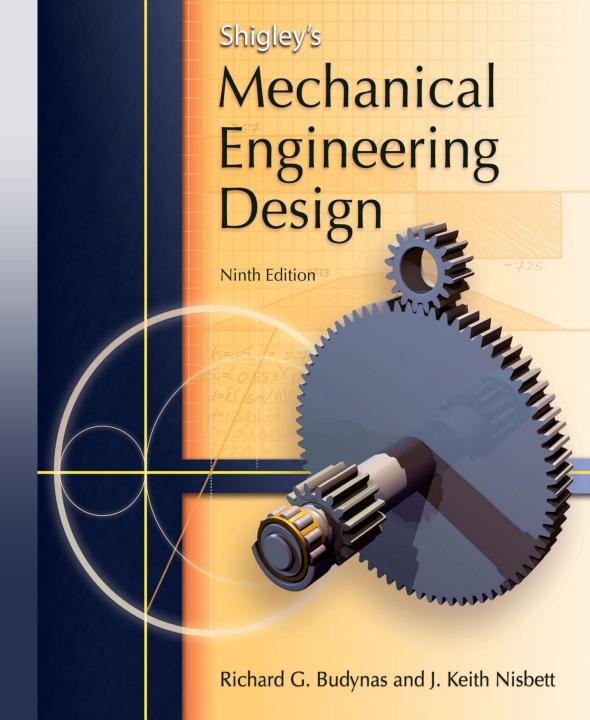
Lecture Slides

Chapter 10

Mechanical Springs



The McGraw-Hill Companies © 2012

Chapter Outline

10-1	Stresses in Helical Springs 518
10-2	The Curvature Effect 519
10-3	Deflection of Helical Springs 520
10-4	Compression Springs 520
10-5	Stability 522
10-6	Spring Materials 523
10-7	Helical Compression Spring Design for Static Service 528
10-8	Critical Frequency of Helical Springs 534
10-9	Fatigue Loading of Helical Compression Springs 536
10-10	Helical Compression Spring Design for Fatigue Loading 539
10-11	Extension Springs 542
10-12	Helical Coil Torsion Springs 550
10-13	Belleville Springs 557
10-14	Miscellaneous Springs 558
10-15	Summary 560

Mechanical Springs

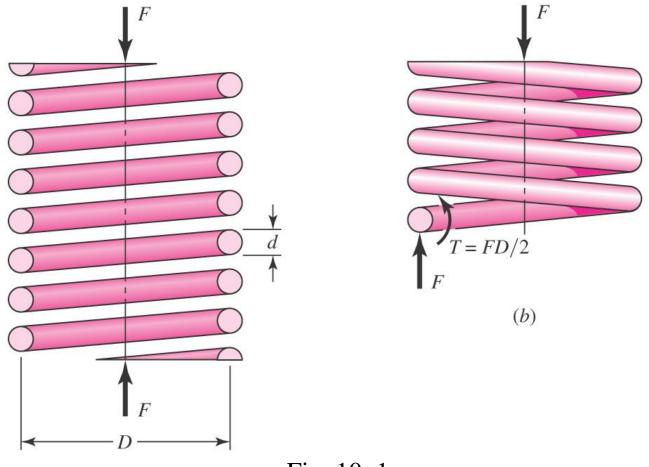
- Exert Force
- Provide flexibility
- Store or absorb energy

Helical Spring

Helical coil spring with round wire

(a)

• Equilibrium forces at cut section anywhere in the body of the spring indicates direct shear and torsion



Stresses in Helical Springs

- Torsional shear and direct shear
- Additive (maximum) on inside fiber of cross-section

$$\tau_{\text{max}} = \frac{Tr}{J} + \frac{F}{A}$$

Substitute terms

$$\tau_{\text{max}} = \tau, T = FD/2, r = d/2,$$

$$J = \pi d^4/32, \quad A = \pi d^2/4$$

$$\tau = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2}$$

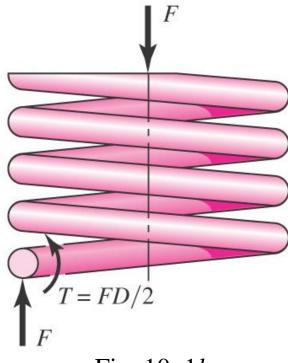


Fig. 10–1*b*

Stresses in Helical Springs

$$\tau = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2}$$

Factor out the torsional stress

$$\tau = \left(1 + \frac{d}{2D}\right) \left(\frac{8FD}{\pi d^3}\right)$$

Define Spring Index
$$C = \frac{D}{d}$$

(10-1)

Define Shear Stress Correction Factor

$$K_s = 1 + \frac{1}{2C} = \frac{2C + 1}{2C} \tag{10-3}$$

Maximum shear stress for helical spring

$$\tau = K_s \frac{8FD}{\pi d^3} \tag{10-2}$$

Curvature Effect

- Stress concentration type of effect on inner fiber due to curvature
- Can be ignored for static, ductile conditions due to localized coldworking
- Can account for effect by replacing K_s with Wahl factor or Bergsträsser factor which account for both direct shear and curvature effect

$$K_W = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} \tag{10-4}$$

$$K_B = \frac{4C + 2}{4C - 3} \tag{10-5}$$

$$\tau = K_B \frac{8FD}{\pi d^3} \tag{10-7}$$

• Cancelling the curvature effect to isolate the curvature factor

$$K_c = \frac{K_B}{K_s} = \frac{2C(4C+2)}{(4C-3)(2C+1)}$$
 (10-6)

Deflection of Helical Springs

Use Castigliano's method to relate force and deflection

$$U = \frac{T^2l}{2GJ} + \frac{F^2l}{2AG}$$

Substituting T = FD/2, $l = \pi DN$, $J = \pi d^4/32$, and $A = \pi d^2/4$

$$U = \frac{4F^{2}D^{3}N}{d^{4}G} + \frac{2F^{2}DN}{d^{2}G}$$

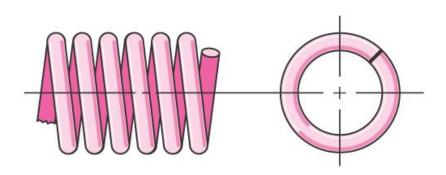
$$y = \frac{\partial U}{\partial F} = \frac{8FD^{3}N}{d^{4}G} + \frac{4FDN}{d^{2}G}$$

$$y = \frac{8FD^{3}N}{d^{4}G} \left(1 + \frac{1}{2C^{2}}\right) \doteq \frac{8FD^{3}N}{d^{4}G}$$

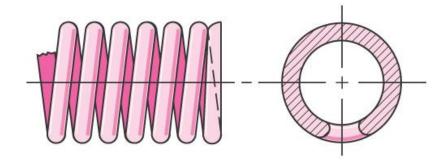
$$k \doteq \frac{d^{4}G}{8D^{3}N}$$
(10-8)

Fig. 10–1*a*

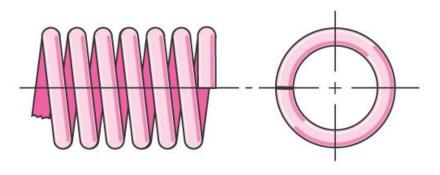
Ends of Compression Springs



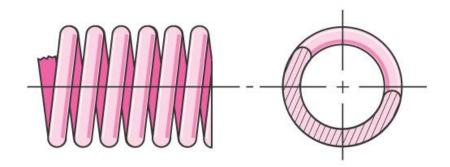
(a) Plain end, right hand



(c) Squared and ground end, left hand



(b) Squared or closed end, right hand



(d) Plain end, ground, left hand

Fig. 10–2

Formulas for Compression Springs With Different Ends

Table 10–1

	Type of Spring Ends					
Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground		
End coils, N_e	0	1	2	2		
Total coils, N_t	N_a	$N_a + 1$	$N_a + 2$	$N_a + 2$		
Free length, L_0	$pN_a + d$	$p(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$		
Solid length, L_s	$d(N_t+1)$	dN_t	$d(N_t+1)$	dN_t		
Pitch, p	$(L_0-d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$		

 N_a is the number of active coils

Set Removal

- Set removal or presetting is a process used in manufacturing a spring to induce useful residual stresses.
- The spring is made longer than needed, then compressed to solid height, intentionally exceeding the yield strength.
- This operation *sets* the spring to the required final free length.
- Yielding induces residual stresses opposite in direction to those induced in service.
- 10 to 30 percent of the initial free length should be removed.
- Set removal is not recommended when springs are subject to fatigue.

Critical Deflection for Stability

• Buckling type of instability can occur in compression springs when the deflection exceeds the *critical deflection* y_{cr}

$$y_{\rm cr} = L_0 C_1' \left[1 - \left(1 - \frac{C_2'}{\lambda_{\rm eff}^2} \right)^{1/2} \right]$$
 (10–10)

• L_{eff} is the effective slenderness ratio

$$\lambda_{\text{eff}} = \frac{\alpha L_0}{D} \tag{10-11}$$

- α is the *end-condition constant*, defined on the next slide
- C'_1 and C'_2 are elastic constants

$$C_1' = \frac{E}{2(E - G)}$$

$$C_2' = \frac{2\pi^2 (E - G)}{2G + E}$$

End-Condition Constant

- The α term in Eq. (10–11) is the *end-condition constant*.
- It accounts for the way in which the ends of the spring are supported.
- Values are given in Table 10–2.

End Condition	Constant α
Spring supported between flat parallel surfaces (fixed ends)	0.5
One end supported by flat surface perpendicular to spring axis (fixed); other end pivoted (hinged)	0.707
Both ends pivoted (hinged)	1
One end clamped; other end free	2

^{*}Ends supported by flat surfaces must be squared and ground.

Table 10–2

Absolute Stability

Absolute stability occurs when, in Eq. (10–10),

$$C_2'/\lambda_{\rm eff}^2 > 1$$

• This results in the condition for absolute stability

$$L_0 < \frac{\pi D}{\alpha} \left[\frac{2(E - G)}{2G + E} \right]^{1/2} \tag{10-12}$$

• For steels, this turns out to be

$$L_0 < 2.63 \frac{D}{\alpha} \tag{10-13}$$

Some Common Spring Steels

- Hard-drawn wire (0.60-0.70*C*)
 - Cheapest general-purpose
 - Use only where life, accuracy, and deflection are not too important
- Oil-tempered wire (0.60-0.70*C*)
 - General-purpose
 - Heat treated for greater strength and uniformity of properties
 - Often used for larger diameter spring wire
- Music wire (0.80-0.95*C*)
 - Higher carbon for higher strength
 - Best, toughest, and most widely used for small springs
 - Good for fatigue

Some Common Spring Steels

- Chrome-vanadium
 - Popular alloy spring steel
 - Higher strengths than plain carbon steels
 - Good for fatigue, shock, and impact
- Chrome-silicon
 - Good for high stresses, long fatigue life, and shock

Strength of Spring Materials

- With small wire diameters, strength is a function of diameter.
- A graph of tensile strength vs. wire diameter is almost a straight line on log-log scale.
- The equation of this line is

$$S_{ut} = \frac{A}{d^m} \tag{10-14}$$

where A is the intercept and m is the slope.

• Values of *A* and *m* for common spring steels are given in Table 10–4.

Constants for Estimating Tensile Strength

$$S_{ut} = \frac{A}{d^m} \tag{10-14}$$

Material	ASTM No.	Exponent m	Diameter, in	<i>A,</i> kpsi · in ^m	Diameter, mm	A, MPa · mm ^m	Relative Cost of Wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire [†]	A229	0.187	0.020-0.500	147	0.5 - 12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028-0.500	140	0.7 - 12.7	1783	1.0
Chrome-vanadium wire§	A232	0.168	0.032-0.437	169	0.8-11.1	2005	3.1
Chrome-silicon wire	A401	0.108	0.063-0.375	202	1.6-9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013-0.10	169	0.3 - 2.5	1867	7.6–11
		0.263	0.10-0.20	128	2.5-5	2065	
		0.478	0.20-0.40	90	5–10	2911	
Phosphor-bronze wire**	B159	0	0.004-0.022	145	0.1-0.6	1000	8.0
		0.028	0.022-0.075	121	0.6-2	913	
		0.064	0.075-0.30	110	2–7.5	932	

Table 10–4

Estimating Torsional Yield Strength

- Since helical springs experience shear stress, shear yield strength is needed.
- If actual data is not available, estimate from tensile strength
- Assume yield strength is between 60-90% of tensile strength

$$0.6S_{ut} \le S_{sy} \le 0.9S_{ut}$$

• Assume the distortion energy theory can be employed to relate the shear strength to the normal strength.

$$S_{sy} = 0.577S_y$$

This results in

$$0.35S_{ut} \le S_{sv} \le 0.52S_{ut} \tag{10-15}$$

Mechanical Properties of Some Spring Wires (Table 10–5)

		Elastic Limit, Percent of S _{ut} Diameter		E		G	
Material		Torsion	d, in	Mpsi	GPa	Mpsi	GPa
Music wire A228	65–75	45–60	< 0.032	29.5	203.4	12.0	82.7
			0.033-0.063	29.0	200	11.85	81.7
			0.064-0.125	28.5	196.5	11.75	81.0
			>0.125	28.0	193	11.6	80.0
HD spring A227	60–70	45–55	< 0.032	28.8	198.6	11.7	80.7
			0.033-0.063	28.7	197.9	11.6	80.0
			0.064-0.125	28.6	197.2	11.5	79.3
			>0.125	28.5	196.5	11.4	78.6
Oil tempered A239	85-90	45–50		28.5	196.5	11.2	77.2
Valve spring A230	85-90	50-60		29.5	203.4	11.2	77.2
Chrome-vanadium A231	88–93	65–75		29.5	203.4	11.2	77.2
A232	88–93			29.5	203.4	11.2	77.2
Chrome-silicon A401	85–93	65–75		29.5	203.4	11.2	77.2
Stainless steel							
A313*	65–75	45–55		28	193	10	69.0
17-7PH	75–80	55-60		29.5	208.4	11	75.8
414	65–70	42–55		29	200	11.2	77.2
420	65–75	45–55		29	200	11.2	77.2
431	72–76	50-55		30	206	11.5	79.3
Phosphor-bronze B159	75–80	45–50		15	103.4	6	41.4
Beryllium-copper B197	70	50		17	117.2	6.5	44.8
	75	50-55		19	131	7.3	50.3
Inconel alloy X-750	65-70	40-45		31	213.7	11.2	77.2

Shigley's Mechanical Engineering Design

Maximum Allowable Torsional Stresses

Table 10-6

Maximum Allowable Torsional Stresses for Helical Compression Springs in Static Applications

Source: Robert E. Joerres, "Springs," Chap. 6 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.

Material	Maximum Percent of Before Set Removed (includes K_W or K_B)	of Tensile Strength After Set Removed (includes K _s)
Music wire and cold- drawn carbon steel	45	60–70
Hardened and tempered carbon and low-alloy steel	50	65–75
Austenitic stainless steels	35	55–65
Nonferrous alloys	35	55–65

- When one end of a spring is displaced rapidly, a wave called a *spring surge* travels down the spring.
- If the other end is fixed, the wave can reflect back.
- If the wave frequency is near the natural frequency of the spring, resonance may occur resulting in extremely high stresses.
- Catastrophic failure may occur, as shown in this valve-spring from an overrevved engine.

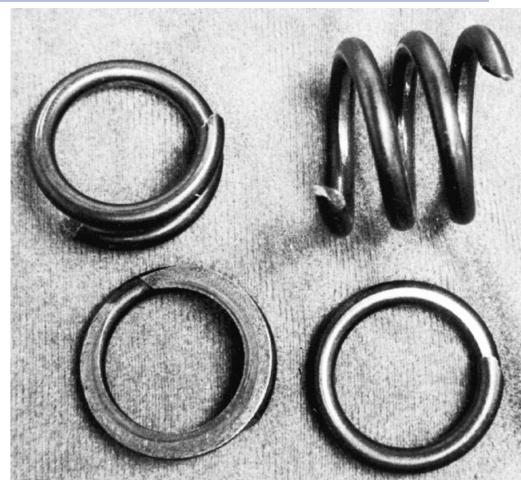


Fig. 10-4

• The governing equation is the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{W}{kgl^2} \frac{\partial^2 u}{\partial t^2} \tag{10-24}$$

where k = spring rate

g = acceleration due to gravity

l = length of spring

W =weight of spring

x = coordinate along length of spring

u =motion of any particle at distance x

- The solution to this equation is harmonic and depends on the given physical properties as well as the end conditions.
- The harmonic, natural, frequencies for a spring placed between two flat and parallel plates, in radians per second, are

$$\omega = m\pi \sqrt{\frac{kg}{W}} \qquad m = 1, 2, 3, \dots$$

• In cycles per second, or hertz,

$$f = \frac{1}{2} \sqrt{\frac{kg}{W}} \tag{10-25}$$

With one end against a flat plate and the other end free,

$$f = \frac{1}{4} \sqrt{\frac{kg}{W}} \tag{10-26}$$

• The weight of a helical spring is

$$W = AL\gamma = \frac{\pi d^2}{4} (\pi D N_a)(\gamma) = \frac{\pi^2 d^2 D N_a \gamma}{4}$$
 (10-27)

- The fundamental critical frequency should be greater than 15 to 20 times the frequency of the force or motion of the spring.
- If necessary, redesign the spring to increase k or decrease W.

Fatigue Loading of Helical Compression Springs

- Zimmerli found that size, material, and tensile strength have no effect on the endurance limits of spring steels in sizes under 3/8 in (10 mm).
- Testing found the endurance strength components for infinite life to be

Unpeened:

$$S_{sa} = 35 \text{ kpsi } (241 \text{ MPa})$$
 $S_{sm} = 55 \text{ kpsi } (379 \text{ MPa})$ (10–28)

Peened:

$$S_{sa} = 57.5 \text{ kpsi } (398 \text{ MPa})$$
 $S_{sm} = 77.5 \text{ kpsi } (534 \text{ MPa})$ (10–29)

• These constant values are used with Gerber or Goodman failure criteria to find the endurance limit.

Fatigue Loading of Helical Compression Springs

• For example, with an unpeened spring with $S_{su} = 211.5$ kpsi, the Gerber ordinate intercept for shear, from Eq. (6-42), is

$$S_{se} = \frac{S_{sa}}{1 - \left(\frac{S_{sm}}{S_{su}}\right)^2} = \frac{35}{1 - \left(\frac{55}{211.5}\right)^2} = 37.5 \text{ kpsi}$$

- For the Goodman criterion, it would be $S_{se} = 47.3$ kpsi.
- Each possible wire size would change the endurance limit since S_{su} is a function of wire size.

Fatigue Loading of Helical Compression Springs

- It has been found that for polished, notch-free, cylindrical specimens subjected to torsional shear stress, the maximum alternating stress that may be imposed is constant and independent of the mean stress.
- Many compression springs approach these conditions.
- This failure criterion is known as the *Sines failure criterion*.

Torsional Modulus of Rupture

- The torsional modulus of rupture S_{su} will be needed for the fatigue diagram.
- Lacking test data, the recommended value is

$$S_{su} = 0.67 S_{ut} ag{10-30}$$

Stresses for Fatigue Loading

• From the standard approach, the alternating and midrange forces are

$$F_a = \frac{F_{\text{max}} - F_{\text{min}}}{2} \tag{10-31a}$$

$$F_m = \frac{F_{\text{max}} + F_{\text{min}}}{2} \tag{10-31b}$$

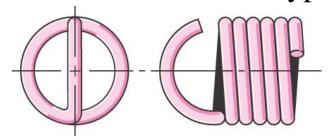
• The alternating and midrange stresses are

$$\tau_a = K_B \frac{8F_a D}{\pi d^3} \tag{10-32}$$

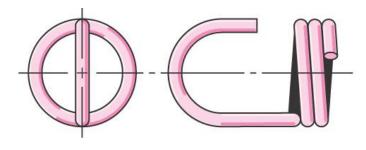
$$\tau_m = K_B \frac{8F_m D}{\pi d^3} \tag{10-33}$$

Extension Springs

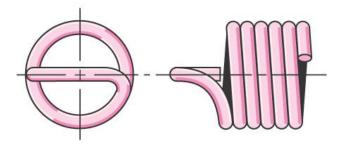
- Extension springs are similar to compression springs within the body of the spring.
- To apply tensile loads, hooks are needed at the ends of the springs.
- Some common hook types:



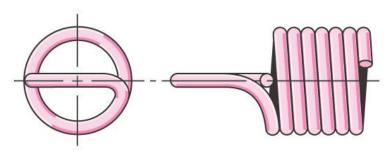
(a) Machine half loop-open



(b) Raised hook



(c) Short twisted loop



(d) Full twisted loop

Stress in the Hook

• In a typical hook, a critical stress location is at point A, where there is bending and axial loading.

$$\sigma_A = F \left[(K)_A \frac{16D}{\pi d^3} + \frac{4}{\pi d^2} \right]$$
 (10–34)

• $(K)_A$ is a bending stress-correction factor for curvature

$$(K)_A = \frac{4C_1^2 - C_1 - 1}{4C_1(C_1 - 1)} \qquad C_1 = \frac{2r_1}{d}$$
 (10–35)

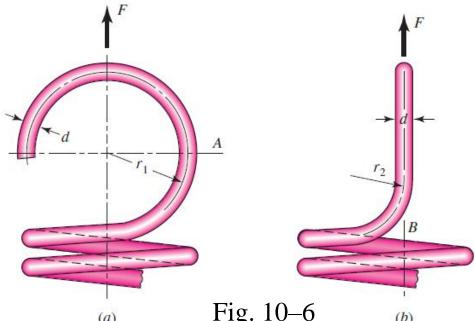


Fig. 10-6

Shigley's Mechanical Engineering Design

Stress in the Hook

• Another potentially critical stress location is at point B, where there is primarily torsion.

$$\tau_B = (K)_B \frac{8FD}{\pi d^3} \tag{10-36}$$

• $(K)_R$ is a stress-correction factor for curvature.

$$(K)_B = \frac{4C_2 - 1}{4C_2 - 4}$$
 $C_2 = \frac{2r_2}{d}$ (10–37)

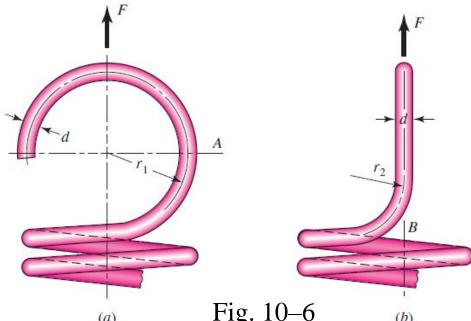
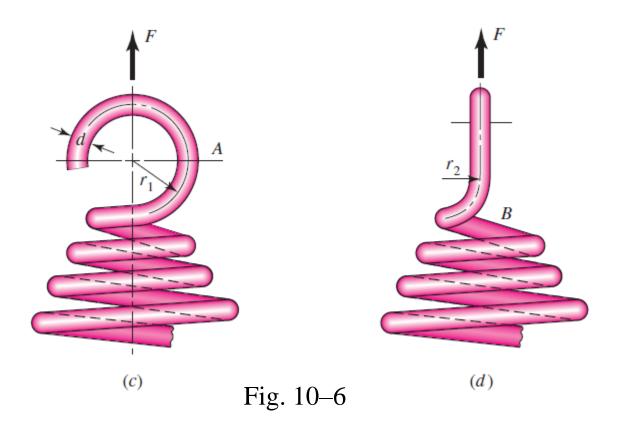


Fig. 10-6

Shigley's Mechanical Engineering Design

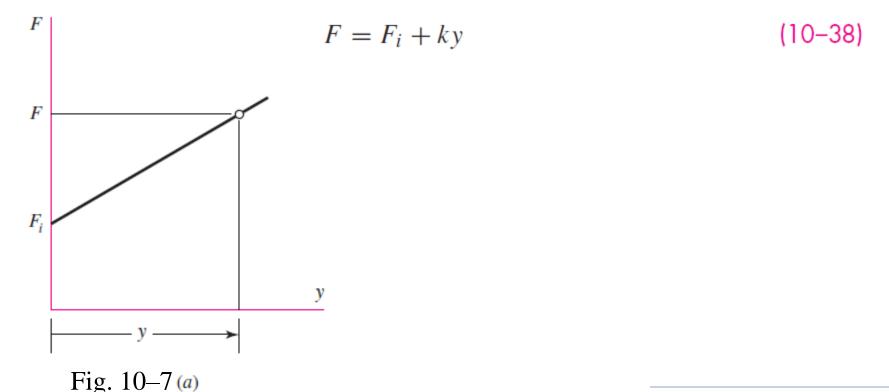
An Alternate Hook Design

• This hook design reduces the coil diameter at point *A*.



Close-wound Extension Springs

- Extension springs are often made with coils in contact with one another, called *close-wound*.
- Including some initial tension in close-wound springs helps hold the free length more accurately.
- The load-deflection curve is offset by this initial tension F_i



Terminology of Extension Spring Dimensions

• The free length is measured inside the end hooks.

$$L_0 = 2(D-d) + (N_b+1)d = (2C-1+N_b)d$$
 (10-39)

• The hooks contribute to the spring rate. This can be handled by obtaining an equivalent number of active coils.

$$N_a = N_b + \frac{G}{E} \tag{10-40}$$

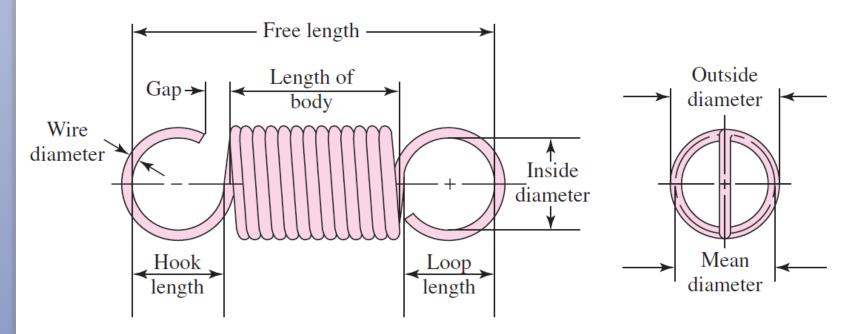
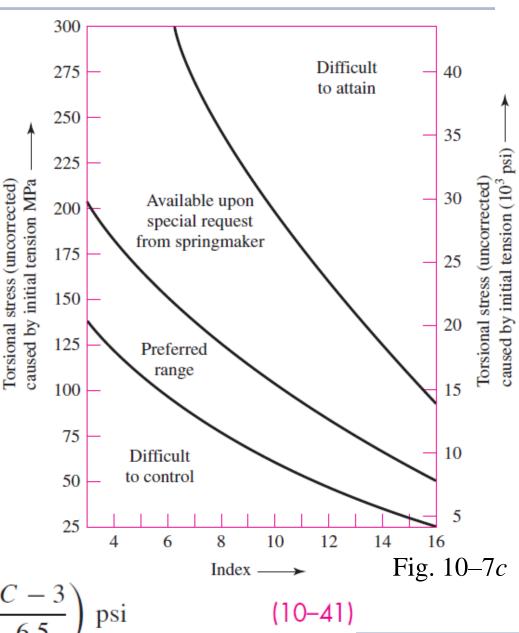


Fig. 10–7_(b)

Initial Tension in Close-Wound Springs

- Initial tension is created by twisting the wire as it is wound onto a mandrel.
- When removed from the mandrel, the initial tension is locked in because the spring cannot get any shorter.
- The amount of initial tension that can routinely be incorporated is shown.
- The two curves bounding the preferred range is given by

$$\tau_i = \frac{33\ 500}{\exp(0.105C)} \pm 1000 \left(4 - \frac{C - 3}{6.5}\right) \text{ psi}$$



Guidelines for Maximum Allowable Stresses

• Recommended maximum allowable stresses, corrected for curvature effect, for static applications is given in Table 10–7.

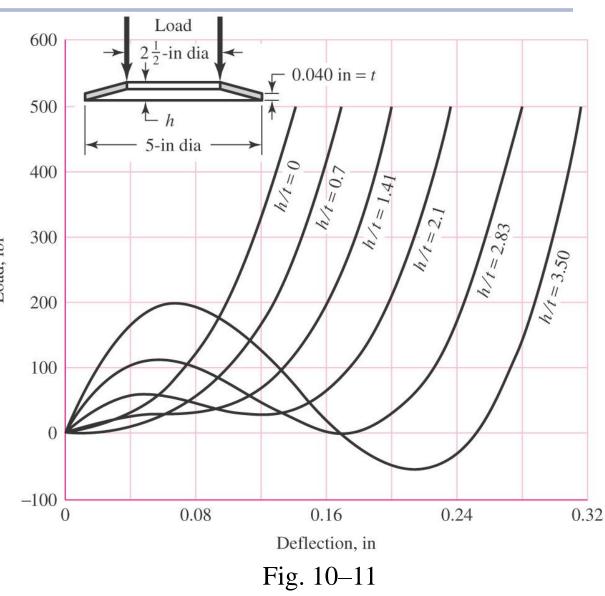
Table 10–7

	Percent of Tensile Strength			
	In Tor	sion	In Bending	
Materials	Body	End	End	
Patented, cold-drawn or hardened and tempered carbon and low-alloy steels	45–50	40	75	
Austenitic stainless steel and nonferrous alloys	35	30	55	

This information is based on the following conditions: set not removed and low temperature heat treatment applied. For springs that require high initial tension, use the same percent of tensile strength as for end.

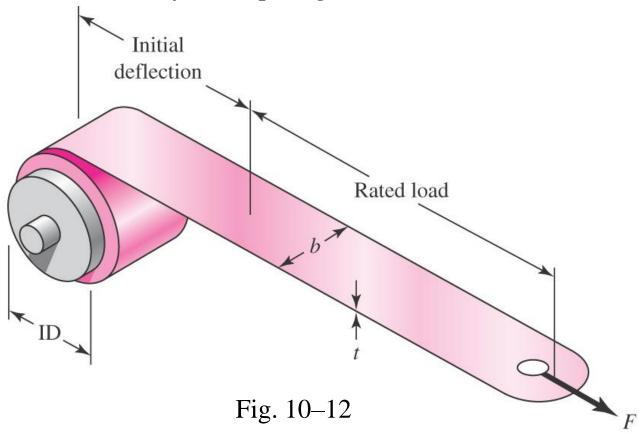
Belleville Springs

- The *Belleville* spring is a coneddisk spring with unique properties
- It has a non-linear spring constant
- With $h/t \ge 2.83$, the solution of the second be useful for snapacting mechanisms
- For $1.41 \le h/t \le 2.1$ the flat central portion provides constant load for a considerable deflection range



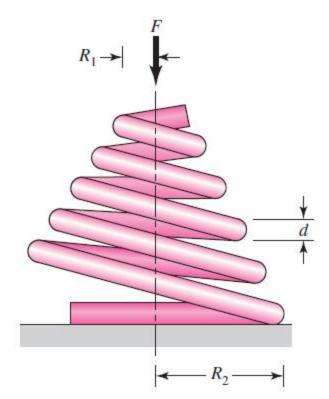
Constant-Force Springs

- The extension spring shown is made of slightly curved strip steel, not flat.
- The fore required to uncoil it remains constant.
- Known as a constant-force spring.



Conical Spring

- A *conical spring* is wound in the shape of a cone.
- Most are compression springs, made with round wire.
- The principal advantage is that the solid height is only a single wire diameter.



Volute Spring

- A *volute spring* is a conical spring made from a wide, thin strip, or "flat", of material wound on the flat so that the coils fit inside one another.
- Since the coils do not stack on each other, the solid height is the width of the strip.
- A variable-spring scale is obtained by permitting the coils to contact the support.

• As deflection increases (in compression), the number of active coils decreases.

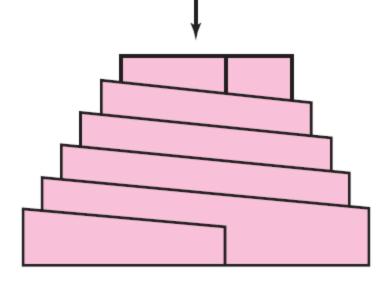


Fig. 10–13*a*

Constant-Stress Cantilever Spring

• A uniform-section cantilever spring made from flat stock has stress which is proportional to the distance *x*.

$$\sigma = \frac{M}{I/c} = \frac{Fx}{I/c} \tag{a}$$

• It is often economical to proportion the width *b* to obtain uniform stress, independent of *x*.

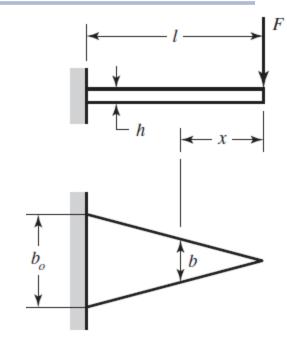


Fig. 10–13*b*

Constant-Stress Cantilever Spring

- For a rectangular section, $I/c = bh^2/6$.
- Combining with Eq. (a),

$$\frac{bh^2}{6} = \frac{Fx}{\sigma}$$

• Solving for *b*,

$$b = \frac{6Fx}{h^2\sigma}$$

• Since b is linearly related to x, the width b_o at the base is

$$b_o = \frac{6Fl}{h^2\sigma}$$

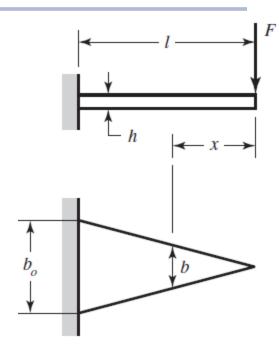


Fig. 10–13*b*

(10-62)

Constant-Stress Cantilever Spring

- Apply Castigliano's method to obtain deflection and spring constant equations.
- The width is a function of x,

$$b = b_o x/l$$

• Integrating Castigliano's deflection equation with *M* and *I* both functions of *x*,

$$y = \int_0^l \frac{M(\partial M/\partial F)}{EI} \, dx = \frac{1}{E} \int_0^l \frac{-Fx(-x)}{\frac{1}{12}(b_o x/l)h^3} \, dx$$

$$= \frac{12Fl}{b_0 h^3 E} \int_0^l x \, dx = \frac{6Fl^3}{b_0 h^3 E}$$
 (10-63)

• Thus, the spring constant, k = F/y, is

$$k = \frac{b_o h^3 E}{6l^3} \tag{10-64}$$

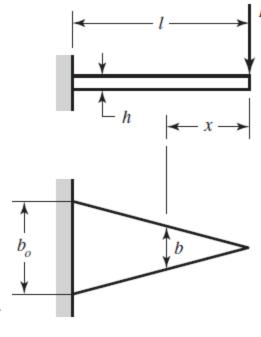


Fig. 10–13*b*