Lemma 10 Let {T kφ(t)}k∈Z ∪{DjT kψi(t)}Li=1,j∈N,k∈Z be a frame with bounds
A, B. Then {DjT kψi}Li=1,j∈Z,k∈Z is also a frame with bounds A, B.

Proof: First, let us show that {DjT kψi}Li=1,j∈Z,k∈Z is a Bessel sequence with
bound B. Suppose this is not true. Then we can find f ∈ L2 and N ∈ Z s.t.

L∑
i=1

∑
j∈Z

∑
k∈Z
|〈f,DjT kψi〉|2 > B ‖f‖2. (37)

By Lemma 2, DN
{
{T kφ}k∈Z ∪ {DjT kψi}Li=1,j∈N,k∈Z

}
has the upper frame

bound B. Therefore,

B‖f‖2 ≥
∑
k∈Z
|〈f,DNT kφ〉|2 +

L∑
i=1

∞∑
j=N

∑
k∈Z
|〈f,DjT kψi〉|2 > B ‖f‖2, (38)

which is a contradiction.

Now the lower bounds. Pick an ε with A > 2 ε > 0. Suppose we can find
f ∈ L2(R) s.t.

L∑
i=1

∑
j∈Z

∑
k∈Z
|〈f,DjT kψi〉|2 < (A− 2 ε)‖f‖2. (39)

For this f , we can also find N ∈ Z (for a proof see part (ii) of Lemma 14.2.5
in [3], or Lemma 7.7 in [1]) s.t.∑

k∈Z
|〈f,DNT kφ〉|2 < ε‖f‖2. (40)

Once again invoking Lemma 2, we have,

A‖f‖2 ≤
∑
k∈Z
|〈f,DNT kφ〉|2 +

L∑
i=1

∞∑
j=N

∑
k∈Z
|〈f,DjT kψi〉|2 < (A− ε)‖f‖2, (41)

a contradiction. By the arbitrariness of ε, it follows that

L∑
i=1

∑
j∈Z

∑
k∈Z
|〈f,DjT kψi〉|2 ≥ A ‖f‖2, ∀ f ∈ L2(R). (42)
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Remark 11 When the FB is perfect reconstruction (i.e. tight with frame
bound equal to 1), then the iterated FB is also tight, regardless of the number
of stages. According to Thm. 8, this implies that the resulting wavelet frame is
also tight. This special case is in fact the unitary extension principle of Ron
and Shen [9].

5 Discussion

We showed that the knowledge of the frame bounds of the iterated FB can
be used to obtain the frame bounds of the underlying frame on the real line
and vice versa. This implies that an FB, possibly non-tight to start with, will
not have deteriorating frame bounds as it is iterated. However, an important
question regarding the design of iterated FBs remains. That is, what are the
conditions, if any, on the filters (directly, that is, without referring to the
scaling function or the wavelet) which will yield a non-perfect reconstruction
system (but will possibly possess other useful properties) and will be stable
under iterations? We hope that this letter provides some motivation towards
answering this question.
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