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A Dual-Tree Rational-Dilation Complex Wavelet Transform
İlker Bayram and Ivan W. Selesnick

Abstract—In this correspondence, we introduce a dual-tree rational-dilation
complex wavelet transform for oscillatory signal processing. Like the short-
time Fourier transform and the dyadic dual-tree complex wavelet transform,
the introduced transform employs quadrature pairs of time-frequency atoms
which allow to work with the analytic signal. The introduced wavelet
transform is a constant-Q transform, a property lacked by the short-time
Fourier transform, which in turn makes the introduced transform more
suitable for models that depend on scale. Also, the frequency resolution can
be as high as desired, a property lacked by the dyadic dual-tree complex
wavelet transform, which makes the introduced transform more suitable
for processing oscillatory signals like speech, audio and various biomedical
signals.

Index Terms—Rational-dilation wavelet transform, dual-tree complex wavelet
transform, short-time Fourier transform, analytic signal, instantaneous
freuency estimation.

I. INTRODUCTION

Despite its usefulness for piecewise smooth signals, the dyadic wavelet
transform is less effective for the processing of oscillatory signals (like
speech, audio, various biomedical signals) because of its poor fre-
quency resolution. In this regard, the rational-dilation wavelet transform
(RADWT), which provides a finer frequency analysis, is more suitable
[2] (see Fig. 1). However, even though the RADWT has better frequency
resolution, it is not simple to carry out certain operations with the
RADWT, such as the Hilbert transform, envelope detection, instantaneous
frequency estimation, which are relevant for oscillatory-signal processing
[5]. For such tasks, the short-time Fourier transform (STFT) is more
useful because its atoms are analytic, which in turn allow for the easy
construction of analytic signals. However, the time-frequency structure
of the STFT is quite different from that of wavelet transforms, it being
a constant bandwidth transform rather than a constant-Q transform.1. In
this paper, we introduce a dual-tree rational-dilation wavelet transform
(DT-RADWT) that inherits the good frequency resolution and constant-Q
property of the RADWT2 and whose atoms form quadrature pairs (see
Fig. 1a,b).

In brief, a DT-RADWT frame consists of the union of a RADWT frame
and its Hilbert transform.3 The difference between the introduced DT-
RADWT and STFT is the time-frequency distribution of their atoms
(compare Figs. 1c and 2b). For ease of notation, let us consider signals
defined on the real line for now. Given a window function h(·), STFT
atoms are comprised of time shifts and modulates of this function, i.e.,

STFT Atoms : {h(· − n∆x) exp(jk∆ω ·)}k,n∈Z . (1)

İ. Bayram was with Biomedical Imaging Group, EPFL, Switzerland. He is now
with the Department of Electronics and Communication Engineering, Istanbul
Technical University, Maslak, 34469, Istanbul, Turkey.

I. W. Selesnick is with the Department of Electrical and Computer Engineering,
Polytechnic Institute of New York University, Brooklyn, NY, 11201, USA.

E-mail: ilker.bayram@itu.edu.tr, selesi@poly.edu
1The Q-factor of a function is defined to be the ratio of its center frequency

to its bandwidth (i.e. fc/∆f ). A transform is said to be constant-Q if it employs
atoms that have the same Q-factor. See [3] and Section III for an argument of the
utility of constant-Q transforms in audio processing.

2The introduced DT-RADWT also inherits certain shift-invariance properties of
the RADWT. In particular, it is µ-shift invariant (see [21] for the definition of
µ-shift invariance) like the RADWT.

3To be precise, the Hilbert relation holds only for the bandpass functions. The
situation for lowpass functions is similar to that in dyadic DT-CWT – see [18].
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Fig. 1. (a) A number of atoms from different scales of a RADWT (thick lines).
DT-RADWT employs these atoms as well as their Hilbert transforms (thin lines),
(b) The frequency responses of a number of analytic (discrete-time) wavelets, (c)
Sampling of the time-frequency plane by a typical wavelet frame. The dilation
factor α, and the shift parameter β determine the lattice. For RADWT and DT-
RADWT, α and β can be selected by changing the sampling factors of the filter
bank.

A number of STFT atoms are shown in Fig. 2a. We remark that, for a
fixed window function h(·), the number of oscillations in the STFT atoms
depend on the frequency parameter k in (1). This implies a non-uniform
treatment of different scales – how succesfully STFT can separate two
frequencies f0 and f1 depends not only on their ratio f1/f0 but their
values as well. On the other hand, the introduced DT-RADWT employs
time shifts and dilations of the real and imaginary part of an analytic
wavelet function ψ(·), i.e.,

DT-RADWT Atoms :
{
αn/2 Re{ψ(αn x− kβ)}

}
k,n∈Z

∪
{
αn/2 Im{ψ(αn x− kβ)}

}
k,n∈Z

(2)
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Fig. 2. (a) Real (thick lines) and imaginary parts (thin lines) of a few STFT
atoms. (b) STFT samples the time-frequency plane uniformly as shown here.
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Fig. 3. DT-RADWT consists of two filter banks with rational sampling factors
operating in parallel on the input. The system in the dashed box, which is referred
to as the ‘rational-dilation DWT’ (RADWT), was discussed in [2].

where α and β can be adjusted by changing the sampling factors of the
filter banks (FB) in Fig. 3. Because the frequency tiling is achieved by
scaling the wavelet function, the number of oscillations (in fact the shape)
of the atoms remains the same (see Fig. 1a). Likewise, these atoms all
have the same Q-factor. The resulting time-frequency distribution with
respect to these parameters is shown in Fig. 1b. The two lattices in Figs
2b and 1c are different in mainly two aspects. First, the subbands are
distributed logarithmically for the DT-RADWT, whereas they are uniform
for the STFT. Second, the sampling period of each subband is different
for DT-RADWT to account for the subband-dependent bandwidths. This
way, the DT-RADWT attains a modest redundancy as well as a stable
analysis/synthesis implementation, which is related to its being a tight
frame. We note however that the STFT has a faster implementation than
the DT-RADWT because it makes more efficient use of the FFT (due to
its uniform sampling with respect to frequency).

The DT-RADWT introduced in this paper consists of two FBs operating
in parallel on the input as shown in Fig. 3. Essentially, we require that the
ith channel of the two filter banks, FB1 and FB2 say, to compute inner
products of the input x(n) with shifts of a bandpass filter hi(n) and
Hd{hi(n)} respectively. Here, Hd{·} denotes the discrete-time Hilbert
transform [15]. Before going into the details of the conditions to ensure
this, let us briefly discuss what one can do using DT-RADWT.

Consider the phonocardiogram (PCG) signal x(n) shown in Fig. 4a.

(a)

(b)

Fig. 4. Decomposition of a phonocardiogram (PCG) signal using the RADWT.
(a) PCG signal, (b) Several channels of the RADWT of the PCG signal. (The
RADWT parameters are p = 2, q = 3, s = 2 with reference to Fig. 3.)

Using RADWT, we can decompose x(n) as

x(n) =

#Chn.∑
i=1

∑
k∈Z

ci(k)hi(n− k si) (3)

where hi(n) is the equivalent filter employed by the ith stage of RADWT,
si is a channel-dependent shift parameter (see [2] for details) and

ci(k) = 〈x(·), hi(· − k si)〉 (4)

We can isolate the separate channels xi(n) as

xi(n) =
∑
k∈Z

ci(k)hi(n− k si). (5)

A number of xi(n)’s are shown in Fig. 4b for a particular RADWT.
The Hilbert transform of x(n) can be computed by swapping and
scaling appropriately the coefficients as illustrated in Fig. 5. The Hilbert
transform of a single channel xi(n) can be similarly computed by setting
to zero the coefficients of the rest of the channels. A particular channel
and its Hilbert transform is shown in Fig. 6a. Now that we have xi(n)
and Hd{xi(n)}, we can form the analytic signal for xi(n) via

xAi (n) = xi(n) + jHd{xi(n)}. (6)

xAi (n) can be used to compute the envelope as envi(n) = |xAi (n)|
(see the dashed line in Fig. 6a). We can also estimate the instantaneous
frequency of xi(n) by tracking the phase of xAi (n). For the particular
filters that we use in DT-RADWT, it can be shown that xAi (n) is obtained
by LTI filtering x(n) with a bandpass filter fAi (n). Since we know the
center frequency of fAi (n), we can write xAi (n) as,

xAi (n) = envi(n) exp(j (ωi n+ φ(n))) (7)

where ωi denotes the center frequency of fAi (n) and φ(n) is the cumu-
lative phase due to the deviation of the instantaneous frequency of xAi (n)
from ωi. From this expression, we take the instantaneous frequency as
φ′(n) + ωi where φ′(n) is the principal value of φ(n+ 1)− φ(n). We
remark that ∠xAi (n + 1) − ∠xAi (n) could have been used to directly
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Fig. 5. Using DT-RADWT, the analytic signal transform of a signal x(n) can
be performed by swapping the outputs of the analysis filter banks and taking the
difference. This follows because if x(n) =

∑
i cifi(n) for a collection of atoms

fi(n), the Hilbert transform of x(n) is
∑
i ciH{fi(n)}. The analysis part in the

figure compute ci’s for fi, swapping in the synthesis stage replaces fi by H{fi}.
In the figure, AFB and SFB stand for analysis filter bank and synthesis filter bank
respectively.
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Fig. 6. (a) A particular channel of the PCG in Fig. 4a (thick line), its Hilbert
transform (thin line) and the envelope signal (dashed line), (b) instantaneous
frequency of the signal in (a).

obtain the instantaneous frequency, but this can lead to phase-wrapping
problems. Taking the principal value of φ(n + 1) − φ(n) does not
guarantee to avoid phase-wrapping problems but it is less likely to
encounter such problems than when we take ∠xAi (n + 1) − ∠xAi (n)
as the instantaneous frequency. The instantaneous frequency obtained
through φ′(n) + ωi is shown in Fig. 6b.

Contribution

Our main contribution in this correspondence is the construction of an
analytic rational dilation wavelet transform using the dual-tree frame-
work. In particular, we provide a generalization of the sufficient condition
derived in [17] (which were also shown to be necessary in [22]). The
discussions are valid for the underlying wavelets (defined on the real
line), as well as the discrete-time functions which play a more direct
role in the computations.

Previous Work

The dual-tree complex wavelet transform (DT-CWT) which employs
a quadrature pair of dyadic wavelet frames (i.e. α = 2 in (2)) was
introduced by Kingsbury [11] (see also [18]). In comparison to DT-
CWT, the DT-RADWT is based on rational sampling factors (α, β in 2
and Fig.3) and can therefore attain higher frequency resolution than the
DT-CWT.

An interesting approach to devise a constant-Q transform was formulated
by Gambardella [9]. His idea is to generalize the STFT by using window

functions that depend on the center frequency of interest. As a special
case, if one scales the window function with the center frequency, the
resulting transform becomes,

If (ω, t) =

∫
f(x)h

(
ω (x− t)

)
ejω x dx (8)

where f(·) is the input signal and h(·) is the window function. If we set
ψ(x) = h(x) ej x, this can be written as,

If (ω, t) = ej ωt
∫
f(x)ψ

(
ω(x− t)

)
dx. (9)

Upto a phase term (and scaling), (8) is equivalent to a continuous wavelet
transform. This form of the transform was studied by Youngberg and
Boll [20], Petersen and Boll [16]. In [16] the authors also show how
to sample this constant-Q transform (i.e. sampling the parameters ω and
t), deriving the pattern in Fig. 1c. This particular constant-Q transform
was also utilized for time-scaling of audio [19], an application which
we will discuss in Section III. Brown [3] proposed a similar constant-
Q transform by utilizing channel-dependent window functions and non-
uniform sampling in the frequency domain (also see [4]).

An interesting approach to obtain nonuniform frequency analysis is
through frequency-warping [14] (also see [10] for a comprehensive
tutorial and further references). Here, the idea is to transform the input
signal x(n) to another signal g(n) such that their DFTs satisfy

X(ejω) = G(ejθ(ω)) (10)

where θ(ω) is a one-to-one function on the unit circle. By appropriately
selecting θ(ω), FFT of g(n) allows one to nonuniformly sample X(ejω)
in the frequency domain. In general, the mapping that transforms x(n)
to g(n) is not orthonormal. Noting the relation to Laguerre sequences,
Evangelista and Cavaliere [7] prefilter x(n) so as to ensure that this
mapping is orthonormal. Following this orthonormalized frequency-
warping, they apply a dyadic DWT to the frequency-warped signal
to obtain an orthonormal time-frequency analysis similar to that of a
rational-dilation DWT.

Organization

In Section II, we derive a sufficient condition which ensures that the two
FBs employ quadrature pairs of discrete-time atoms. We will also show
that the two FBs are related to quadrature pairs of wavelets which can
be combined to form an analytic wavelet. In Section III, we disuss an
application that requires both the analysis and synthesis capabilities of
DT-RADWT to demonstrate the potential of the introduced transform.
Section IV is the conclusion.

II. DUAL-TREE RADWT : A SUFFICIENT PHASE CONDITION

The RADWT consists of an iterated FB as shown in Fig. 3 (see the
system inside the dashed rectangle). For the ith bandpass channel, the
analysis FB essentially computes the inner products of the input with
shifts of a discrete-time bandpass function hi(n). We would like to
construct another FB, with the same sampling factors, such that h̃i(n), the
function whose shifts form the ith bandpass channel of this new iterated
FB, satisfies h̃i(n) = Hd{hi(n)}.
We remark that both of the iterated FBs are associated with unique
wavelet functions ψ(x), ψ̃(x) [2] (this is not the case in general – see
[1] for a detailed discussion) similarly as in dyadic wavelet frames. We
will also show that ψ̃(x) = H{ψ(x)}, where H{·} denotes the Hilbert
transform for L2(R).

In the rest of this section, we provide sufficient phase conditions on
the filters for realizing a DT-RADWT. For this, let us first recall the
(sufficient) perfect reconstruction conditions for the RADWT (for a more
detailed treatment, we refer to [2]).
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Fig. 7. Rational-dilation wavelet transform is a tight frame provided this filter
bank has the perfect reconstruction property.
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Fig. 8. The perfect reconstruction conditions given in (11) imply certain
restrictions on the frequency responses of H(ω) and G(ω). In addition to a band
limit, there is a constant frequency response band.

Perfect Reconstruction Conditions for RADWT

The RADWT is self-inverting (or forms a tight frame) if the analysis
and synthesis FBs shown in Fig. 7 have the perfect reconstruction (PR)
property. A set of sufficient conditions on the filters H(ω) and G(ω)
ensuring PR can be derived4 as (notice that H(ω), G(ω) are 2π-periodic
functions of ω),

H(ω) = 0, for |ω| ∈
[
π

q
, π

]
, (11a)

G(ω) = 0, for |ω| ∈
[
0,

(
1− 1

s

)
π

]
, (11b)

1

pq

∣∣∣∣H (ωp
)∣∣∣∣2 +

1

s
|G(ω)|2 = 1 for ω ∈ [−π, π]. (11c)

These conditions imply a transition band as well as a constant-response
band (shown upto a possible phase factor) for H(ω) and G(ω) as depicted
in Fig. 8.

Phase Condition for the Second FB

The RADWT essentially computes the inner products of the input with
a set of discrete-time functions {hi,k}i∈I,k∈Z indexed by subband i and
position k. We will construct an additional FB using filters H̃ , G̃ such
that the resulting set of functions {h̃i,k}i∈I,k∈Z are the discrete-time
Hilbert transforms of {hi,k}i∈I,k∈Z, save for the functions in the lowpass
subband.

To derive a sufficient condition, we consider the system shown in Fig. 9,
that upsamples, filters, downsamples the input and then computes the
inner product of the output with a discrete-time function u(n). The
system in Fig. 9 maps the input discrete-time function to a number. Since
it is also linear, it can be regarded as a correlator with a discrete-time
function y(n). Here, the correlator with u(n) may be regarded as a device
that maps the input signal to a particular sample of one of the bandpass
channels. In other words, we think of u(n) as one of hi,k0(n) described
above (i.e. the discrete-time function at subband i, position k0). Given
this, y(n) will be equal to hi+1,k1(n) (i.e. the discrete-time function at
subband i+ 1, position k1). We will first investigate how u(n) and y(n)
are related. Next, we will replace u(n) and H(ω) with their counterparts
in the second FB, denoted by ũ(n), H̃(ω). This new system will allow us
to compare the functions in the second FB, namely h̃i,k0 (that is, ũ(n))

4For general sampling factors, FIR filters cannot yield a RADWT that is also
a tight frame [2].

↑p H(ω) ↓q 〈·, u(n)〉 ≡ 〈·, y(n)〉

Fig. 9. Upsampling, filtering, downsampling followed by correlator. Under (11)a,
this is equivalent to computing the inner product of the input with y(n), whose
DTFT, Y (ω), is given in (14).

and h̃i+1,k1 (that is, ỹ(n)) with the functions in the first FB, namely hi,k0
and hi+1,k1 . In particular, our intent is to show that, if hi,k0 and h̃i,k0
are related by a discrete-Hilbert transform, then hi+1,k1 and h̃i+1,k1 are
also related by a discrete-Hilbert transform, thereby implying the Hilbert
relation between the two FBs, by an induction argument.

Let us return to the system in Fig. 9. We remark that y(n) is implicitly
determined by p, q, H(ω) and u(n). We now take a look at this relation.

We take H to be bandlimited to π/q and also p < q. In this setting, the
output of this system for a given input signal x(n) is,

1

2π

∫ π

−π

1

q
X

(
p

q
ω

)
H

(
ω

q

)
U∗(ω) dω. (12)

Using the bandlimitedness of H (the expression is not correct otherwise),
we can change variables to write this as,

1

2π

∫ π

−π

1

p
X(ω)H

(
ω

p

)
U∗
(
q

p
ω

)
dω. (13)

Therefore, we see that

Y (ω) =
1

p
H∗
(
ω

p

)
U

(
q

p
ω

)
for ω ∈ [−π, π]. (14)

Now consider another system, that utilizes a different filter H̃ and a
different function ũ(n). Suppose further that

Ũ(ω) = U(ω) ejΘ(ω) for ω ∈ [−π, π], (15)

where

Θ(ω) = − sign(ω)
π

2
+
ω

a
for ω ∈ [−π, π]. (16)

We will try to find H̃(ω) such that Ỹ (ω) = p−1 H̃∗(ω/p) Ũ(qω/p),
satisfies

Ỹ (ω) = Y (ω) ejΘ(ω) for ω ∈ [−π, π]. (17)

This will imply, by induction, the Hilbert relation we are after – we will
make this claim clearer below.

In an attempt to satisfy (17), take

H̃(ω) = H(ω) e−jτ(ω) for ω ∈ [−π, π], (18)

with

τ(ω) = −ω
b

for ω ∈ [−π, π]. (19)

Noting that Ỹ (ω) = Y (ω) = 0 for |ω| ∈ [pπ/q, π], we have

Ỹ (ω) =
1

p
H̃∗
(
ω

p

)
Ũ

(
q

p
ω

)
for ω ∈ [−π, π]

= Y (ω)ej [Θ(qω/p)+τ(ω/p)] for ω ∈ [−π, π]. (20)

Therefore Ỹ (ω) = Y (ω) ejΘ(ω) holds if

Θ(qω/p) + τ(ω/p) = Θ(ω), (21)

i.e., if

− sign(ω)
π

2
+
q ω

p a
− ω

p b
= − sign(ω)

π

2
+
ω

a
. (22)

This is equivalent to

(q − p) b = a. (23)



5

Therefore, considering the FB structure in Fig. 3, if we set the filters
in the second FB as G̃(ω) = G(ω) e−jΘ(ω), H̃(ω) = H(ω) e−jτ(ω),
where Θ(ω), τ(ω) are defined by (16), (19) and (q − p) b = a, we see,
by an induction argument, that the bandpass functions of the iterated FB
constructed by H̃(ω), G̃(ω), are discrete-time Hilbert transforms of the
bandpass functions of the iterated FB constructed by H(ω), G(ω) upto
a shift by 1/a. We can remove this shift by advancing the lowpass filter
in the first stage of the second FB by p/a, i.e. by replacing H̃(ω) by
(see the second FB in Fig. 3)

H̃(1)(ω) := H̃(ω)ej p ω/a = H(ω) ejω(1/b+p/a). (24)

If we further ask that 1/a + 1/(pb) = q/(2p), so as to distribute the
samples of the scaling function evenly (see [18] for an argument), we
find that (recall a = (q − p)b),

a = 2, b =
2

q − p . (25)

Given H , G, this specifies the phase terms of H̃ and G̃ completely. We
remark however that it is the relation (23) that will yield Hilbert pairs of
wavelets which we discuss in the following subsection.

In summary, we have shown the following proposition.

Proposition 1. For the two FBs in Fig. 3, with sampling factors p, q, s,
suppose H(ω) and G(ω) satisfy the conditions in (11). Let

Θ(ω) = − sign(ω)
π

2
+
ω

2
for ω ∈ [−π, π]. (26)

If

H̃(ω) = H(ω) ej (q−p)ω/2, (27a)

G̃(ω) = G(ω) e−jΘ(ω), (27b)

H̃(1)(ω) = H(ω) ej qω/2, (27c)

then provided it is not the highpass or lowpass subband, the ith subband
of the two FBs compute inner products of the input with discrete time
sequences that are related by the discrete-time Hilbert transform.

Hilbert Pairs of Wavelets

In [2], we defined the wavelets via the infinite product formula as,

ψ̂(ω) =

√
p

q
G

(
p

q
ω

) ∞∏
k=2

1
√
pq
H

(
ω

p

(
p

q

)k)
. (28)

We also recall that the wavelets are bandlimited to qπ/p. Now as in the
previous section, if we set

G̃(ω) = G(ω) e−jΘ(ω) (29)

H̃(ω) = H(ω) e−j τ(ω), (30)

then for |ω| ≤ qπ/p.

ˆ̃
ψ(ω) =

√
p

q
G̃

(
p

q
ω

) ∞∏
k=2

1
√
pq
H̃

(
ω

p

(
p

q

)k)
(31)

= ψ̂(ω) exp

{
−j

[
Θ

(
p

q
ω

)
+

∞∑
k=2

τ

(
ω

p

(
p

q

)k)]}
. (32)

Now using

Θ(ω) = − sign(ω)
π

2
+
ω

a
, (33)

τ(ω) = −ω
b

(34)

along with the sufficient condition (q − p)b = a, we obtain,

Θ

(
p

q
ω

)
+

∞∑
k=2

τ

(
ω

p

(
p

q

)k)
(35)

= − sign(ω)
π

2
+
p

q

ω

a
−
∞∑
k=2

ω

b

1

p

(
p

q

)k
(36)

= − sign(ω)
π

2
. (37)

Recalling ψ̂(ω) =
ˆ̃
ψ(ω) = 0 for |ω| > qπ/p, this implies that ψ(·) is

the Hilbert transform of ψ̃(·).

III. AN APPLICATION : TIME-SCALING AUDIO

DT-RADWT is not a tool restricted to perform analysis or synthesis only
– it can be useful for doing both, thanks to its tight frame property.
Therefore it can be used for processing signals which typically require
an analysis as well as a synthesis scheme. In the following, we will
briefly present an application, namely, time-scaling of audio signals, that
makes use of both the analysis and the synthesis parts of the transform.

Consider a multicomponent model for an audio signal given by

f(t) =

I∑
i=1

Ai(t) cos(ϕi(t)). (38)

In principle, this signal can be scaled in time by a constant α (without
varying the instantaneous frequency content) [13], using

fα(t) =

I∑
i=1

Ai(α t) cos(α−1 ϕi(α t)). (39)

Lacking a representation as in (38), we have to address the problem of
defining/separating the ‘I’ components, in order for the scaling formula
(39) to work. One particular method is to employ the phase vocoder (or
STFT – see [6]). In that case, one obtains an expansion of f(x) as,

f(t) =

I∑
i=1

bi(t) exp
(
j(ωi t+ ϕi(t))

)
, (40)

where i runs over the subbands of STFT (with a total of I subbands),
and ωi denotes the center frequency of the ith subband. In this expansion,
one can regard each subband signal as a single component signal, with
known center frequency. Therefore, one can compute the deviations from
the center frequency by monitoring the change in the phase term. The
time-scaled version of f(x) is then obtained as,

fα(t) =
I∑
i=1

bi(α t) exp

(
j
(
ωi t+

∫ t

0

ϕ′i(αy) dy
))

. (41)

Phase-vocoder based time-scaling method is very fast and performs quite
well even for values of α far from unity. However, one artifact is that
the time-scaled audio output sounds ‘phasy’ – the output is perceived as
if the source is far away from the microphone (for a discussion of this
effect and some remedies see [12] and the references therein).

The only requirement in the formulation (41) based on the phase vocoder
is that the subbands be narrow enough in frequency, in order to be able
to calculate the instantaneous frequency using the phase information.
Therefore this approach is suitable also for DT-RADWT with a high
enough Q-factor. We can use the DT-RADWT in place of the STFT to
obtain a time-scaled version of the input. One motivation for replacing the
STFT with a constant-Q transform like the DT-RADWT is the constant-
Q behavior of human audio perception for frequencies above 500 Hz
[8]. A particularly relevant model would therefore be a constant-Q filter
bank on this frequency range, which we can approximate with an analytic
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Fig. 10. The time-frequency distributions of the original and the time-scaled
signals, using the DT-RADWT, are similar as expected. Ideally, we would like the
two scalograms to be the same upto a scaling along the time axis.

wavelet transform5. We also remark that for this particular method, an
analytic transform like DT-RADWT is more suitable than RADWT since
it facilitates computation of the instantaneous frequency.

The idea of using an analytic constant-Q transform for audio time-scaling
was in fact mentioned by Youngberg in [19]. However the implementa-
tion in [19] requires approximations of continuous-time functions. On
the other hand, the DT-RADWT is fully discrete and provides exact
reconstruction.

An example is shown in Fig. 10. The scalograms are seen to be similar,
as expected from a successful time-scaling algorithm. An interesting and
positive side effect when we use the DT-RADWT (for which we do not
have an explanation) is the lack of phasiness that is heard clearly for
the same time-scaling factor when the phase vocoder is used. However,
for speech, in some of our experiments some distortion occurs with the
DT-RADWT, which is not present when the phase-vocoder is utilized.6

IV. CONCLUSION

We proposed a dual-tree RADWT that extends the RADWT [2], similarly
as the DT-CWT extends the dyadic DWT. The DT-RADWT permits us
to choose arbitrarily, the scaling factor of the wavelet frame and the Q-
factors of the atoms. This in turn leads to a finer frequency resolution
than the dyadic wavelet frames and facilitates the processing of signals
which are known to possess quasi-periodic components. Therefore, using
DT-RADWT allows to perform tasks that are typically out of the scope
of DT-CWT. Also, unlike the STFT, it is a constant-Q transform which
can be a desired property for audio-processing and/or, signal processing
based on ‘scales’.

Here, we mainly focused on the construction and discussed an application
to demonstrate the potential of DT-RADWT. In fact, one disadvantage

5The quality factor of these filters do not determine the dilation factor. It is
in fact suggested that, for modelling the peripheral auditory system, one should
consider the overlap in frequency to be as high as possible, leading to a dilation
factor close to unity – see [8], p.159.

6Matlab code for time-scaling using the DT-RADWT along with some examples
is available at http://web.itu.edu.tr/ibayram/DtRadwt/

of DT-RADWT, in comparison to an FFT implementation of STFT, is
the computation time required. We hope to address this issue in the near
future.
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