The McGraw·Hill Companies

PowerPoint Images

Chapter 13

Gears - General

Mechanical Engineering Design Seventh Edition Shigley • Mischke • Budynas

Mechanical Engineering SEVENTH EDITION Design

Joseph E. Shigley Charles R. Mischke Richard G. Budynas

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Types of Gears

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 13.1 Spur gears have teeths parallel to the axis of rotation. They are used to transmit motion from one shaft to another, parallel, shaft. Fig. 13.2 Helical gears have teeth inclined to the axis of rotation. Sometimes helical gears are used to transmit motion between nonparallel shafts.

Fig. 13.3 Bevel gears have teeth formed on conical surfaces and are used mostly for transmitting motion between intersecting shafts.

Fig. 13.4 Hypoid gears, worm gear are used to transmit motion between nonparallel, nonintersecting shafts.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Nomenclature

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 13.5 Nomenclature. The circular pitch, p, is the distance, measured on the pitch circle, measured from a point on one tooth to a corresponding point on an adjacent point. The module, m, is the ratio of the pitch diameter to the number of teeth. The diametral pitch, P, is the ratio of the number of teeth on the gear to the pitch diameter. The addendum, a, is the radial distance between the top land and the pitch circle. The dedendum, b, is the radial distance from the bottom land to the pitch circle. The clerance circle is a circle that is tangent to the addendum circle of the mating gear.

Tooth Systems, Conjugate Action, Involute Properties

A *tooth system* is a standard which specifies the relationships involving addendum, dedendum, working depth, tooth thickness, and pressure angle.

When the tooth profiles are designed so as to produce a constant angular velocity ratio during meshing, these are said to have *conjugate action*. The *involute profile* is used to obtain the conjugate action.

Fig. 13.7 (a) Generation of an involute; (b) involute action

Fig. 13.8 Construction of an involute curve

Fig. 13.12 Tooth action.

The Forming of Gear Teeth

There are a large number of ways of forming of the teeth of gears, such as sand casting, shell Molding, investment casting, permanent-mold casting, die casting, and centrifugal casting. Teeth can be formed by using the powder-metallurgy process; or by using extrusion. Gears which carry large loads in comparison with their size are usually made of steel and are cut with either form cutters or generating cutters.

Fig. 13.17 Generating a spur gear with a pinion cutter.

Fig. 13.18 Shaping teeth with a rack.

Fig. 13.19 Hobbing a worm gear.

The hob is simply a cutting tool which is shaped like a worm.

Choose an appropriate module, m (use fatigue, fracture mechanics, strength of materials relations, and standard sizes).

Calculate addendum and dedendum (a=1.m $b=1.2 \sim 1.25 m$)

Calculate the pitch diameter, d, and the diameters of addendum and dedendum circles, d_a and d_b . (d=N.m d_a =d+2.a d_b =d-2.5 m)

Calculate the distance between the axes $((dP+dG)/2 = m(N_P+N_G)/2)$.

Calculate the face width, $F=F_w.p=F_w.\pi.m$.

Straight Bevel Gears

Fig. 13.20 Terminology of bevel gears.

 $tan\Gamma = N_G / N_P$

$$N' = \frac{2\pi r_b}{p}$$

Parallel Helical Gears

(b)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 13.23 A cylinder cut by an oblique plane.

Fig. 13.22 Nomenclature of helical gears.

Worm Gears

$$d_G = N_G p_t / \pi$$

 $L=p_xN_W$ tan $\lambda=L/\pi d_W$

$$C^{0.875}/3 \le d_W \le C^{0.875}/1.7$$

C : center distance

Fig. 13.24 Nomenclature of a singleenveloping worm gearset.

Gear Trains

 $n_6 = (N_2/N_3) (N_3/N_4) (N_5/N_6)n_2$

e=product of driving tooth numbers / product of driven tooth numbers, $n_L = en_F$

Left hand

Fig. 13.26 Thrust, rotation, and hand relations for crossed helical gears.

Fig. 13.28 Planetary, or epicyclic, gear trains. Some of the gear axes rotate about others. $e=(n_L-n_A)/(n_F-n_A)$

Fig. 13.35

$$T_{1}=W_{t}d_{1}/2$$
Spur gears

$$W_{r}=W.sin\Phi_{t}$$

$$W_{t}=W.cos\Phi_{t}$$
Helical gears

$$W_{r}=W.sin\Phi_{n}$$

$$W_{t}=W.cos\Phi_{n}.cos\psi$$

$$W_{a}=W.cos\Phi_{n}.sin\psi$$

Chapter 13, Problem 2.

A 15-tooth spur pinion has a module of 3 mm and runs at a speed of 1600 rev/min. The driven gear has 60 teeth. Find the speed of the driven gear, the circular pitch, and the theoretical center-to-center distance.

Chapter 13, Problem 13.

A parallel-shaft gearset consists of an 18-tooth helical pinion driving a 32-tooth gear. The pinion has a left-hand helix angle of 25°, a normal pressure angle of 20°, and a normal module of 3 mm. Find:

- (a) The normal, transverse, and axial circular pitches
- (b) The transverse module and the transverse pressure angle
- (c) The pitch diameters of the two gears

Chapter 13, Problem 16.

The mechanism train shown consists of an assortment of gears and pulleys to drive gear 9. Pulley 2 rotates at 1200 rev/min in the direction shown. Determine the speed and direction of rotation of gear 9.

Figure P13-16

Chapter 13, Problem 21 (Chapter 13, Problem 21).

Tooth numbers for the gear train shown in the figure are N2 = 12, N3 = 16, and N4 = 12. How many teeth must internal gear 5 have? Suppose gear 5 is fixed. What is the speed of the arm if shaft a rotates counterclockwise at 320 rev/min?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure P13-21

Chapter 13, Problem 24 (Chapter 13, Problem 25).

The epicycle train shown in the figure has the arm attached to shaft *a*, and sun gear 2 to shaft *b*. Gear 5, with 111 teeth, is an internal gear and is part of the frame. The two planets, gears 3 and 4, are both fixed to the same planet shaft. If this train is used as an in-line speed reducer, which is the input shaft, *a* or *b*? Will both shafts then rotate in the same or in the opposite directions?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure P13-24

Choosing module (m) according to failure criteria
• Pitting is a surface fatigue failure due to many
repetitions of high contact stresses

$$m_n = 0.9 \frac{3}{\frac{K_A \cdot K_V \cdot T_I \cdot E \cdot (e+1) \cos W}{N_1^2 \cdot P_{em}^2 \cdot e \cdot \mathcal{E}_A \cdot F_W}}$$
 (mm)

• Fracture of a tooth

$$m_n = 0.6 \cdot \frac{3}{K_A \cdot K_V \cdot T_I}$$

V. cos 4 (mm) NI. Jem. Ex. Fw Ex: profile ratio E: Young's modulus KA: Impact or contact load factor (N/mm^2) Tem: Tensile (bending) Kv: Dynamic load factor strength Ti : Torque on pinion (N.mm) (N/mm2) Pem: Hertz pressure (N/mm2) N1: Number of teeth of pinion γ : Form factor $e = \frac{W_1}{W_2} = \frac{N_2}{N_1}$ (to resist pitting)

 $K_A: 1-2.25$ (depending on the impact loads during the operation of machine)

 K_v : It is chosen based on the Table 1.

Table 1. Dynamic load factor

Tangential velocity (m/s)	2	4	12	20	40	60
High quality	1	1	1.1	1.15	1.2	1.25
Normal quality	1	1.1	1.25	1.3	-	-
Pure quality (casting)	1.5	2.0	-	-	-	-

Table 2. Form factor (γ) for ($\phi_n=20^\circ$).

N'	13	14	15	16	18	20	30	50	100
γ	9.5	9.3	9.0	8.8	8.4	8.1	7.5	6.8	6.3

Table 3. Profile ratio (ε_{α})

ψ=0	15°	30°	45°
1.73	1.65	1.41	1.05

Table 4. Width ratio $(F_w=b/p_n)$

Gears made of cast materials	2
Pure quality gears	3 4
High quality gears	5 <mark>8</mark>
Very high quality gears	9 14

Material		σ _{em} [N/mm ²]	Pem [N/mm ²]
	GG20	35-45	220
Cast Iron	GG25	48-55	270
	GG30	60	330
	Ferritik	145	300
Nodular Cast Iron	Perlitik	145	400
	GS45	80	250
Cast Steel	GS52	90	310
'	GS60	100	390
	St42	90-100	280-340
Tool Steel	St50	110-125	340-400
	St60	125-140	380-500
	St70	140-160	440-570
	C22	120	330
'	C45	135-150	450
_ 1	C60	150-165	500
Tempered Steel	34Cr4	180-200	600
'	37MnSi5	190-200	550
	42CrMo4	200	630
	35NiCr18	200	900
	C10	100-115	1350
	C15	110-125	1500
Case Hardening	16MnCr5	190-210	1500
Steel	20MnCr5	210-230	1500
Sleer .	13Ni6	150	1350
· · · · ·	15CrNi6	200-220	1500
	13NiCr18	220	1400
	18CrNi8	210-230	1500
	C60	160	1050
'	Ck45	180	1350
	Ck53	220	1400
Hardened Steel	37MnSi5	200	1250
	53MnSi4	200	1400
'	41Cr4	200	1300
'	50CrV4	240	1400
'	42CrMo4	210	1500
	41Cr4	190	1350
Cyanide Hardening	37MnSi5	200	1250
Steel	35NiCr18	220	1350
	34Cr4	210	1200
	42CrMo4	240	1200
	C45	160	750
Nitrogen Hardening	16MnCr5	170	720
Steel	42CrMo4	290	850
1.1	16MnCr5	210	880
	TOMILOTS	210	000

Table 13-6

Maximum Tooth Numbers on Gears to Avoid Interference. Numbers Are Based on a Normal Pressure Angle of $\phi_n = 20^\circ$ and Full-Depth Teeth. For Spur Gears, $\psi = 0$ Source: R. Lipp, "Avoiding

Source: R. Lipp, "Avoiding Interference in Gears," Machine Design, vol. 34, no. 1, 1982, p. 122.

Number of	Number of Gear Teeth, N _G Helix angle, ψ, deg							
Pinion Teeth, N _P								
	0	5	10	15	20	25	30	35
8	and inte	nd eea	a minin	thout	et El v	The		12
9	n pritte	or ville					12	34
10	or diss	= 231	Ma	une sid	2511	12	26	m
11	miles				13	23	93	
12	u pag	hatal	12	16	24	57	m	
13	16	17	20	27	50	1385	~	
14	26	27	34	53	207	iom /	7	73
15	45	49	69	181	00			
16	101	121	287	00	12	1	7	
17	1309	00	00					