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Friction Analysis of a Doorstop
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Friction Analysis of a Doorstop
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Friction Analysis of a Doorstop
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Friction Analysis of a Doorstop

ZMA — Fb—ngWI p(u)(c—l—u)duq:afwzfm pu)du =0
0 0
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Example 16-1

The doorstop depicted in Fig. 16-2a has the following dimensions: a = 4 in, b = 2 1n,
¢c=1.61n, w; =11n, wy =0.75 in, where w, is the depth of the pad into the plane of
the paper.

(a) For a leftward relative movement of the floor, an actuating force F of 10 1bf, a coef-
ficient of friction of 0.4, use a uniform pressure distribution puy, find Ry, Ry, pay. and
the largest pressure p,.

(b) Repeat part a for rightward relative movement of the floor.

(c) Model the normal pressure to be the “crush™ of the pad, much as if i1t were composed
of many small helical coil springs. Find Ry, Ry, pay, and p, for leftward relative
movement of the floor and other conditions as in part a.

(d) For rightward relative movement of the floor, is the doorstop a self-acting brake?
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(a)
Eq. (¢): Ry = fpawwiwz = 0.4(1)(0.75) pay = 0.3 pay
Eq. (d): Ry = F — paywiwy = 10 — pay(1)(0.75) = 10 — 0.75 pay
w ! I
Eq. (e): F:f[[ Pav(c +u)du +aff pavdu]
0 0

. 1 1 1
— (Pavff du + pavf udu +afpavf du)
b 0 0 0

w 0.75
_ 2;’3" (c+0.5+af) = —=[1.6 405 + 404 pn

— 1.3875pay

Solving for p,y gives

_F 10
~ 1.3875  1.3875

Pav = 7.207 psi
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We evaluate R, and R, as

Ry = 0.3(7.207) = 2.162 Ibt

Ry = 10— 0.75(7.207) = 4.595 1bt

The normal force N on the pad is F — Ry = 10 — 4.595 = 5.405 Ibf, upward. The line
of action 1s through the center of pressure, which 1s at the center of the pad. The fric-
tion force i1s fN = 0.4(5.405) = 2.162 1Ibf directed to the left. A check of the moments
about A gives

Y Mjy=Fb— fNa—N(w/2+c)
= 10(2) — 0.4(5.405)4 — 5.405(1/2 4+ 1.6) = 0

The maximum pressure p; = pay = 7.207 psi.
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(b)
Eq. (¢): Ry = — fpavwiwy = —0.4(1)(0.75) pay = —0.3 pay
Eq. (d): Ry = F — paywiwy = 10 — pay (1)(0.75) = 10 — 0.75 pyay
ws I !
Eq. (e): F = > |:f Pav(c +u)du +aff pmrdu]
0 0
W 1 1 1
= — (pavcf du +pavf udu +afpavf du)
b 0 0 0
0.75
— Tp:w[l 64+0.5—40.4)] = 0.1875 pay
from which
F 10
Dav = 53.33 psi

~ 0.1875  0.1875
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which makes

R, = —0.3(53.33) = —16 1bf

Ry = 10 —0.75(53.33) = —30 Ibf

The normal force N on the pad is 10 4+ 30 = 40 Ibf upward. The friction shearing force
i1s fN = 0.4(40) = 16 1Ibf to the right. We now check the moments about A:

My = fNa+ Fb— N(c+0.5) =16(4) +10(2) —40(1.64+0.5) =0

Note the change in average pressure from 7.207 psi in part @ to 53.3 psi. Also note how
directions of forces have changed. The maximum pressure p, is the same as p,,, which
has changed from 7.207 psi to 53.3 psi.
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(c) We will model the deformation of the pad as follows. If the doorstop rotates A¢
counterclockwise, the right and left edges of the pad will deform down y; and y», respec-
tively (Fig. 16-2b). From similar triangles, vi/(r; A¢) =c/r1 and y,/(r, A¢) =
(¢c +wy)/ry. Thus, vy =c¢ A¢ and y; = (¢ + wy) A¢. This means that y 1s directly
proportional to the horizontal distance from the pivot point A; that 1s, y = Cjv, where
(1 1s a constant (see Fig. 16-2b). Assuming the pressure is directly proportional to
deformation, then p(v) = Cyv, where (3 1s a constant. In terms of u, the pressure is
pu) = Cr(c+u) = Cr(1.64u).

Eq. (e):
F:E[f lp(u)cdu—l—f ]p(u)udu+af[ lp(u)du}
b 0 0 0
0.75 1 1 1
:T[f C2(1.6+u)l.6du+] C2(1.6—|—u)udu+aff C2(1.6—|—u)du]
0 0 0

= 0.375G,[(1.6 +0.5)1.6 4+ (0.8 + 0.3333) +4(0.4)(1.6 4 0.5)] = 2.945(;
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Since F' = 10 1bf, then C; = 10/2.945 = 3.396 psi/in, and p(u) = 3.396(1.6 + u). The
average pressure 1s given by

| bt 1 !
Pav = —f p(u)du = Tf 3.396(1.6 + u)du = 3.396(1.6 4+ 0.5) = 7.132 psi
w1 Jo 0

The maximum pressure occurs at # = | in, and 1s
Pa = 3.396(1.6 + 1) = 8.83 psi
Equations (c¢) and (d) of Sec. 16-1 are still valid. Thus,

Ry = 0.3p,, = 0.3(7.131) = 2.139 Ibt
Ry =10—0.75psy = 10 —0.75(7.131) = 4.652 Ibf
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Example 16-1

The average pressure is p,y = 7.13 psi and the maximum pressure i1s p, = 8.83 psi,
which i1s approximately 24 percent higher than the average pressure. The presumption
that the pressure was uniform in part a (because the pad was small, or because the
arithmetic would be easier?) underestimated the peak pressure. Modeling the pad as a
one-dimensional springset is better, but the pad 1s really a three-dimensional continuum.
A theory of elasticity approach or a finite element modeling may be overkill, given
uncertainties inherent in this problem, but it still represents better modeling.
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(d) To evaluate u we need to evaluate two integrations

c 1
f pu)udu = f 3.396(1.6 + u)udu = 3.396(0.8 + 0.3333) = 3.849 1bf
0 0

C 1
f pu)du = f 3.396(1.6 +u)du = 3.396(1.6 + 0.5) = 7.132 1bf/in
0 0

Thus u = 3.849/7.132 = 0.5397 in. Then, from Eq. (f) of Sec. 16-1, the critical co-
efficient of friction is

Sy ) 53
c+u _ 16+35 97=0‘535

fcr =

The doorstop friction pad does not have a high enough coefficient of friction to make the
doorstop a self-acting brake. The configuration must change and/or the pad material
specification must be changed to sustain the function of a doorstop.
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An Internal Expanding Centrifugal-acting Rim Clutch




Internal Friction Shoe Geometry

Rim rotation

Fig. 16-4
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Internal Friction Shoe Geometry

hAp =2r A¢psin(6/2)
h Apcos(8/2) =2r Apsin(6/2)cos(0/2) =r A¢ sinf

P _ _Pa
sin & sin 6, (a]
p= Pa_ Ging (16-1)
siné,
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Pressure Distribution Characteristics

e Pressure distribution is sinusoidal »
 For short shoe, as in (a), the

largest pressure on the shoe isp, |~
at the end of the shoe 0

« For long shoe, as in (b), the 0, 0,
largest pressure is p, at 8, = 90° O

P

(a)




Force Analysis

dN = pbrdb
IN — pabr.sinﬁ do
sin 6,

Rot:k
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Force Analysis

b th
Mf=fde(r—a cos0) = 1P "f Sinf(r —acos0)do  (16-2)
sinfy Jg,
b 6>
MN=de(asin9)= Pa r”f sin2 0 do (16-3)
sintly Jo,
My - M;

F (16-4)

C

Self-locking condition My > M; (16-5)
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Force Analysis

br?
ffrdw_fp“ i f sin6 do
|

sin d,

(16-6)
B fpabr?(cosf; — cos b)
- sin 6,
Rx:decosﬁ—fdesinﬁ—Fx
Pabf’ ” ” 2 (d)
= = ([ sinf cos@df — | sin Hdﬁ')—Fx
sint, \ Jg, 6,
R, =desin9—|—fdecos@—F},
(e)
b th 6
= Pt (f sin?6.do + f sichostQ) — F,
sinb; \ Jy, o
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Force Analysis

Fo M”jMf (16-7)
ab G2 th
Pa?7 (f sinf cos 8 d6 + f sinZQdQ)—Fx (F)
sint; \ Jg, o,
ﬂb G2 th
Pa?” (f sin? 6 do — f sin@cos@d@)—F}, (g)
sinf, \ Jg, o,
6, 1 th
A =f sinf@ cos O db = (- 5in29)
& 2 B
(16-8)
6 0 | )
B =f sin® 0 df = (— - —511129)
& 2 4 6,
Ro= 2L a_ 1By~ F,
sin 6,
(16-9)
Palr
R}r — . (B + fA) - Fy
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Example 16-2

The brake shown in Fig. 16-8 1s 300 mm in diameter and 1s actuated by a mechanism
that exerts the same force F on each shoe. The shoes are identical and have a face width
of 32 mm. The lining 1s a molded asbestos having a coefficient of friction of 0.32 and
a pressure limitation of 1000 kPa. Estimate the maximum

(a) Actuating force F. ~— 300

(b) Braking capacity. 62 | 62

(c) Hinge-pin reactions.

A

> < >|
F
#

126°

50 50
‘\L—“—J ‘ Fig. 16-8
Rotation L —24°
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Example 16-2

(a) The right-hand shoe is self-energizing, and so the force F'is found on the basis that
the maximum pressure will occur on this shoe. Here 6; = 0°, 6, = 126°, 6, = 90°, and
sinf, = 1. Also,

a=+/(112)2 + (50)2 = 122.7 mm

Integrating Eq. (16-2) from 0 to #, yields

b ) 1 62
My = ffga r[(—rcnsé‘) —a (— sinzf?) ]
sin O 0 2 0

br a
=fo€ r —rcosf, — = sin’ 6,
sin 6, 2

Changing all lengths to meters, we have

My = (0.32)[1000(10)31(0.032)(0.150)
0.1227
X [0.150 —0.150cos 126° — ( 5 ) sin’ 1260]

=304 N -m
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Example 16-2

The moment of the normal forces is obtained from Eq. (16-3). Integrating from 0 to 6,

gives
6,
pabra 1
M — — —sin 26
N sin 6, (2 4 sin )D
pabra (6, 1
= — — —sin 26
Siné, (2 7 Sin 2)

= [1000(10)?](0.032)(0.150)(0.1227) {% % — = 51n[(2)(126°)]}

=788 N-m
From Eq. (16—4), the actuating force i1s

My — My 788 — 304
E 1004112

F = = 2.28 kN
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Example 16-2
(b) From Eq. (16-6), the torque applied by the right-hand shoe is

fpabrz(cns 01 — cosb2)
I'r = :
s1n 6,
B 0.32[1000(10)31(0.032)(0.150)*(cos 0° — cos 126°)

sin 90°

= 366 N-m

The torque contributed by the left-hand shoe cannot be obtained until we learn its max-
imum operating pressure. Equations (16-2) and (16-3) indicate that the frictional and
normal moments are proportional to this pressure. Thus, for the left-hand shoe,

T88ps _ 304p,
1000 7= 71000

N:

Then, from Eq. (16-7),

B MN—I—Mf
C

F

or
(788/1000) pg + (304/1000) p,

100 4112

2.28 =
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Example 16-2

Solving gives p, = 443 kPa. Then, from Eq. (16-6). the torque on the left-hand shoe is

fpabrzl[cos 61 — cos 6)
TL — -
s1n 6,

Since sin 6; = sin90” = |, we have
T, = 0.32[443(10)](0.032)(0.150)*(cos 0° — cos 126°) = 162 N - m
The braking capacity is the total torque:

T =T+ T, =366+ 162 =528 N-m

Shigley’s Mechanical Engineering Design



Example 16-2

(¢) In order to find the hinge-pin reactions, we note that sin 6, = 1 and #; = 0. Then
Eq. (16-8) gives
| 1
A= 7 sin” 6, = 5 sin” 126° = 0.3273

6, 1 . 7 (126) |
== = = 20, = — = 2)3(126%)] = 1.3373
5 — 7 5in26, 5(180) _ 3 sin[(2)( )]

Also. let
. pabr B 1000(0.032)(0.150)

— — — = 4.8 kN
sin 6, |

D

where p, = 1000 kPa for the right-hand shoe. Then, using Eq. (16-9), we have
R, =D(A— fB) — Fy =4.8[0.3273 — 0.32(1.3373)] — 2.28 sin 24°

= —1.410 kN
Ry=DB+ fA) — F, =4.8[1.3373 +0.32(0.3273)] — 2.28 cos 24°
= 4.839 kN
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Example 16-2

The resultant on this hinge pin is

R = /(—1.410)2 4 (4.839)2 = 5.04 kN

The reactions at the hinge pin of the left-hand shoe are found using Egs. (16—10)
for a pressure of 443 kPa. They are found to be Ry = 0.678 kN and Ry = 0.538 kN.
The resultant 1s

R = /(0.678)2 + (0.538)2 = 0.866 kN

The reactions for both hinge pins, together with their directions, are shown in Fig. 16-9.
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An External Contracting Clutch-Brake
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Notation of External Contracting Shoes

——

otation
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Force Analysis for External Contracting Shoes

br [
Mf=f?’ rf $in6(r — a cos ) do (16-2)
sint; Jy,
b %
My = & raf sin? 6 do (16-3)
sint, J,
p =Myt My (16-11)
C
szdecosﬂ—l—[desiné’—Fx (a)
R},szchosﬁ—desin9+Fy (b)
R, =L Ay By _F
x_sin{:?ﬂ( +1B) =k
, (16-12)
Ry =L (fA—B)+F,

SN 9& Shigley’s Mechanical Engineering Design




Force Analysis for External Contracting Shoes

For counterclockwise rotation:

My — M
F=_2 "7
c
Rx= (A fB)—F
51119
pa
Ry="—"—(—fA-B)+F

sin 6,

(16-13)

(16-14)
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Brake with Symmetrical Pivoted Shoe

y
M dN sin 6 \
' Jalsin fdN cos 6 | \ W(ZO) \
Rotation
; P W
/ | 2§ \\
=t

(b)

A
Q
Y

(a)
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Wear and Pressure with Symmetrical Pivoted Shoe

w(f) = wgcosH

Y N\
w(@) = KPVt | \y\
M
) — w(6) W cos f . // \ " \
P =Kkvi = "Kkvi P \ )
0 | L x
wo/(K V) 1s a constant Fig. 16-12b

p(f) = (constant) cos ! = p, cost
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Force Analysis with Symmetrical Pivoted Shoe

dN = pbr df (d)

dN = pybrcost db (e)

62
Mf=2f (fdN)(acosf —r) =0
0

)

2 fpabr (acos>0 —rcosf)dd =0
0

B 4r sin b,
‘= 26, + sin26,

(16-15)
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Force Analysis with Symmetrical Pivoted Shoe

e pabr .
R, = 2-[0 dN cost = > (26, + sin 26,) (16-16)
‘/degn9=0
R, = 2[092 FdN cost = 22 0p, 4 sin26y) (16-17)
de sinff =0

T =afN (16-18)
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Notation for Band-Type Clutches and Brakes

\ e

0 dN
\2 fdN
do 4
rotation
O
(a) (b)

Flg . 16_13 Shigley’s Mechanical Engineering Design



Force Analysis for Brake Band

db db
(P —|—dP)sm7—|—Psm7—dN=O (a)
dN = Pdb (b)
do do

(P-I—dP)COST—PCOST—de=O (c)
dP — fdN =0 (d)

P dP P

[ —ff d6  or  In— = f¢

P

— /9 (16-19)

Pz
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Force Analysis for Brake Band

D
I'= P = P)=

dN = pbr df
P d6 = pbrdf

P 2P
P ==

br:E
_2P1

Pa =D

(16-20)

(16-21)

(16-22)
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Frictional-Contact Axial Single-Plate Clutch
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Frictional-Contact Axial Multi-Plate Clutch
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Geometry of Disk Friction Member

dr

©

< D >
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Uniform Wear

w = flfzKPVI

PV = (constant) = C,

pro = C, (a)

d

pr = C3 = Pmax!i = Pal'i = pai

D/2 D)2 pad
F = f 2 prdr = erad[ dr = (D —d) (16-23)
/2 )2 2
D)2 D)2 J
T =f 2 fprldr = Jrfpadf rdr = 2P b2 2y (16-24)
d/2 djf2

T — %(D L) (16-25)
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Uniform Pressure

F— ”p“

(D* —d*)

D)2
T=2:rrfpf dr = ﬁ([ﬁ — &)
dj?
Ff D’ —-d’

T =
3 D*—d?

(16-26)

(16-27)

(16-28)
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Comparison of Uniform Wear with Uniform Pressure

i
fFD
l e

r 1 | —(d/D)?
fFD 3 1—(d/D)?

0.5 —  Uniform pressure

/

T 1+d/D
Uniform wear ' F D o 4

] (Y

0 | |
0 0.5 1
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Automotive Disk Brake

Caliper
Wheel Boot  geal
.

Piston

™ Brake fluid

Shoe and _

lining - § ~
Ui
N7

Wheel stud = ]Inner
& bearing ~ Seal
Spidle y <—— Adapter
Mounting bolt
—
Outer
bearing Steering |
knuckle
N
Braking disk —> Fli g. 16-18
Splash shield
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Geometry of Contact Area of Annular-Pad Brake

H

~
<—~s|4>l

- €

N—

Fig. 16-19
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Analysis of Annular-Pad Brake

w = f] fzKPVI
92 'rG 'rﬂ
F = [ [ prdr do = (6, —91)f prdr (16-29)
0 Jr; ri
32. Fo Fo
T = f f fpridrdd =6, —0))f f pridr (16-30)
B Jri ri
T fr_ﬂprzdr
r, = — = & (16-31)

rﬂ
T [ prdr
Ii

6 pro ro
M, =Fr = f [ pr(rsinf)drdf = (cosb; — cnség)f pr2 dr
91 F Fi

i

M 0 — g,
s_ M. _ (cos #y — cos 2)‘%3 (16-32)
F 6, — 64
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Uniform Wear

F = (6 —01)pari(ro —ri) (16-33)
J— - . rﬂ —_— l J— . 2 J— 2 —
T = (0, —0y) fpari rdr = 5(92 O1) fpari (rﬂ rl-) (16-34)
a'i D d
pr/; rar .f'lf—r-2 | Iy +r;
ro = — = : = (16-35)
f o 2 r,—r 2
Pali dr
I

_ costy —costh r, + r; (16-36)
th — 6 2

=
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Uniform Pressure

Fa ]
F =6, — 91)Paf rdr = 5(92 — 01) Pa (r{f —rfz) (16-37)
r;
ra 1
T = (6, — Hl)fpﬂf rrdr = 5(92 —01) fpa(r) —17) (16-38)
ri
Fa
paf r*dr
r: r3—r 2 23—}
fe = fo T T 3 2,2 3p2_,2 [16-39)
pﬂf rdr o I o I
r;
P cosfy — costh E rg —ri _ E g—rz cos y — cos th (16-40)
tr — 6 3!‘3—!‘1- 3 3 r; 6, — 0
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Example 16-3

Two annular pads, r; = 3.875 1n, r, = 5.50 1in, subtend an angle of 108°, have a co-
efficient of friction of 0.37, and are actuated by a pair of hydraulic cylinders 1.5 in in
diameter. The torque requirement 1s 13 000 1bf - in. For uniform wear

(a) Find the largest normal pressure py.

(b) Estimate the actuating force F.

(c) Find the equivalent radius r, and force location r.

(d) Estimate the required hydraulic pressure.

Solution
(a) From Eq. (16-34), with T = 13000/2 = 6500 Ibf - in for each pad,

3 2T
(G =00 fri(r2—r1})

Pa

B 2(6500)
~(144° —36°)(7/180)0.37(3.875)(5.5% — 3.8752)

= 315.8 psi
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Example 16-3

(b) From Eq. (16-33),
F = (62 — 61) pari(ro —ri) = (144° — 36°)(;r/180)315.8(3.875)(5.5 — 3.875)
= 3748 Ibf

(¢) From Eq. (16-35),

550+ 3.875
=10 ;”" _ +2 — 4.688 in

From Eq. (16-36),

. cosb; —cosbh r, +r; cos 36° — cos 144°  5.50 4+ 3.875
r = =

0, — 6, 2 (1440 — 36°)(/180) 2
= 4.024 in
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Example 16-3

(d) Each cylinder supplies the actuating force, 3748 Ibf.

F 3748
Ap  m(1.5%/4)

Phydraulic = = 2121 pSi
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Geometry of Circular Pad Caliper Brake
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Analysis of Circular Pad Caliper Brake

Fe = € (16-41)

F =R py (16-42)

I'=fFr, (16-43)
Table 16-1 i Prax

Parameters for a Pav

Circular-Pad Caliper 0.0 1.000 1.000
Brake 0.1 0.983 1.093
Source: G. A. Fazekas, “On 0.2 0.969 1212
Circular Spot Brakes,” Trans. 0.3 0.957 1.367

ASME, J. Engineering for
Industry, vol. 94, Series B, 0.4 0.947 1.578
No. 3, August 1972, 0.5 0.938 1.875
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Example 164

A button-pad disk brake uses dry sintered metal pads. The pad radius 1s % in, and 1ts

center is 2 in from the axis of rotation of the 3%-in-diameter disk. Using half of the
largest allowable pressure, pmax = 350 psi, find the actuating force and the brake
torque. The coefficient of friction 1s 0.31.

Solution

Since the pad radius R = 0.5 in and eccentricity ¢ = 2 1n,
R 05
— =— =025
% 2

From Table 16—1, by interpolation, § = 0.963 and ppax/pav = 1.290. It follows that the
effective radius e is found from Eq. (16-41):

re =98¢ =0.963(2) = 1.926 1n
and the average pressure 1S

_ Puw/2 3502
Pav =300 = T.200

= 135.7 psi
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Example 164

The actuating force F'is found from Eq. (16—42) to be

F = 7 R*pay = 7(0.5)%135.7 = 106.6 1bf (one side)
The brake torque 7T is

I'=fFr,=0.31(106.6)1.926 = 63.65 Ibf - in (one side)
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Cone Clutch
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Contact Area of Cone Clutch
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Uniform Wear

d
p:pag (G‘)

_ D2 d 2nrdr ,
F=|[ pdAsina = Pa— - (sina)
d/n 2r Sin o

D)2 pud (16-44)
= npﬂdf dr = (D —d)
dJ2 2
b/2 d 2nrdr
T=frfpdﬂ=fd2 1) (Pag)( sin o )
o (16-45)
ﬂd a
_ P f rdr = 2P p2 _ g2
sina Jas 8 sin o
F
T = / (D +d) (16-46)

4sino
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Uniform Pressure

D)2
F = f padAsina = f (pa)(zmd")(sm o= P gty (16a7)
d

2 sin o 4
D/2 ) d ;
T=f rfpadA = f (rfpa)( — r) _ IIP i gty (1648
d/2 SIn & 12sina
Ff D’-d
T = / (16-49)

"~ 3sina D? — 2
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Energy Considerations

I]é'] =T (G)
Lo, =T (b)
. T
0 = ——1F + w (c)
I
: T
th = —t + w (d)
I
T T
=0, — b6 = —I—f+ﬂ)1 — (f—f+m2)
1 2
(16-50)
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Energy Considerations

I —
- 1 () — ws) (16-51)
Trh+15h)

_ I +1
u:T@:TI:ml—wg—T 1T 5o t (e)
L,

I h I+ 1
E=f ud:‘:Tf [ml—mz—T(l_l_z)t}dr
0 0 L

_ I (] — an)?
2 + D)

(16-52)

= 9330 (16-53)
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Temperature Rise

H
C,W

AT = (16-54)

where AT = temperature rise, °F
C, = specific heat capacity, Btu/(Ib,, - °F); use 0.12 for steel or cast iron
W = mass of clutch or brake parts, Ibm

E
AT = —— (16-55)
Cpm

where AT = temperature rise, °C
C, = specific heat capacity; use 500 J/kg - °C for steel or cast iron

m = mass of clutch or brake parts, kg
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Newton’s Cooling Model

Tr—-T her A
—~ —exp| — Ry (16-56)
where I' = temperature at time t, °F

I = initial temperature, °F
I'~c = environmental temperature, “F
hcr = overall coefficient of heat transfer. Btuf'(in2 -5 - °F)
A = lateral surface area. in’
W = mass of the object, Ibm

C, = specific heat capacity of the object, Btu/(Ibm - °F)
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Effect of Braking on Temperature
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Rate of Heat Transfer

Hioss = hcerA(T — To) = (hy + fuh) A(T — T) (16-57)
where H)oss = rate of energy loss, Btu/s
hcr = overall coefficient of heat transfer, Btu/(in” - s - °F)
h, = radiation component of ficr, Btu/(in” - s - °F), Fig. 16-24a
h. = convective component of 7icr, Btw’(in2 - s - °F), Fig. 16-24a

f» = ventilation factor, Fig. 16-24b

I' = disk temperature, °F

T+, = ambient temperature, °F

Shigley’s Mechanical Engineering Design



Heat-Transfer Coefficient in Still Air
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Ventilation Factors

Multiplying factor f,
= o)
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Energy Analysis

Ly, ~
=3 53¢ (@ — ) (16-58)
E
AT = — (16-59)
wcC
Tmin - Too ( ﬁf )
= eXpl—pI
Tmax - Tr:x:s p
oo AT (16-60)
TR —exp(—Bt)
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Example 16-5

A caliper brake 1s used 24 times per hour to arrest a machine shaft from a speed
of 250 rev/min to rest. The ventilation of the brake provides a mean air speed of
25 ft/s. The equivalent rotary inertia of the machine as seen from the brake shaft is
289 Ibm - in - s. The disk is steel with a density y = 0.282 lbm/in’, a specific heat
capacity of 0.108 Btu/(Ibm - °F), a diameter of 6 in, a thickness of i in. The pads are
dry sintered metal. The lateral area of the brake surface is 50 in%. Find Tpax and Tiin

for the steady-state operation.

Solution
f = 60%/24 = 150 s

Assuming a temperature rise of Ty — 1o = 200°F, from Fig. 16-24a,

h, = 3.0(107%) Btu/(in® - s - °F)
h, = 2.0(107%) Btu/(in® - s - °F)
Fig. 16-24b fo =48

ficr = hy + fohe = 3.0(107%) +4.8(2.0)107° = 12.6(107°%) Btu/(in® - s - °F)
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Example 16-5

The mass of the disk is

B myD*h 7 (0.282)6%(0.25)

W = = .
1 1 1.99 1bm
1 I 280 /27 2
Eq. (16-58): E = = —— (> — %) = 250 ) = 10.6 Bt
9 (16-55) 3 5336 (0~ 1) = 30334 (60 ) !

hecrA  12.6(107°)50

= = =2.93(1077) s
WC, = 1.990.108) - U0
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Example 16-5

E 106
WC,  1.99(0.108)

Eq. (16-39): AT = = 49.3°F

49.3
Eq. (16-60): Thax =70 + ' = 209°F
I —exp[—2.93(1073)150]

Tin = 209 — 49.3 = 160°F

The predicted temperature rise here is Tpax — Too = 139°F. Iterating with revised val-
ues of i, and h, from Fig. 16-24a, we can make the solution converge to Tmax = 220°F
and Tip = 171°F.

Table 16-3 for dry sintered metal pads gives a continuous operating maximum
temperature of 570-660°F. There 1s no danger of overheating.
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Area of Friction Material for Average Braking Power

Table 16-2

Area of Friction Material Required for a Given Average Braking Power  Sources: M. J. Neale, The Tribology Handbook,
Butterworth, London, 1973; Friction Materials for Engineers, Ferodo Ltd., Chapel-en-le-frith, England, 1968.

Ratio of Area to Average Braking Power,

in2/(Btu/s)
Band and Plate Disk Caliper
Duty Cycle Typical Applications Drum Brakes Brakes Disk Brakes
Infrequent Emergency brakes 0.85 2.8 0.28
Intermittent Elevators, cranes, and winches 2.8 7.1 0.70
Heavy-duty Excavators, presses 5.6-6.9 13.6 1.41

Shigley’s Mechanical Engineering Design



Characteristics of Friction Materials

Maximum Temperature Maximum

Velocity Vimax,
ft/min

Maximum
Pressure Instantaneous, Continuous,
Pmax, PSi °F °F

Friction
Coefficient
Material f

Applications

Cermet 0.32 150 1500 750 Brakes and clutches
Sintered metal (dry) 0.29-0.33 300400 930-1020 570-660 3600 Clutches and caliper disk
brakes
Sintered metal (wet) 0.06-0.08 500 930 570 3600 Clutches
Rigid molded asbestos (dry) 0.35-0.41 100 660-750 350 3600 Drum brakes and clutches
Rigid molded asbestos (wet) 0.06 300 660 350 3600 Industrial clutches
Rigid molded asbestos pads 0.31-0.49 750 930-1380 440-660 4800 Disk brakes
Rigid molded nonasbestos 0.33-0.63 100-150 500-750 4800-7500 Clutches and brakes
Semirigid molded asbestos 0.37-0.41 100 660 300 3600 Clutches and brakes
Flexible molded asbestos 0.39-0.45 100 660-750 300-350 3600 Clutches and brakes
Wound asbestos yarn and 0.38 100 660 300 3600 Vehicle clutches
wire
Woven asbestos yarn and 0.38 100 500 260 3600 Industrial clutches and
wire brakes
Woven cotton 0.47 100 230 170 3600 Industrial clutches and
brakes
Resilient paper (wet) 0.09-0.15 400 300 PV < 500 000 Clutches and transmission
psi - ft/min bands
Table 16-3
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Some Properties of Brake Linings

Woven Molded Rigid

Lining Lining Block

Compressive strength, kpsi 10-15 10-18 10-15
Compressive strength, MPa 70-100 70-125 70-100
Tensile strength, kpsi 2.5-3 4-5 34
Tensile strength, MPa 17-21 27-35 21-27
Max. temperature, °F 400-500 500 750
Max. temperature, °C 200-260 260 400
Max. speed, ft/min 7500 5000 7500
Max. speed, m/s 38 29 38
Max. pressure, psi 50-100 100 150
Max. pressure, kPa 340-690 690 1000
Frictional coefficient, mean 0.45 0.47 0.40-45
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Friction Materials for Clutches

Table 16-5

Friction Materials for Clutches

Friction Coefficient Max. Temperature Max. Pressure
Material Wet Dry 5 °C psi kPa
Cast iron on cast iron 0.05 0.15-0.20 600 320 150-250 1000-1750
Powdered metal* on cast iron 0.05-0.1 0.1-0.4 1000 540 150 1000
Powdered metal* on hard 0.05-0.1 0.1-0.3 1000 540 300 2100
steel
Wood on steel or cast iron 0.16 0.2-0.35 300 150 60-90 400-620
Leather on steel or cast iron 0.12 0.3-0.5 200 100 10-40 70-280
Cork on steel or cast iron 0.15-0.25 0.3-0.5 200 100 8-14 50-100
Felt on steel or cast iron 0.18 0.22 280 140 5-10 35-70
Woven asbestos™ on steel or 0.1-0.2 0.3-0.6 350-500 175-260 50-100 350-700
cast iron
Molded asbestos™* on steel 0.08-0.12 0.2-0.5 500 260 50-150 350-1000
or cast iron
Impregnated asbestos™ on 0.12 032 500-750 260400 150 1000
steel or cast iron
Carbon graphite on steel 0.05-0.1 0.25 700-1000 370-540 300 2100
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Positive-Contact Clutches

» Characteristics of positive-
contact clutches 3

> No slip
No heat generated

(0]

o]

Cannot be engaged at high —

speeds b= | %
> Sometimes cannot be

engaged when both shafts are ﬁ-) -

at rest -<— Shift lever
- Engagement is accompanied .

by shock -

Square-jaw Clutch

Fig. 16-25a



Overload Release Clutch

Fig. 16-25b
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Shaft Couplings

Figure 16-26
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Shaft couplings. (a) Plain. ] _ B ) 2
(b) Light-duty toothed L0 e e
coupling. (¢) BOST-FLEX® . 4 — —
(a) (b)

through-bore design having
elastomer insert to transmit

torque by compression; insert

permits 1° misalignment.

(d) Three-jaw coupling available 1 =1 1  ————1 =

with bronze, rubber, or

polyurethane insert to minimize

LOHH]
UULLUL

vibration. (Reproduced by
permission, Boston Gear (c) (d)

Division, Colfax Corp.)
Fig. 16-26
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Flywheels

7.6,
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> M =T0:.0) —T,0,.6,) — 16 =0

10 = I (i, wi) — To(6p., wo) (a)

16 =T:6,w)—T,0, w) (b)
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Hypothetical Flywheel Case
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£ 3 NN o Fig. 16-27
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Kinetic Energy

E, = 51&)1 (e)
1
E; = Elm% ()
I
E,—E| = El(wg—w%) (16-61)
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Engine Torgue for One Cylinder Cycle

Crank torque T

Joam el m
180°v 360° 2o 540° [ 720°

Crank angle 6

m
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Coefficient of Speed Fluctuation, C,

C, = (16-62)
)
P ;r“” (16-63)
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Energy Change

1
Ey—Er =31 (03 — 7) (16-61)
I
Ey = By = (o — o)y + o)

) —w) = Cyw and o + w] = 2w

Er—E, =C,lo (16-64)
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Example 16-6

Table 16-6 lists values of the torque used to plot Fig. 16-28. The nominal speed of the
engine 1s to be 250 rad/s.

(a) Integrate the torque-displacement function for one cycle and find the energy that can
be delivered to a load during the cycle.

(b) Determine the mean torque 7,, (see Fig. 16-28).

(c) The greatest energy fluctuation is approximately between # = 15° and € = 150° on
the torque diagram: see Fig. 16-28 and note that 7, = —T,,. Using a coefficient of
speed fluctuation Cy = 0.1, find a suitable value for the flywheel inertia.

(d) Find w; and w;.

Solution

(@) Using n =48 intervals of A6 = 47 /48, numerical integration of the data of
Table 16-6 yields E = 3368 in - 1bf. This is the energy that can be delivered to the load.
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Example 16-6

T, 6 T, 6, T, 6,
Ibf . in deg Ibf . in deg Ibf - in deg
0 0 195 —107 375 —85 5395 —107
15 2800 210 —206 390 —125 570 —206
30 2090 225 —260 405 —89 585 —292
45 2430 240 —323 420 8 600 —353
60 2160 255 —310 435 126 615 —371
75 1840 270 —242 450 242 630 —362
90 1590 285 —126 465 310 645 —312
105 1210 300 —8 480 323 660 —272
120 1066 315 89 495 280 675 —274
135 803 330 125 510 206 690 —548
150 352 345 85 525 107 705 —760
165 184 360 0 540 0 720 0
180 0

Table 166
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Example 16-6

(b) T = 3568 = 268 Ibf - in
b2

(c) The largest positive loop on the torque-displacement diagram occurs between
6 =0° and € = 180°. We select this loop as yielding the largest speed change.
Subtracting 268 Ibf - in from the values in Table 16-6 for this loop gives, respectively,
—268, 2532, 1822, 2162, 1892, 1572, 1322, 942, 798, 535, 264, —84, and —268 1bf - in.
Numerically integrating T — 7,, with respect to 6 yields E, — Ey = 3531 Ibf - in. We
now solve Eq. (16-64) for I. This gives

PP Sk B L S P P Y
T T Ca?  0.0(2502 -
(d) Equations (16-62) and (16-63) can be solved simultaneously for w, and w;.

Substituting appropriate values in these two equations yields

w

250
w2 = 2+ Cy) = 7(2 +0.1) = 262.5 rad/s

w); = 2w — wy = 2(250) — 262.5 = 237.5 rad/s

These two speeds occur at # = 180° and # = 0°, respectively.
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Punch-Press Torque Demand

Torque T' | _ _ _ Torque T,
°
Tr _________________ E
I
I
I
I
I
0 0 I I|
00, 0 0. o,
Rotation 6 Angular velocity w
@) : (b)
Fig. 1629
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Punch-Press Analysis

1
T, —0) = El(m% —w5) = Ex — E|

0 |
W = [T(Q) — T] do = _I(wr;;mx o wﬁlin)
o] 2
|
W = 5[(&){2“31 - wl?nin) — E(wmax - wmin) (wmax + wmin)

l
= 2(Ci@) (2w0) = ICidwy

When the speed fluctuation is low,

) = Cz}, and
|14

| =
C, >
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Induction Motor Characteristics

I =aw+>b
Tr _ Ts Tr Tr
0 = = == —
b Trws - Tjwr Trws
Ws — Wy s — Wy

(16-65)
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Induction Motor Characteristics

Acceleration:
16 = Ty Gee., Tdw/dt = Ty)

& P ldw 2 dw I awry+b I T,
dt = — = = —1In = —|n—
f o, 1M w aw+b a aw,+b a T,

I T
@—n=5m% (16-66)

Deceleration:

i @ dw @r dw I aw,+b—T;
dr=1] —2 _— = ZIn _
0 W, T — 171 ) aw+ b — 17 a aw +b—1T1;

I T.—T
f = —In L (16-67)

( >, —T1;
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Induction Motor Characteristics

T T, — T, (h—1)/h
2 =( L ) (16-68)
T, T, — T,
_a—n) (16-69)
In(73/1,)

Shigley’s Mechanical Engineering Design



