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ABSTRACT
We consider the problem of reconstructing an object given magni-
tudes of linear measurements. We follow the ‘lifting’ approach, but
unlike previous work which use convex relaxations of the unit rank
constraint, we use a weakly-convex matrix penalty. We derive a con-
vergent algorithm and show that it is computationally more feasible
than those obtained under convex relaxations. We demonstrate nu-
merically that when the signal to noise ratio is high, the proposed
algorithm can achieve almost error-free reconstruction with fewer
measurements than when convex relaxation is employed.

Index Terms— Phaseless imaging, lifting, unit rank constraint,
weakly-convex, majorization-minimization

1. INTRODUCTION

The phaseless imaging problem consists of estimating an object x
given intensity measurements of the form yi = |〈ai, x〉|2, for i =
1, 2, . . . ,m where ai denotes the ith row of a known imaging opera-
tor A.

A direct approach to recover x is

x̂ = arg min
z

∥∥y − |Az|2∥∥
2
. (1)

Unfortunately, this formulation is non-convex and algorithms at-
tempting to solve (1) run the risk of getting trapped in local minima
[1]. An equivalent convex problem can be obtained by ‘lifting’ the
problem [2, 3, 4]. For this, observe that y = diag(AX AT ), where
X = xxT and diag(·) extracts the diagonal of its operand. Notice
that the compound operator L(X) = diag(AX AT ) is linear in X .
We can obtain x (upto a multiplicative factor) by estimating the unit
rank positive semi-definite (psd) X via

X̂ = arg min
Z∈Sn

‖y − L(Z)‖22 s.t.

{
rank(Z) = 1,

Z � 0,
(2)

where Sn denotes the set of n×n symmetric matrices. An alternative
formulation is

X̂ = arg min
Z∈Sn

rank(Z) s.t.

{
y = diag(AZ AT ),

Z � 0.
(3)

In both formulations (2), (3), the appearance of ‘rank(·)’ makes the
problem non-convex. Replacing it with a convex proxy like the nu-
clear norm, ‖ · ‖∗, one obtains a convex problem that is guaranteed
to reconstruct X , under certain assumptions on A [3]. It was shown
in [5] that it is also possible to drop the cost term entirely and still
ensure exact recovery. Dropping the cost term leads to a feasibility
problem as,

Find Z such that

{
y = diag(AZ AT ),

Z � 0.
(4)

In order to obtain a simple algorithm, this problem may also be writ-
ten as,

min
Z�0

1

2
‖y − diag(AZ AT )‖22 (5)

For (5), the forward backward splitting algorithm [6] yields the fol-
lowing iterations.

1: repeat
2: Z ← Z − αLT

(
L(Z)− y

)
. take a gradient step

3: Z ← P+(Z) . Project onto the cone of psd matrices
4: until some convergence criterion is met

In the pseudocode, P+(·) denotes the projection operator onto the set
of positive semi definiete (psd) matrices. Although this simple algo-
rithm can correctly recover Xgiven enough measurements, it occa-
sionally fails to find a unit rank X , when the number of measure-
ments are fewer. Thus, even though the unit rank constraint compli-
cates the problem significantly by introducing non-convexity, it can
be useful for eliminating incorrect estimates. In fact, the unit rank
constraint allows to eliminate the psd constraint. More precisely,
consider the following problem

min
Z∈Sn

‖y − L(Z)‖22 s.t. rank(Z) = 1. (6)

For this problem, we have, the following result.

Proposition 1. If X̂ is a local minimizer of (6), then X̂ � 0.

Proof. Since X is unit rank, it can be expressed as X̂ = β x̂ x̂T , for
some vector x̂. Here β ∈ R since X̂ ∈ Sn. Consider the function
g(β) = ‖y − L(β x̂ x̂∗)‖22, which is a slice of the original cost, in
the direction of X̂ . Since y > 0, the function g(β) is differentiable.
It can be shown that the derivative is strictly negative when β < 0.
Thus follows the claim.

The following simple algorithm for (6) can be derived via the
majorization-minimization framework [7].

1: repeat
2: Z ← Z − αLT

(
L(Z)− y

)
. take a gradient step

3: Z ← P1(Z) . Find the closest unit rank matrix
4: until some convergence criterion is met

Notice that the difference between this algorithm from the former
is the replacement of P+ with P1, which maps Z to the unit rank
matrix closest to Z. This can be achieved by computing the largest
magnitude eigenvalue and the corresponding eigenvector. Thus, in
general, P1 is much easier to realize than P+ and therefore this latter
algorithm is computationally more feasible.

We have observed that the algorithm introduced above for solv-
ing (6) performs quite well but it occasionally fails to find the cor-
rect solution, even if the number of measurements is high. We think
this is due to non-convex nature of the formulation (6). In order to



circumvent this, we propose in this paper to relax the unit rank con-
straint using a penalty other than the nuclear norm and drop the psd
constraint. This leads to a formulation as,

min
Z∈Sn

1

2

∥∥y − L(Z)
∥∥2
2

+ q(Z), (7)

where q is a penalty function on Z, derived from our previous work
[8]. The parameters of q can be chosen such that q(Z) is arbitrarily
small for a unit rank Z and increases rapidly if more than one sin-
gular value of Z is non-zero. This property allows to significantly
reduce a possible bias introduced by the addition of q(·), provided
that a unit rank solution is found for the problem. The proposed q
is weakly-convex, that is, q becomes convex after adding a quadratic
function [9]. Thus, in contrast to earlier work, the non-convexity in-
troducing rank constraint is not discarded [5] or relaxed to a nuclear
norm [2, 3], but relaxed using a function that provides a better ap-
proximation of the constraint. The algorithm for solving (7) can be
obtained by replacing P1 with the proximity operator of q [6] and
will be derived in the sequel. We will show that the proximity op-
erator of q can be realized almost as easily as P1. Therefore, the
computational price paid for the proposed relaxation is lower, com-
pared to the convex relaxations mentioned above.

Other Related Work : In optical imaging, the phaseless imag-
ing problem described above is also known as the phase retrieval
problem [1, 4]. Simple alternating projection algorithms, without
convex relaxation have been described in [1]. However, these algo-
rithms do not come with theoretical convergence guarantees and in
practice it has been observed that they can get stuck at non-optimal
solutions. For the phase retrieval problem, the authors of [10] pro-
poses to reconstruct the phases of the measurements and after a lift-
ing step followed by discarding of a unit rank constraint, they obtain
a convex semi-definite programming problem. More recently, [11]
proposes to iteratively reconstruct the support of x, without lifting
the problem to a higher dimension. At each iteration, the support is
updated based on the entries of the gradient of the cost function in
(1). Another algorithm that does not rely on lifting is presented in
[12], based on generalized approximate message passing. These lat-
ter approaches are attractive in that they do not need to introduce new
variables. However, they cannot offer global convergence guarantees
due to the inherent non-convexity of the problem. An alternative ap-
proach, which also does not rely on lifting, is proposed in [13]. Start-
ing with a good initialization, the algorithm applies a form of gradi-
ent descent in order to minimize a quadratic loss function. Assuming
that the measurement matrix is obtained by sampling a certain prob-
ability distribution, the authors show that, with high probability, the
proposed algorithm converges to a minimizer of the cost function.

As briefly noted above, our idea is to improve the lifting scheme
by relaxing the non-convex problem to a weakly-convex problem,
instead of a convex problem as is done in previous work. While
weakly-convex problems are also non-convex, non-convexity is re-
duced, in some sense. Our numerical experiments suggest that,
besides reduced computational load, weakly-convex relaxation, in
comparison to convex relation, improves performance and yields a
sharper transition in the phase diagram between success and failure
of reconstruction.

Notation : Throughout the text, we work with real variables for
simplicity. The subscript T denotes transpose. Most results carry
over to the complex case straightforwardly, simply by replacing T

with the Hermitian conjugate ∗, with the exception of Lemma 1,
which requires a more careful modification.

Outline : We introduce the penalty and discuss its properties in
Section 2. We derive an algorithm for (7) and show that it converges

in Section 3. We provide numerical experiments demonstrating the
performance of the proposed algorithm as well those mentioned in
the introduction in Section 4, followed by concluding remarks in
Section 5.

2. THE PENALTY FUNCTION AND THE ALGORITHM

We will derive the penalty function q : Sn → R+ by adapting a
penalty proposed earlier for Rn [8].

2.1. A Penalty on Rn

Consider the following function defined on Rn.

pλ,γ(x) = λ

[
‖x‖1 + γ

(n−1∑
i=1

n∑
j=i+1

|xi xj |
)]
. (8)

Observe that if ‖x‖0 ≤ 1, then the term enclosed in parentheses
vanishes. The proximity operator [6] for this function is defined as,

Jαp(x) = arg min
z

1

2α
‖x− z‖22 + pλ,γ(z). (9)

If αλγ < 1, then the cost function in (9) is strictly convex
so that Jαp is well-defined. This follows from the observation that
the term in (8) enclosed in parentheses can be written as (‖x‖21 −
‖x‖22)/2. To describe Jαp, suppose z = Jαp(x), and assume (for
notational convenience) that |xi|’s are ordered (i.e., |xi| ≥ |xi+1|).
If k components of z are non-zero, then z and x are related as,

zi = (1− αλγ)−1 soft(xi, τk), (10)

where the soft threshold operator is defined as soft(a, τ) =
sign(a) max(|a|−τ, 0) and τk is a signal dependent threshold given
as,

τk =
αλ (1− αλγ) + αλγ

∑k
i=1 |xi|

1 + (k − 1)αλγ
. (11)

We remark that the description above is implicit since the number of
non-zeros of z (i.e., the integer k) is not known in advance. However,
a candidate k̃ can be validated by checking whether the threshold
τk̃ produces a zwith k̃ non-zeros [8]. Therefore, a linear search can
be performed starting from k̃ = 1 to find the correct value of k. Here
we note a special case of interest, which can also be found in [8].

Proposition 2. For x, z ∈ Rn, suppose z = Jαp(x). Suppose also
that xl denotes the entry of x with the largest magnitude. If

αλγ > max
i 6=l

|xi| − αλ
|xl| − αλ

(12)

then zl = soft(xl, αλ) and zi = 0, for i 6= l.

In words, all but the largest (in magnitude) component of x is
kept if the ratio of the largest component to the rest is greater than
some threshold. This property is the key to imposing the unit rank
constraint, as will be clarified below.

2.2. The Induced Penalty on Sn

We extend the domain of the penalty p from Rn to Sn as fol-
lows. Suppose the eigendecomposition of X ∈ Sn is given as
X = V ΛV T . We define

qλ,γ(X) = pλ,γ
(
diag(Λ)

)
. (13)



The proximity operator for q is defined as,

Jα q(X) = arg min
Z∈Sn

1

2α
‖X − Z‖2F + qλ,γ(Z). (14)

It follows by the discussion in [14] (see specifically [15]) along with
the properties of p that Jα q is well-defined when αλγ < 1. This
proximity operator is related to Jαp as follows [15].

Proposition 3. Suppose the eigendecomposition of X ∈ Sn is
X = V ΛV T . Also, let Λ′ denote the diagonal matrix that satis-
fies diag(Λ′) = Jαp

(
diag(Λ)

)
. Then, Jαq(X) = V Λ′ V T .

Suppose Z = Jαq(X). If Z has k non-zero eigenvalues, then it
follows by the discussion preceding Prop. 2 that we need to compute
only the largest magnitude k + 1 eigenvalue/eigenvector pairs of X .
For k = 1 (the unit rankZ case), we have the following result, which
is a corollary of Prop. 2 and Prop. 3.

Corollary 1. Suppose the eigendecomposition of X ∈ Sn is X =
V ΛV T and Λl is the diagonal entry of Λ with the largest magnitude.
If

αλγ > max
i 6=l

(
|Λi| − αλ

)
+(

|Λl| − αλ
)
+

(15)

then, Jαq(X) = soft(Λl, αλ) vl v
T
l , where vl is the lth column of

V .

This corollary suggests that if the gap between the largest
eigenvalue and the rest of the eigenvalues of X , is large enough,
Jα q(·) reduces X to a unit rank matrix. We next derive and study
the convergence of a monotone descent algorithm for solving (7).

3. A MINIMIZATION ALGORITHM

Recall the formulation in (7).

min
Z∈Sn

{
C(Z) =

1

2

∥∥y − L(Z)
∥∥2
2

+ qλ,γ(Z)
}
, (16)

It can be shown that provided LT L � (λ γ)I , this problem is
convex. However, even if this is not satisfied, it is possible to
derive a monotone descent algorithm by employing majorization-
minimization techniques [16, 7].

3.1. Derivation of the Algorithm

Suppose Zk denotes our kth iterate. Consider the following update.

Zk+1 = arg min
Z∈Sn

{
Ck(Z) =

C(Z) +
1

2α
‖Z − Zk‖2F −

1

2
‖L(Z − Zk)‖22

}
. (17)

Observe that Ck(Zk) = C(Zk). Provided ασ(LT L) < 1, it
follows that Ck upper bounds C, that is, Ck(Z) ≥ C(Z) for all
Z ∈ Sn. In this case, we will have C(Zk+1) ≤ C(Zk), where the
inequality is strict if Zk 6= Zk+1.

To find an expression for Zk+1, we expand Ck and find that

Zk+1 = arg min
Z∈Sn

1

2α

∥∥Z − Z̄k∥∥2
F

+ qλ,γ(Z), (18)

where Z̄k = Zk − αLT (L(Zk)− y). Provided that α < 1/(λ γ),
we have

Zk+1 = Jα q
(
Z̄k
)
. (19)

Algorithm 1 A Descent Algorithm for (7)

1: k ← 1, initialize Z1, set α (see Prop. 4)
2: repeat
3: Z ← Zk − αLT

(
L(Zk)− y

)
. take a gradient step

4: Zk+1 ← Jαq(Z) . Apply the prox. operator for q
5: k ← k + 1
6: until some convergence criterion is met

A summary is provided in Algorithm 1.
The foregoing discussion, along with Thm. 3.1 of [17], leads to

the following proposition.

Proposition 4. Suppose α < min
(
1/(λ, γ), 1/σ(LT L)

)
. Then,

Zk’s in Algorithm 1 monotonically decrease the cost, i.e.,C(Zk+1) ≤
C(Zk) and the sequence of cost values ck = C(Zk) converge to a
value C(Z∗), where Z∗ is a stationary point of C(·).

3.2. Convergence of the Iterates

In practice, we are not only interested in the convergence of the se-
quence of cost values. It is also desired that the sequence of iterates
themselves converge. This is addressed in the following.

Proposition 5. Suppose α < min
(
1/(λ γ), 1/σ(LT L)

)
. Then,

Zk’s in Algorithm 1 converge to a local minimizer of (7).

Prop. 5 is a consequence of Thm. 5.1 of [18] which implies
that the iterates of monotone descent algorithms converge to a local
minimum when the cost function is semi-algebraic1. Sums of semi-
algebraic functions are semi-algebraic [18] and a quadratic function
(like the first term of C(·)) is semi-algebraic since it is a polynomial
of its arguments. Therefore, for Prop. 5, it is sufficient to show that
q is semi-algebraic, which is addressed in the following lemma.

Lemma 1. Viewing an n × n matrix X as an element of Rn
2

, the
nuclear norm ‖X‖∗and the regularizer q introduced in (13) are semi-
algebraic functions defined on Rn

2

,

Proof. We start by showing that the nuclear norm is semi-algebraic.
LetQ denote the subset of Rn

2

associated with orthogonal matrices
(matrices are formed by placing the components in a specific order).
Notice that Q (or Q × Q) is a compact semi-algebraic set, since it
is the solution set of a finite number of polynomial equations. Ob-
serve also that for Qi ∈ Q, we have tr(QT1 X Q2) ≤ ‖X‖∗, where
equality is satisfied if the SVD of X is X = Q1 ΣQT2 . Therefore,

‖X‖∗ = max
Q1,Q2∈Q×Q

{h(X,Q1, Q2) = tr(Q1X Q2)} . (20)

But in this equation h(X,Q1, Q2) is a polynomial of its ar-
guments. Thus the function ‖X‖∗ is semi-algebraic (see e.g. the
discussion following Thm 2.2 in [18]). Notice now that q(X) =
‖X‖2∗ − ‖X‖22. Since the sum and products of semi-algebraic func-
tions are semi-algebraic, it follows that q is semi-algebraic.

1In a nutshell, a function is semi-algebraic if its graph can be expressed as
a finite intersection of polynomial inequalities. Due to lack of space, we refer
to [18] and the references therein for the precise definition and discussion of
semi-algebraic sets and functions.
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Fig. 1. The average recovery error for different signal lengths and
number of measurements for (a) optimizationless reconstruction [5],
(b) unit rank algorithm, (c) the proposed reconstruction algorithm.
(d) shows slices of Exfor all three algorithms for n = 50.

4. NUMERICAL EXPERIMENTS

In this section, we compare the proposed algorithm with the two al-
gorithms provided in the introduction that solve (5) and (6), which
we will refer to as ‘optimizationless’2 and ‘unit rank’ in what fol-
lows. For the purpose of comparison, we performed experiments
similar to those of [5]. We remark that the optimizationless algo-
rithm has been used earlier in [10] as a benchmark algorithm (see,
in particular, comparisons with PhaseLift [3]). We also note that,
at least in the high SNR case, the trace term in the PhaseLift for-
mulation introduces a certain bias and the reconstruction is different
than those obtained by the algorithms considered in the experiments
below, which are almost error-free, provided that the number of ob-
servations are sufficient (see Fig. 3 in [5]).

Experiment 1. We randomly produce the object x by uniformly
sampling the n-dimensional sphere, and the m× n observation ma-
trix, A, by sampling a Gaussian distribution. We produce the obser-
vations as,

y = |Ax|2 + u, (21)

where u denotes a Gaussian noise term. We can define two differ-
ent recovery errors, related to x and X = xxT . If X̂ denotes the
reconstruction obtained by an algorithm, the normalized error for
recovering X can be taken as EX = ‖X̂ − X‖F /‖X‖F . Given
the matrix estimate X , we take x̂ =

√
λ e, where λ is the greatest

eigenvalue of X̂ and e is the corresponding unit norm eigenvector.
The recovery error for x (recall that x is unit norm) is then defined
as Ex = min

k=0,1
‖(−1)k x̂ − x‖2. We remark that [5] uses EX but

we think that Ex is of interest since x is the object we aim to recon-
struct. We have not seen a marked difference between the behaviors
of the two distinct error terms. In the setup described above, for each

2For ‘optimizationless’ reconstruction, we use the accelerated version of
the algorithm as described in [5].
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Fig. 2. Reconstruction error for varying number of measurements,
for a signal of length 100. (a) SNR = 50 dB, (b) SNR = 5 dB.

m and n value, we average the recovery errors over twenty trials in
order to obtain an average figure. We set the constants used in the
algorithms as α = 10−4, λ = 10−5, γ = 0.05/λ. Notice that,
with these settings, we have αλγ < 1, as required in the proposed
algorithm.

Figure 1 shows the phase transition diagrams as n and m vary,
where the observation SNR is 50 dB. To produce these figures, we
ran the proposed algorithms for 1000 iterations. We observe that the
proposed algorithm and the unit rank algorithm both have sharper
transitions between succcess and failure, compared to optimization-
less reconstruction. Compared to unit rank, the proposed algorithm
performs more stably and requires fewer measurements for success-
ful recovery. In particular, we see in Fig.1d that unit rank has not
improved much when the number of measurements, m, is in the
range [100, 150] and has an unexpected local maximum atm = 175,
whereas the proposed algorithm steadily improves as m increases.

Experiment 2. In order to demonstrate the sharp transition noted
above and test robustness against noise, we performed similar ex-
periments for n = 100 with different SNR values. In this case, we
set α = 10−4/5 (to ensure convergence) where the other parameters
are kept as in the previous experiment. The reconstruction errors Ex
are shown in Fig. 2 for SNR values 50 dB and 5 dB. In this case, we
ran the algorithms for 5000 iterations, to avoid premature stopping.

In both cases, the average error for optimizationless recovery
appears to be smooth with respect to m and especially towards the
right end of the graphs, it exceeds the error obtained by the proposed
algorithm. As for the unit rank algorithm and the proposed algo-
rithm, we see a similar trend as in the previous experiment. The pro-
posed algorithm achieves a lower error than unit rank for all m. We
also observe that the proposed algorithm monotonically decreases
the average error as m increases (except when the number of mea-
surements is too few), whereas the unit rank algorithm can produce
incorrect estimates even when m ≥ 300– e.g., when m = 400 in
Fig. 2b.

5. CONCLUSION

The proposed algorithm falls somewhere in between algorithms ob-
tained via convex relaxation and an algorithm that imposes the non-
convex unit rank constraint at each iteration, both in terms of per-
formance as well as computational load. Therefore, weak-convex
relaxation allows to achieve a ‘tunable’ performance. Currently, due
to lifting, the number of variables are significantly increased and
hence memory requirements are high for real-life problems. In order
to make the approach feasible for larger problems, we plan to com-
plement the algorithm with a smart initialization strategy to achieve
a reasonable approximation with a fewer number of iterations.
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