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Mechanical Springs 

 Exert Force 

 Provide flexibility 

 Store or absorb energy 
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Helical Spring 

 Helical coil spring with round wire  

 Equilibrium forces at cut section anywhere in the body of the 

spring indicates direct shear and torsion 
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Stresses in Helical Springs 

 Torsional shear and direct shear 

 Additive (maximum) on inside fiber of 

cross-section 

 

 

 Substitute terms 
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Stresses in Helical Springs 
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Define Spring Index    
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Factor out the torsional stress 

Define Shear Stress Correction Factor 
1 2 1

1
2 2

s

C
K

C C


  

Maximum shear stress for helical spring 



Curvature Effect 

 Stress concentration type of effect on inner fiber due to curvature 

 Can be ignored for static, ductile conditions due to localized cold-

working 

 Can account for effect by replacing Ks with Wahl factor or 

Bergsträsser factor which account for both direct shear and 

curvature effect 

 

 

 

 

 

 Cancelling the curvature effect to isolate the curvature factor 
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Deflection of Helical Springs 
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Use Castigliano’s method to relate force and deflection 

Fig. 10–1a 



Ends of Compression Springs 
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Fig. 10–2 



Formulas for Compression Springs With Different Ends 
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Na is the number of active coils 

Table 10–1 



Set Removal 

 Set removal or presetting is a process used in manufacturing a 

spring to induce useful residual stresses. 

 The spring is made longer than needed, then compressed to solid 

height, intentionally exceeding the yield strength. 

 This operation sets the spring to the required final free length. 

 Yielding induces residual stresses opposite in direction to those 

induced in service. 

 10 to 30 percent of the initial free length should be removed. 

 Set removal is not recommended when springs are subject to 

fatigue. 
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Critical Deflection for Stability 

 Buckling type of instability can occur in compression springs 

when the deflection exceeds the critical deflection ycr 

 

 

 Leff is the effective slenderness ratio 

 

 

 a is the end-condition constant, defined on the next slide 

 C'1 and C'2 are elastic constants 
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End-Condition Constant 

 The a term in Eq. (10–11) is the end-condition constant. 

 It accounts for the way in which the ends of the spring are 

supported. 

 Values are given in Table 10–2. 
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Table 10–2 



Absolute Stability 

 Absolute stability occurs when, in Eq. (10–10), 

 

 

 This results in the condition for absolute stability 

 

 

 

 For steels, this turns out to be  
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Some Common Spring Steels 

 Hard-drawn wire (0.60-0.70C) 

◦ Cheapest general-purpose 

◦ Use only where life, accuracy, and deflection are not too 

important 

 Oil-tempered wire (0.60-0.70C) 

◦ General-purpose 

◦ Heat treated for greater strength and uniformity of properties 

◦ Often used for larger diameter spring wire 

 Music wire (0.80-0.95C) 

◦ Higher carbon for higher strength 

◦ Best, toughest, and most widely used for small springs 

◦ Good for fatigue 
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Some Common Spring Steels 

 Chrome-vanadium 

◦ Popular alloy spring steel 

◦ Higher strengths than plain carbon steels 

◦ Good for fatigue, shock, and impact 

 Chrome-silicon 

◦ Good for high stresses, long fatigue life, and shock 
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Strength of Spring Materials 

 With small wire diameters, strength is a function of diameter. 

 A graph of tensile strength vs. wire diameter is almost a straight 

line on log-log scale. 

 The equation of this line is 

 

 

where A is the intercept and m is the slope. 

 Values of A and m for common spring steels are given in Table 

10–4. 
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Constants for Estimating Tensile Strength 
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Table 10–4 



Estimating Torsional Yield Strength 

 Since helical springs experience shear stress, shear yield strength 

is needed. 

 If actual data is not available, estimate from tensile strength 

 Assume yield strength is between 60-90% of tensile strength 

   

 Assume the distortion energy theory can be employed to relate 

the shear strength to the normal strength. 

           Ssy = 0.577Sy 

 This results in  
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Mechanical Properties of Some Spring Wires (Table 10–5) 
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Maximum Allowable Torsional Stresses 

Shigley’s Mechanical Engineering Design 



Critical Frequency of Helical Springs 

 When one end of a spring 

is displaced rapidly, a 

wave called a spring surge 

travels down the spring. 

 If the other end is fixed, 

the wave can reflect back. 

 If the wave frequency is 

near the natural frequency 

of the spring, resonance 

may occur resulting in 

extremely high stresses. 

 Catastrophic failure may 

occur, as shown in this 

valve-spring from an over-

revved engine. 
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Fig. 10–4 



Critical Frequency of Helical Springs 

 The governing equation is the wave equation 
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Critical Frequency of Helical Springs 

 The solution to this equation is harmonic and depends on the given 

physical properties as well as the end conditions. 

 The harmonic, natural, frequencies for a spring placed between 

two flat and parallel plates, in radians per second, are 

 

 

 In cycles per second, or hertz, 

 

 

 With one end against a flat plate and the other end free, 
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Critical Frequency of Helical Springs 

 The weight of a helical spring is 

 

 

 The fundamental critical frequency should be greater than 15 to 

20 times the frequency of the force or motion of the spring. 

 If necessary, redesign the spring to increase k or decrease W. 
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Fatigue Loading of Helical Compression Springs 

 Zimmerli found that size, material, and tensile strength have no 

effect on the endurance limits of spring steels in sizes under 3/8 

in (10 mm). 

 Testing found the endurance strength components for infinite life 

to be 

 

 

 

 

 

 These constant values are used with Gerber or Goodman failure 

criteria to find the endurance limit. 
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Fatigue Loading of Helical Compression Springs 

 For example, with an unpeened spring with Ssu = 211.5 kpsi, the 

Gerber ordinate intercept for shear, from Eq. (6-42), is 

 

 

 

 For the Goodman criterion, it would be Sse = 47.3 kpsi. 

 Each possible wire size would change the endurance limit since 

Ssu is a function of wire size. 
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Fatigue Loading of Helical Compression Springs 

 It has been found that for polished, notch-free, cylindrical 

specimens subjected to torsional shear stress, the maximum 

alternating stress that may be imposed is constant and 

independent of the mean stress. 

 Many compression springs approach these conditions. 

 This failure criterion is known as the Sines failure criterion. 
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Torsional Modulus of Rupture 

 The torsional modulus of rupture Ssu will be needed for the 

fatigue diagram. 

 Lacking test data, the recommended value is 
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Stresses for Fatigue Loading 

 From the standard approach, the alternating and midrange forces 

are 

 

 

 

 

 The alternating and midrange stresses are 
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Extension Springs 

 Extension springs are similar to compression springs within the 

body of the spring. 

 To apply tensile loads, hooks are needed at the ends of the 

springs. 

 Some common hook types: 
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Stress in the Hook 

 In a typical hook, a critical stress location is at point A, where there 

is bending and axial loading. 

 

 

 (K)A is a bending stress-correction factor for curvature 

Shigley’s Mechanical Engineering Design Fig. 10–6 



Stress in the Hook 

 Another potentially critical stress location is at point B, where 

there is primarily torsion. 

 

 

 (K)B is a stress-correction factor for curvature. 
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An Alternate Hook Design 

 This hook design reduces the coil diameter at point A. 
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Fig. 10–6 



Close-wound Extension Springs 

 Extension springs are often made with coils in contact with one 

another, called close-wound. 

 Including some initial tension in close-wound springs helps hold 

the free length more accurately. 

 The load-deflection curve is offset by this initial tension Fi 
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Terminology of Extension Spring Dimensions 

 The free length is measured inside the end hooks. 

 

 The hooks contribute to the spring rate.  This can be handled by 

obtaining an equivalent number of active coils. 
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Initial Tension in Close-Wound Springs 

 Initial tension is created 

by twisting the wire as it 

is wound onto a mandrel. 

 When removed from the 

mandrel, the initial 

tension is locked in 

because the spring cannot 

get any shorter. 

 The amount of initial 

tension that can routinely 

be incorporated is shown. 

 The two curves bounding 

the preferred range is 

given by 
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Fig. 10–7c 



Guidelines for Maximum Allowable Stresses 

 Recommended maximum allowable stresses, corrected for 

curvature effect, for static applications is given in Table 10–7. 
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Table 10–7 



Belleville Springs 

 The Belleville 
spring is a coned-
disk spring with 
unique properties 

 It has a non-linear 
spring constant 

 With h/t  ≥ 2.83, the 
S curve can be 
useful for snap-
acting mechanisms 

 For 1.41≤ h/t ≤ 2.1 
the flat central 
portion provides 
constant load for a 
considerable 
deflection range 
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Fig. 10–11 



Constant-Force Springs 

 The extension spring shown is made of slightly curved strip steel, 

not flat. 

 The fore required to uncoil it remains constant. 

 Known as a constant-force spring. 
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Fig. 10–12 



Conical Spring 

 A conical spring is wound in the shape of a cone.   

 Most are compression springs, made with round wire. 

 The principal advantage is that the solid height is only a single 

wire diameter. 
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Volute Spring 

 A volute spring is a conical spring made from a wide, thin strip, or 
“flat”, of material wound on the flat so that the coils fit inside one 
another.   

 Since the coils do not stack on each other, the solid height is the width 
of the strip. 

 A variable-spring scale is obtained by permitting the coils to contact the 
support. 

 As deflection increases (in compression), the number of active coils 
decreases. 
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Constant-Stress Cantilever Spring 

 A uniform-section cantilever spring made 

from flat stock has stress which is 

proportional to the distance x. 

 

 

 It is often economical to proportion the 

width b to obtain uniform stress, 

independent of x. 
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Fig. 10–13b 



Constant-Stress Cantilever Spring 

 For a rectangular section, I/c = bh2/6. 

 Combining with Eq. (a), 

 

 

 Solving for b, 

 

 

 Since b is linearly related to x, the width bo at 

the base is 
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Fig. 10–13b 



Constant-Stress Cantilever Spring 

 Apply Castigliano’s method to obtain 

deflection and spring constant equations. 

 The width is a function of x, 

 

 Integrating Castigliano’s deflection equation 

with M and I both functions of x, 

 

 

 

 

 

 Thus, the spring constant, k = F/y, is 
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Fig. 10–13b 


