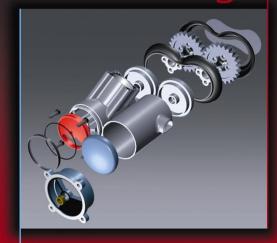
The McGraw·Hill Companies

PowerPoint Images

Chapter 7

Failures Resulting from Variable Loading

Mechanical Engineering Design Seventh Edition Mechanical Engineering SEVENTH EDITION Design



Joseph E. Shigley Charles R. Mischke Richard G. Budynas

Shigley • Mischke • Budynas

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Strain-Life Relationships

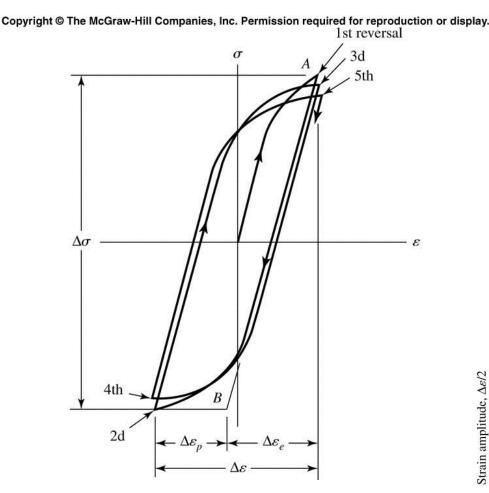
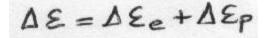


Fig. 7.12 True stress-true strain hysteresis loops showing the first five stress reversals of a cyclic-softening materials.



 $\underline{\Delta \mathcal{E}} = \underbrace{\nabla F}_{F} (2N)^{b} + \mathcal{E}_{F}' (2N)^{c}$

JE': fatigue strength coefficient E': fatigue ductility coefficient

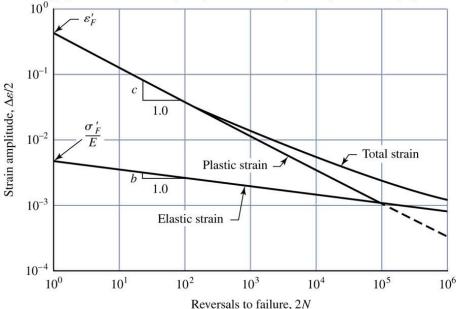
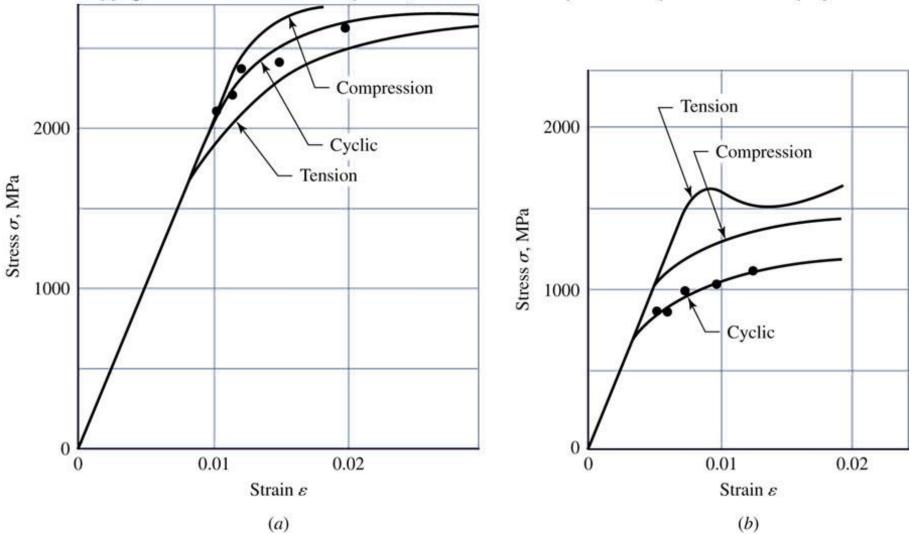


Fig. 7.14 A log-log plot showing how the fatigue life is related to the true strain amplitude for hot-rolled SAE 1020 steel.



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 7.13 Monotonic and cyclic stress-strain results. (a) Ausformed H-11 steel, 660 Brinell; (b) SAE 4142 steel, 400 Brinell.

Stress-Life Relationships

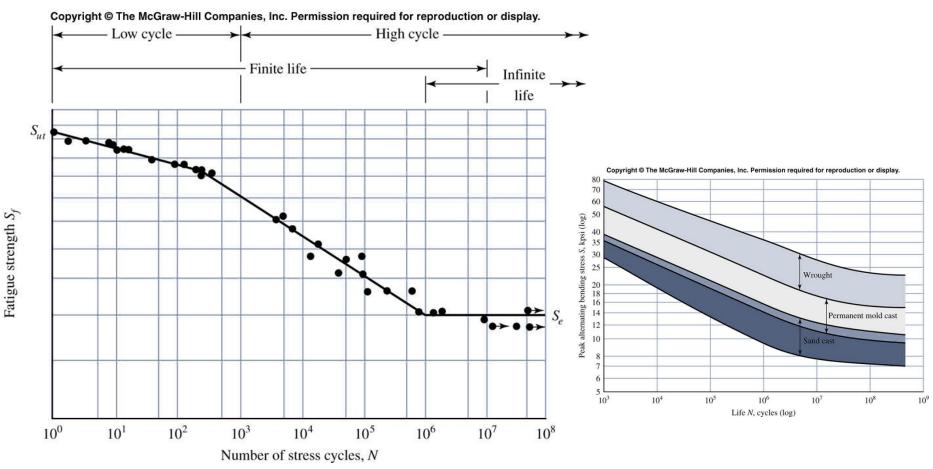


Fig. 7.10 An S-N diagram plotted from the results of completely reversed axial fatigue tests.

Endurance Limit

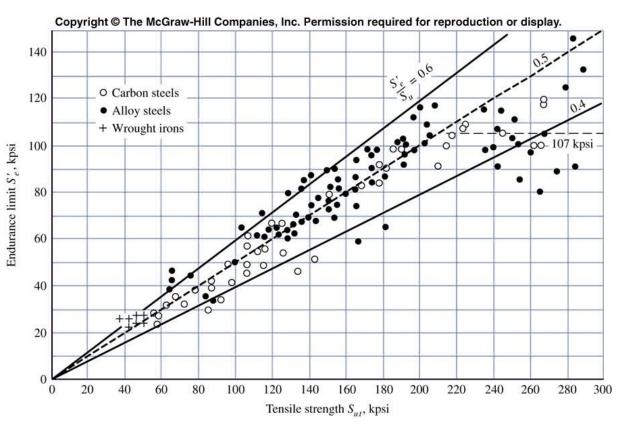


Fig. 7.18 Graph of endurance limits versus tensile strength from actual test rsults for a large number of wrought irons and steels.

$$S_e = k_a k_b k_c k_d k_e k_f S'_e \tag{6-18}$$

- k_a = surface condition modification factor
- k_b = size modification factor
- $k_c =$ load modification factor
- k_d = temperature modification factor
- k_e = reliability factor¹³
- k_f = miscellaneous-effects modification factor
- S'_e = rotary-beam test specimen endurance limit
- S_e = endurance limit at the critical location of a machine part in the geometry and condition of use

- Stresses tend to be high at the surface
- Surface finish has an impact on initiation of cracks at localized stress concentrations
- Surface factor is a function of ultimate strength. Higher strengths are more sensitive to rough surfaces.

ka	=	aS_{ut}^b
k_a	=	aN

(6–19)

	Factor a		Exponent	
Surface Finish	S _{ut} , kpsi	S _{ut} , MPa	Ь	
Ground	1.34	1.58	-0.085	
Machined or cold-drawn	2.70	4.51	-0.265	
Hot-rolled	14.4	57.7	-0.718	
As-forged	39.9	272.	-0.995	

From C.J. Noll and C. Lipson, "Allowable Working Stresses," *Society for Experimental Stress Analysis*, vol. 3, no. 2, 1946 p. 29. Reproduced by O.J. Horger (ed.) *Metals Engineering Design ASME Handbook*, McGraw-Hill, New York. Copyright © 1953 by The McGraw-Hill Companies, Inc. Reprinted by permission.

Table 6-2

Parameters for Marin Surface Modification Factor, Eq. (6–19)

Example 6-4

A steel has a minimum ultimate strength of 520 MPa and a machined surface. Estimate k_a .

Solution From Table 6–2, a = 4.51 and b = -0.265. Then, from Eq. (6–19) Answer $k_a = 4.51(520)^{-0.265} = 0.860$

Size Factor *k*_b

- Larger parts have greater surface area at high stress levels
- Likelihood of crack initiation is higher
- Size factor is obtained from experimental data with wide scatter
- For bending and torsion loads, the trend of the size factor data is given by

$$k_{b} = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < d \le 254 \text{ mm} \end{cases}$$
(6-20)

- Applies only for round, rotating diameter
- For axial load, there is no size effect, so $k_b = 1$

Size Factor *k*_b

- For parts that are not round and rotating, an equivalent round rotating diameter is obtained.
- Equate the volume of material stressed at and above 95% of the maximum stress to the same volume in the rotating-beam specimen.
- Lengths cancel, so equate the areas.
- For a rotating round section, the 95% stress area is the area of a ring,

$$A_{0.95\sigma} = \frac{\pi}{4} [d^2 - (0.95d)^2] = 0.0766d^2$$
 (6-22)

• Equate 95% stress area for other conditions to Eq. (6–22) and solve for *d* as the equivalent round rotating diameter

Endurance-Limit Modifying Factors Size Factor k_b

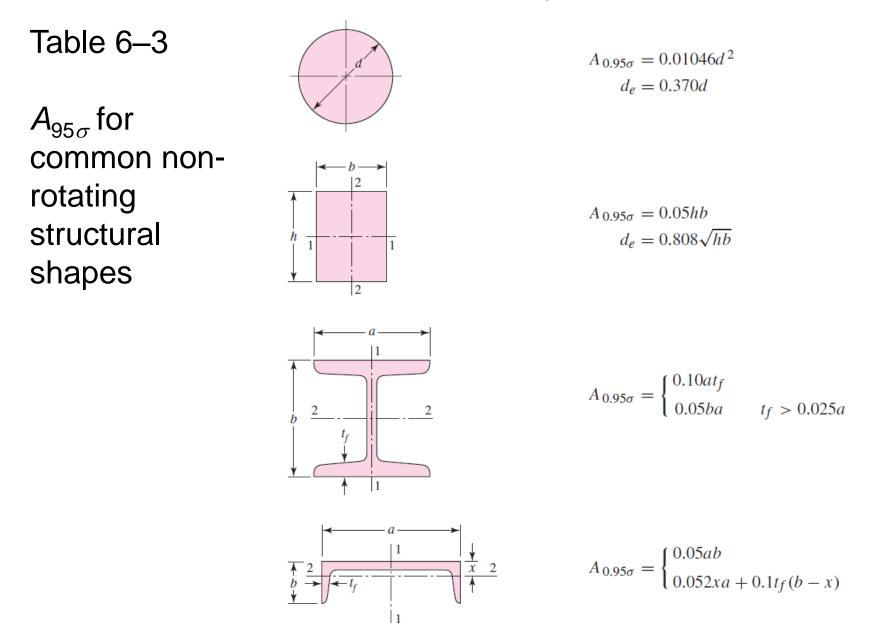
 For non-rotating round, A_{0.95σ} = 0.01046d²
 (6-23)

 Equating to Eq. (6-22) and solving for equivalent diameter,

$$d_e = 0.370d$$
 (6–24)

- Similarly, for rectangular section h x b, $A_{95\sigma} = 0.05 hb$. Equating to Eq. (6–22), $d_e = 0.808(hb)^{1/2}$ (6–25)
- Other common cross sections are given in Table 6–3

Endurance-Limit Modifying Factors Size Factor k_b



axis 1-1

axis 2-2

axis 1-1

axis 2-2

Example 6-4

A steel shaft loaded in bending is 32 mm in diameter, abutting a filleted shoulder 38 mm in diameter. The shaft material has a mean ultimate tensile strength of 690 MPa. Estimate the Marin size factor k_b if the shaft is used in

(*a*) A rotating mode.

(*b*) A nonrotating mode.

Solution (a) From Eq. (6–20) Answer $k_{b} = \left(\frac{d}{7.62}\right)^{-0.107} = \left(\frac{32}{7.62}\right)^{-0.107} = 0.858$ (b) From Table 6–3, $d_{e} = 0.37d = 0.37(32) = 11.84 \text{ mm}$ From Eq. (6–20), Answer $k_{b} = \left(\frac{11.84}{7.62}\right)^{-0.107} = 0.954$

Loading Factor k_c

- Accounts for changes in endurance limit for different types of fatigue loading.
- Only to be used for single load types. Use Combination Loading method (Sec. 6–14) when more than one load type is present.

$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion}^{17} \end{cases}$$

Temperature Factor k_d

- Endurance limit appears to maintain same relation to ultimate strength for elevated temperatures as at room temperature
- This relation is summarized in Table 6–4

Table 6-4	Temperature, °C	S _T /S _{RT}	Temperature, °F	S _T /S _{RT}
Effect of Operating	20	1.000	70	1.000
Temperature on the	50	1.010	100	1.008
Tensile Strength of	100	1.020	200	1.020
Steel.* (S_T = tensile	150	1.025	300	1.024
strength at operating	200	1.020	400	1.018
temperature;	250	1.000	500	0.995
S_{RT} = tensile strength	300	0.975	600	0.963
at room temperature;	350	0.943	700	0.927
$0.099 \le \hat{\sigma} \le 0.110)$	400	0.900	800	0.872
	450	0.843	900	0.797
	500	0.768	1000	0.698
	550	0.672	1100	0.567
	600	0.549		

*Data source: Fig. 2–9.

Endurance-Limit Modifying Factors **Temperature Factor** k_d

- If ultimate strength is known for operating temperature, then just use that strength. Let $k_d = 1$ and proceed as usual.
- If ultimate strength is known only at room temperature, then use Table 6–4 to estimate ultimate strength at operating temperature. With that strength, let k_d = 1 and proceed as usual.
- Alternatively, use ultimate strength at room temperature and apply temperature factor from Table 6–4 to the endurance limit.

$$k_d = \frac{S_T}{S_{RT}} \tag{6-28}$$

• A fourth-order polynomial curve fit of the underlying data of Table 6–4 can be used in place of the table, if desired.

$$k_d = 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 + 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4$$
(6-27)

Reliability Factor k_e

• Simply obtain k_e for desired reliability from Table 6–5.

Reliability, %	Transformation Variate z _a	Reliability Factor k_e
50	0	1.000
90	1.288	0.897
95	1.645	0.868
99	2.326	0.814
99.9	3.091	0.753
99.99	3.719	0.702
99.999	4.265	0.659
99.9999	4.753	0.620
Table 6–5		

Endurance-Limit Modifying Factors Miscellaneous-Effects Factor k_f

- Reminder to consider other possible factors.
 - Residual stresses
 - Directional characteristics from cold working
 - Case hardening
 - Corrosion
 - Surface conditioning, e.g. electrolytic plating and metal spraying
 - Cyclic Frequency
 - Frettage Corrosion
- Limited data is available.
- May require research or testing.

Endurance-Limit Modifying Factors Application of Fatigue Stress Concentration Factor

- Use K_f as a multiplier to increase the nominal stress.
- Some designers (and previous editions of textbook) sometimes applied $1/K_f$ as a Marin factor to reduce S_e .
- For infinite life, either method is equivalent, since

• For finite life, increasing stress is more conservative. Decreasing S_e applies more to high cycle than low cycle.

Calculating Flactuating Stresses

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

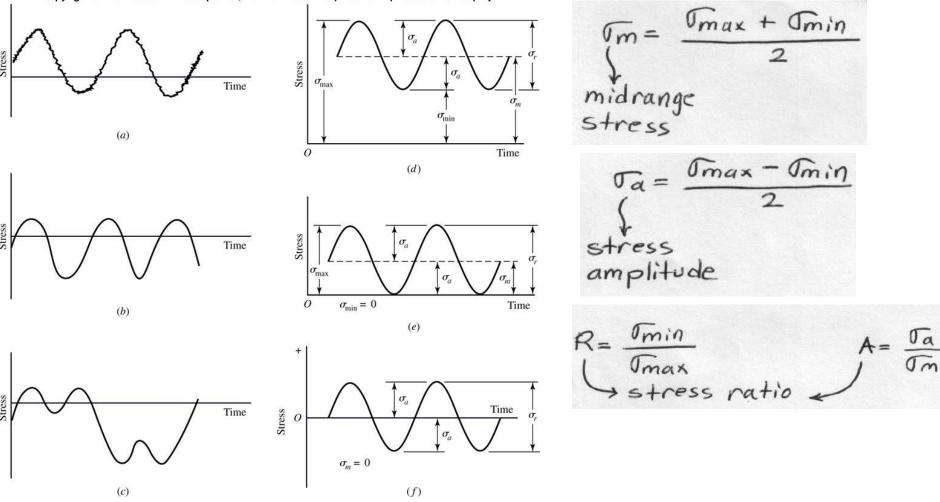


Fig. 7.23 Some stress-time relations : (a) fluctuating stress with high frequency ripple; (b and c) nonsinusoidal fluctuating stress; (d) sinusoidal fluctuating stress; (f) completely reversed sinusoidal stress.

Modified Goodman Relations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

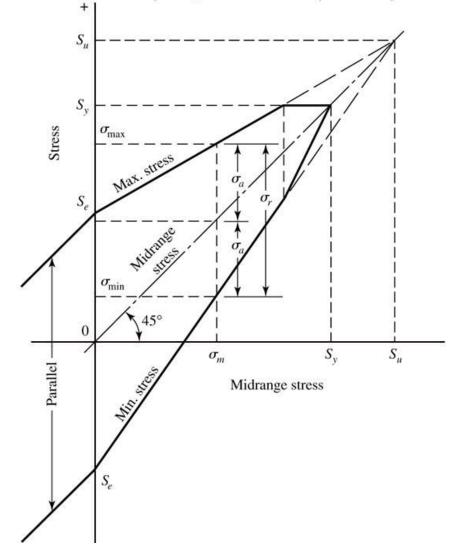


Fig. 7.24 Modified Goodman diagram showing all the strengths and the limiting values of all the stress components for a particular midrange stress.

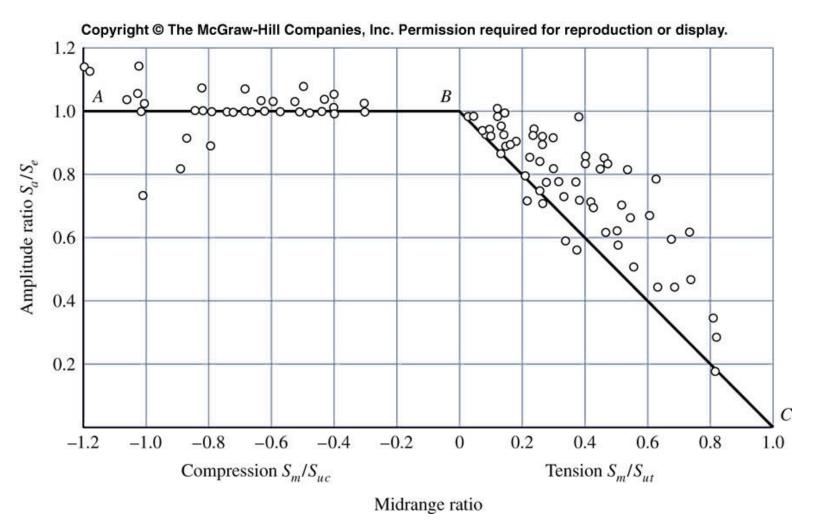


Fig. 7.25 Plot of fatigue failures for midrange stresses in both tensile and compressive regions.

Equations for Commonly Used Failure Criteria

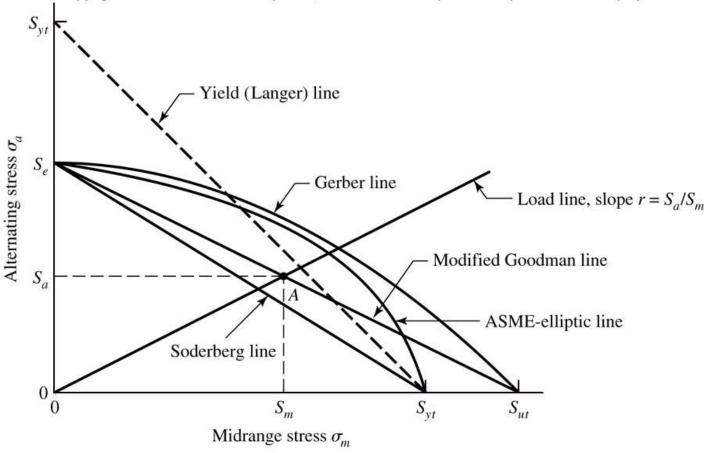
- Intersecting a constant slope load line with each failure criteria produces design equations
- *n* is the design factor or factor of safety for infinite fatigue life

Soderberg
$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = \frac{1}{n}$$
 (6-45)

mod-Goodman
$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{n}$$
 (6–46)

Gerber
$$\frac{n\sigma_a}{S_e} + \left(\frac{n\sigma_m}{S_{ut}}\right)^2 = 1$$
 (6–47)

ASME-elliptic
$$\left(\frac{n\sigma_a}{S_e}\right)^2 + \left(\frac{n\sigma_m}{S_y}\right)^2 = 1$$
 (6–48)



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 7.27 Fatigue diagram showing various criteria of failure.

Summarizing Tables for Failure Criteria

- Tables 6–6 to 6–8 summarize the pertinent equations for Modified Goodman, Gerber, ASME-elliptic, and Langer failure criteria
- The first row gives fatigue criterion
- The second row gives yield criterion
- The third row gives the intersection of static and fatigue criteria
- The fourth row gives the equation for fatigue factor of safety
- The first column gives the intersecting equations
- The second column gives the coordinates of the intersection

Summarizing Table for Modified Goodman

Table 6-6

Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Modified Goodman and Langer Failure Criteria

Intersecting Equations	Intersection Coordinates
$\frac{S_a}{S_e} + \frac{S_m}{S_{ut}} = 1$	$S_a = \frac{r S_e S_{ut}}{r S_{ut} + S_e}$
Load line $r = \frac{S_a}{S_m}$	$S_m = \frac{S_a}{r}$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_a = \frac{rS_y}{1+r}$
Load line $r = \frac{S_a}{S_m}$	$S_m = \frac{S_y}{1+r}$
$\frac{S_a}{S_e} + \frac{S_m}{S_{ut}} = 1$	$S_m = \frac{\left(S_y - S_e\right)S_{ut}}{S_{ut} - S_e}$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_a = S_y - S_m, r_{\rm crit} = S_a / S_m$

Fatigue factor of safety

$$n_f = \frac{1}{\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}}}$$

Summarizing Table for Gerber

Table 6-7

Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Gerber and Langer Failure Criteria

Intersecting Equations	Intersection Coordinates
$\frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 = 1$	$S_a = \frac{r^2 S_{ut}^2}{2S_e} \left[-1 + \sqrt{1 + \left(\frac{2S_e}{rS_{ut}}\right)^2} \right]$
Load line $r = \frac{S_a}{S_m}$	$S_m = \frac{S_a}{r}$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_a = \frac{rS_y}{1+r}$
Load line $r = \frac{S_a}{S_m}$	$S_m = \frac{S_y}{1+r}$
$\frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 = 1$	$S_m = \frac{S_{ut}^2}{2S_e} \left[1 - \sqrt{1 + \left(\frac{2S_e}{S_{ut}}\right)^2 \left(1 - \frac{S_y}{S_e}\right)} \right]$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_a = S_y - S_m, r_{\rm crit} = S_a/S_m$

Fatigue factor of safety

$$n_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m}\right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut}\sigma_a}\right)^2} \right] \qquad \sigma_m > 0$$

Summarizing Table for ASME-Elliptic

Table 6-8

Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for ASME-Elliptic and Langer Failure Criteria

Intersecting Equations	Intersection Coordinates
$\left(\frac{S_a}{S_e}\right)^2 + \left(\frac{S_m}{S_y}\right)^2 = 1$	$S_{a} = \sqrt{\frac{r^{2}S_{e}^{2}S_{y}^{2}}{S_{e}^{2} + r^{2}S_{y}^{2}}}$
Load line $r = S_a/S_m$	$S_m = \frac{S_a}{r}$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_a = \frac{rS_y}{1+r}$
Load line $r = S_a/S_m$	$S_m = \frac{S_y}{1+r}$
$\left(\frac{S_a}{S_e}\right)^2 + \left(\frac{S_m}{S_y}\right)^2 = 1$	$S_a = 0, \ \frac{2S_y S_e^2}{S_e^2 + S_y^2}$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_m = S_y - S_a, r_{\rm crit} = S_a/S_m$

Fatigue factor of safety

$$n_f = \sqrt{\frac{1}{(\sigma_a/S_e)^2 + (\sigma_m/S_y)^2}}$$