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Mechanical Springs

» Exert Force
» Provide flexibility
 Store or absorb energy
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Helical Spring

 Helical coil spring with round wire

» Equilibrium forces at cut section anywhere in the body of the
spring indicates direct shear and torsion
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Stresses in Helical Springs

o Torsional shear and direct shear ‘F

» Additive (maximum) on inside fiber of
Cross-section
Tr F

Tmax = T + E

11

o Substitute terms
Tmax =T, 1 = FD/2,r =d/2,

T=FD/2

J = 7Td4/32 A= T(d2/4 Fig. 10-1b




Stresses in Helical Springs

SFD n 4F
T —
rd®  wd?

Factor out the torsional stress

d \(8FD
T=|1+
(++25) )

Define Spring Index ¢ = b

d

Define Shear Stress Correction Factor

K. =1+ 1 _ 2C +1
2C 2C

Maximum shear stress for helical spring
SFD

Td3

T = K;

(10-1)

(10-3)

(10-2)



Curvature Effect

Stress concentration type of effect on inner fiber due to curvature

Can be ignored for static, ductile conditions due to localized cold-
working

Can account for effect by replacing K, with Wahl factor or
Bergstrdsser factor which account for both direct shear and

curvature effect |
A4C —1 0615

Ky = 10-4
w=1=—7t ¢ (10-4)
4C 42
3‘{'3-::4(.&__3 (10-5)
8FD
T:KB “O_?}

d?

Cancelling the curvature effect to isolate the curvature factor
Kp 2C(4C +2)

_ _ (10-¢)
K, 4C — 3)(2C + 1)

K, =



Deflection of Helical Springs

Use Castigliano’s method to relate force and deflection

O
- 2GJT 2AG
Substituting T = FD/2,[ = DN, J = 7d*/32, and A = 7d*/4
AF2D3N 2F2DN !
U = +
d*G d*G
_ dU B SFD*N +4FDN
YEOF T T 4G 126 L
B SFD3N N Ly . 8FD3N !
TS 2c?) T T a6 (10-8]
d*G F
k= (10-9) ~——>b—
SD3N

Fig. 10-1a
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Ends of Compression Springs

(b) Squared or closed end, (d) Plain end, ground,
right hand left hand

Fig. 10-2
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Formulas for Compression Springs With Different Ends

Table 10-1
Type of Spring Ends
Plain and Squared or Squared and
Ground Closed Ground
End coils, N, 0 | 2 2
Total coils, N, N, N; # 1 N+ 2 Nsg+ 2
Free length, L pN, + d p(N, + 1) pN; + 3d pN; + 2d
Solid length, L; d(N; + 1) dN; d(N; + 1) dN;
Pitch, p (Lo — d)/N, Lo/(N, + 1) (Lo — 3d)/N, (Lo — 2d)/N,

N, is the number of active coils
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Set Removal

Set removal or presetting is a process used in manufacturing a
spring to induce useful residual stresses.

The spring is made longer than needed, then compressed to solid
height, intentionally exceeding the yield strength.

This operation sets the spring to the required final free length.

Yielding induces residual stresses opposite in direction to those
Induced in service.

10 to 30 percent of the initial free length should be removed.

Set removal is not recommended when springs are subject to
fatigue.



Critical Deflection for Stability

Buckling type of instability can occur in compression springs
when the deflection exceeds the critical deflection y,,

C’ 1/2
.VC]'LU(:;{I _ (l o ﬁ‘,‘fu) } [10-10)
Aeff

L.« IS the effective slenderness ratio

ol
Ao = Fﬂ (10-11)

a 1S the end-condition constant, defined on the next slide
C'; and C', are elastic constants

E

C! =
L7 2(E - G)

27%(E — G)
2G + E




End-Condition Constant

e The aterm in Eq. (10-11) is the end-condition constant.

« It accounts for the way in which the ends of the spring are
supported.

» Values are given in Table 10-2.

End Condition Constant o

Spring supported between flat parallel surfaces (fixed ends) 0.5
One end supported by flat surface perpendicular to spring axis (fixed);

other end pivoted (hinged) 0.707
Both ends pivoted (hinged) 1
One end clamped; other end free 2

*Ends supported by flat surfaces must be squared and ground.

Table 10-2
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Absolute Stability

» Absolute stability occurs when, in Eq. (10-10),
C,l A% >1

 This results in the condition for absolute stability

7D [2(E —G)]'?
Lo <= [ & )] (10-12)
oY 2(_; -+ E
o For steels, this turns out to be
D
Lo < 2.63— (10-13)

o



Some Common Spring Steels

» Hard-drawn wire (0.60-0.70C)
> Cheapest general-purpose

> Use only where life, accuracy, and deflection are not too
Important

 Oil-tempered wire (0.60-0.70C)
> General-purpose
- Heat treated for greater strength and uniformity of properties
o Often used for larger diameter spring wire
e Music wire (0.80-0.95C)
> Higher carbon for higher strength
- Best, toughest, and most widely used for small springs
> Good for fatigue



Some Common Spring Steels

e Chrome-vanadium
> Popular alloy spring steel
o Higher strengths than plain carbon steels
> Good for fatigue, shock, and impact
e Chrome-silicon
> Good for high stresses, long fatigue life, and shock



Strength of Spring Materials

With small wire diameters, strength is a function of diameter.

A graph of tensile strength vs. wire diameter is almost a straight
line on log-log scale.

The equation of this line is
SHf — i [.IO_.I"”

¢ .f m

where A is the intercept and m is the slope.

Values of A and m for common spring steels are given in Table
10-4.



Constants for Estimating Tensile Strength

A
Surzd—m “0_]4)
Relative
ASTM Exponent Diameter, A, Diameter, A, Cost
Material No. m in kpsi - in™ mm MPa - mm™ of Wire
Music wire* A228 0.145 0.004-0.256 201 0.10-6.5 2211 2.6
OQ&T wire" A229 0.187 0.020-0.500 147 0.5-12.7 1855 1.3
Hard-drawn wire* A227 0.190 0.028-0.500 140 0.7-12.7 1783 1.0
Chrome-vanadium wire®  A232 0.168 0.032-0.437 169 0.8-11.1 2005 3.1
Chrome-silicon wire!l A401 0.108 0.063-0.375 202 1.6-9.5 1974 4.0
302 Stainless wire” A313 0.146 0.013-0.10 169 0.3-2.5 1867 7.6-11
0.263 0.10-0.20 128 2.5-5 2065
0.478 0.20-0.40 90 5-10 2911
Phosphor-bronze wire**  B159 0 0.004-0.022 145 0.1-0.6 1000 8.0
0.028 0.022-0.075 121 0.6-2 913
0.064 0.075-0.30 110 2-7.5 932

Table 104
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Estimating Torsional Yield Strength

Since helical springs experience shear stress, shear yield strength
IS needed.

If actual data is not available, estimate from tensile strength
Assume yield strength is between 60-90% of tensile strength
0.6S, <S,, <0.9S,

Assume the distortion energy theory can be employed to relate
the shear strength to the normal strength.

SSy = 0.5778y
This results In

0.358,; < 8y <0.528,, (10-15)



Mechanical Properties of Some Spring Wires (Table 10-5)

Elastic Limit,
Percent of S,; Diameter

Material Tension Torsion d, in
Music wire A228 65-75 45-60 <0.032 29.5 203.4 12.0 82.7
0.033-0.063 29.0 200 11.85 81.7
0.064-0.125 28.5 196.5 11.75 81.0
>0.125 28.0 193 11.6 80.0
HD spring A227 60-70 45-55 <0.032 28.8 198.6 11.7 80.7
0.033-0.063 28.7 197.9 11.6 80.0
0.064-0.125 28.6 1972 11.5 79.3
>0.125 28.5 196.5 11.4 78.6
Oil tempered A239 85-90 45-50 28.5 196.5 11.2 77.2
Valve spring A230 85-90 50-60 29.5 203.4 11.2 1.2
Chrome-vanadium A231 88-93 65-75 29.5 203.4 11.2 7132
A232 88-93 29.5 203.4 11.2 772
Chrome-silicon A401 85-93 65-75 29.5 203.4 11.2 7712

Stainless steel

A313* 65-75 45-55 28 193 10 69.0
17-7PH 75-80 55-60 29.5 208.4 11 75.8
414 65-70 42-55 29 200 11.2 712
420 65-75 45-55 29 200 11.2 712
431 72-76 50-55 30 206 118 79.3
Phosphor-bronze B159 75-80 45-50 15 103.4 6 41.4
Beryllium-copper B197 70 50 17 172 6.5 44.8
75 50-55 19 131 7.3 50.3
Inconel alloy X-750 65-70 4045 31 213.7 11.2 7.2
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Maximum Allowable Torsional Stresses

Table 10-6

Maximum Allowable
Torsional Stresses for
Helical Compression
Springs in Static
Applications

Source: Robert E. Joerres,
“Springs,” Chap. 6 in Joseph

E. Shigley, Charles R. Mischke,
and Thomas H. Brown, Jr. (eds.),
Standard Handbook of Machine

Design, 3rd ed., McGraw-Hill,
New York, 2004.

Maximum Percent of Tensile Strength

Before Set Removed
(includes Kw or Kp)

Material

Music wire and cold- 45
drawn carbon steel

Hardened and tempered 50
carbon and low-alloy

steel

Austenitic stainless 35
steels

Nonferrous alloys 35

After Set Removed
(includes K)

60-70

65-75

55-65

55-65
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Critical Frequency of Helical Springs

When one end of a spring
Is displaced rapidly, a
wave called a spring surge
travels down the spring.

If the other end is fixed,
the wave can reflect back.

If the wave frequency is
near the natural frequency
of the spring, resonance
may occur resulting in
extremely high stresses.

Catastrophic failure may
occur, as shown in this
valve-spring from an over-
revved engine.




Critical Frequency of Helical Springs

e The governing equation is the wave equation

9%u B W 0%u
ax2  kgl? dr?

where k = spring rate

¢ = acceleration due to gravity

[ = length of spring

W

X

M—

weight of spring
coordinate along length of spring

motion of any particle at distance x

(10-24)
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Critical Frequency of Helical Springs

The solution to this equation is harmonic and depends on the given
physical properties as well as the end conditions.

The harmonic, natural, frequencies for a spring placed between
two flat and parallel plates, in radians per second, are

ko
cu:fﬂ:rﬁ—‘{’, m=1,2,3,...

In cycles per second, or hertz,
| [kg

— e=m | e— 10_25
2V w | )

!

With one end against a flat plate and the other end free,

| f ko

f



Critical Frequency of Helical Springs

» The weight of a helical spring is

d* 2d* D Ng)
DNy () = — (10-27)

W= ALy =
= 4

» The fundamental critical frequency should be greater than 15 to
20 times the frequency of the force or motion of the spring.

* |f necessary, redesign the spring to increase k or decrease W.



Fatigue Loading of Helical Compression Springs

» Zimmerli found that size, material, and tensile strength have no
effect on the endurance limits of spring steels in sizes under 3/8
In (10 mm).

» Testing found the endurance strength components for infinite life
to be

Unpeened:

Ssa = 35 kpsi (241 MPa) Ssm = 55 kpsi (379 MPa) (10-28)
Peened:

Ssa = 57.5 kpsi (398 MPa) Ssm = T7.5 kpsi (534 MPa) (10-29)

e These constant values are used with Gerber or Goodman failure
criteria to find the endurance limit.



Fatigue Loading of Helical Compression Springs

» For example, with an unpeened spring with S, = 211.5 kpsi, the
Gerber ordinate intercept for shear, from Eqg. (6-42), Is

S 35
S¢ = - = ~ = 37.5 kpsi

1 S \? 1 55 )3
S, 211.5

 For the Goodman criterion, it would be S, = 47.3 kpsi.

» Each possible wire size would change the endurance limit since
S, Is a function of wire size.




Fatigue Loading of Helical Compression Springs

« It has been found that for polished, notch-free, cylindrical
specimens subjected to torsional shear stress, the maximum
alternating stress that may be imposed is constant and
Independent of the mean stress.

» Many compression springs approach these conditions.
 This failure criterion is known as the Sines failure criterion.



Torsional Modulus of Rupture

 The torsional modulus of rupture S., will be needed for the
fatigue diagram.

 Lacking test data, the recommended value is
Ssu = 0.67S,; (10-30)



Stresses for Fatigue Loading

» From the standard approach, the alternating and midrange forces
are
Fmax - me

F,= (10-31q]
2

Fmax Fmin
F, — —ma (10-31b)

-2

» The alternating and midrange stresses are
8F,D

wd?

(10-32)

Tg = KB

8F D

Td3

T = Kp

(10-33)



Extension Springs

» Extension springs are similar to compression springs within the
body of the spring.

» To apply tensile loads, hooks are needed at the ends of the
springs.

e Some common hook types:

pailr Ot

@

(a) Machine half loop—open (b) Raised hook
AR Efm} A nm}
E): e gj: UL
(c¢) Short twisted loop (d) Full twisted loop

Fig. 10-5



Stress in the Hook

 Inatypical hook, a critical stress location is at point A, where there
Is bending and axial loading.

16D 4
=F|(K 10-34
o4 [( o dz] 10-34)
* (K), Is a bending stress-correction factor for curvature
4Ct - Cy -1 2r
(K)y = ——— =t (10-35)

4C1(Cp — 1) d
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Stress in the Hook

» Another potentially critical stress location is at point B, where

there is primarily torsion.
~ 8FD
g = (K)p — (10-36)
» (K)g Is a stress-correction factor for curvature.
4Cy — 1 2r
(K)p = — C; =22 10-37)

4C, — 4 d
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An Alternate Hook Design

 This hook design reduces the coil diameter at point A.

.
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Close-wound Extension Springs

» Extension springs are often made with coils in contact with one
another, called close-wound.

« Including some initial tension in close-wound springs helps hold
the free length more accurately.

» The load-deflection curve is offset by this initial tension F;

F F =F; +ky (10-38)

¥ =

Flg 10—7 (a)



Terminology of Extension Spring Dimensions

» The free length is measured inside the end hooks.
Lo=2(D —d)+ (Np+ 1)d = ((2C — 1 + Np)d

(10-39)

» The hooks contribute to the spring rate. This can be handled by
obtaining an equivalent number of active coils.

Wire
diameter

A

Gap

(

~ Hook _

“length

, G
N a — Nb + E
Free length =
Lengthof
body g
ﬁ I
N Inside
/ diameter
A {
_Loop _
“length

Flg 107 (b)

A

Outside

diameter

\

J

_}.-

\_/

a
\

(10-40)

Mean |

diameter



Initial Tension in Close-Wound Springs

Initial tension is created
by twisting the wire as it
IS wound onto a mandrel.

When removed from the
mandrel, the initial
tension is locked in
because the spring cannot
get any shorter.

The amount of initial
tension that can routinely
be incorporated is shown.

The two curves bounding
the preferred range is
given by
33 500
exp(0.105C)

+ 1000 (4 —

Torsional stress (uncorrected)

caused by initial tension MPa ——

300

275

250

225

200

175

150

125

100

Available upon
special request
from springmaker

Preferred

Difficult
to attain

40

35

30

25

20

Torsional stress (uncorrected)

caused by initial tension (10° psi) ——

range
— 15
Difficult 10
. to control
I S Y I Y = )
6 8 10 12 14 16
Index — » Flg 10-7c

3 ) ‘
- ps!

6.5

(10-41)



Guidelines for Maximum Allowable Stresses

o Recommended maximum allowable stresses, corrected for
curvature effect, for static applications is given in Table 10-7.

Table 107
Percent of Tensile Strength

In Torsion In Bending
Materials Body End End

Patented, cold-drawn or 45-50 40 5
hardened and tempered

carbon and low-alloy

steels

Austenitic stainless 35 30 55
steel and nonferrous
alloys

This information is based on the following conditions: set not removed and low
temperature heat treatment applied. For springs that require high initial tension,
use the same percent of tensile strength as for end.
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The Belleville
spring Is a coned-
disk spring with
unique properties
It has a non-linear
spring constant

With h/t > 2.83, the
S curve can be
useful for snap-
acting mechanisms

For 1.41<h/t<2.1
the flat central
portion provides
constant load for a
considerable
deflection range

-
5

Load, 1bf

Belleville Springs

600

500

400

300

200

[S—

00

0

—-100

Load
23-in dia
Y
—

3 h
L 5-in dia 4>I

f 0.040 in=1
T

S8
Q N ~ -
R J el
! s
’ S
() \
e
0.08 0.16 0.24
Deflection, in
Fig. 10-11



Constant-Force Springs

» The extension spring shown is made of slightly curved strip steel,
not flat.

» The fore required to uncoil it remains constant.
» Known as a constant-force spring.

Initial
deflection

Rated load

Fig. 10-12



Conical Spring

» A conical spring is wound in the shape of a cone.
» Most are compression springs, made with round wire.

» The principal advantage is that the solid height is only a single
wire diameter.
F
R|—>I ‘1—




Volute Spring

A volute spring is a conical spring made from a wide, thin strip, or
“flat”, of material wound on the flat so that the coils fit inside one
another.

Since the coils do not stack on each other, the solid height is the width
of the strip.

A variable-spring scale is obtained by permitting the coils to contact the
support.

As deflection increases (in compression), the number of active coils
decreases. 1 -

Fig. 10-13a



Constant-Stress Cantilever Spring

 Auniform-section cantilever spring made ~
from flat stock has stress which is | Y
proportional to the distance x. T -
M Fx
=Tk T/ ()

« It is often economical to proportion the
width b to obtain uniform stress,
Independent of x.

‘4— _— —1-‘

Fig. 10-13b




Constant-Stress Cantilever Spring

For a rectangular section, I/c = bh?/6.

Combining with Eqg. (a), ' Y
bh®>  Fx L
6 o
Solving for b, T
6F x b,
h— 1,., X i )
h-o —
Since b is linearly related to x, the width b, at Fig. 10-13b
the base Is
S (10-62)

2

h=o



Constant-Stress Cantilever Spring

* Apply Castigliano’s method to obtain
deflection and spring constant equations.

e The width i1s a function of x,
b=>b,x/I

» Integrating Castigliano’s deflection equation
with M and | both functions of x,

f IW({}IW/()F) —Fx(—x) J
V — — — a.x
‘ 0 El 0 ]](hg\.//)!r
12F1 (! 6F 3
— xdx = — (10-63)
b3 E f L= E

» Thus, the spring constant, k = F/y, is

b,h*E
k== (10-64)

‘ RFT ‘

Fig. 10-13b



