
HIGH RENOLDS NUMBER FLOW      BOUNDARY LAYERS
(Re     ∞)

BOUNDARY LAYER Thin region adjacent to surface of a body where viscous forces 
dominate over inertia forces

Re = Re >> 1  
  

inertia forces
viscous forces
⎛ ⎞
⎜ ⎟
⎝ ⎠

Boundary
layer
separationWake: 

viscous
effects not 
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Flow field
around an 
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s negligible
Vorticity zero
(Inviscid
potential flow)

BOUNDARY LAYER THEORY



Steady ,incompressible 2-D flow with no body 

forces. Valid for laminar flow 

O.D.E  for              
To solve eq. we first ”assume” an approximate velocity profile inside the B.L
Relate the wall shear stress to the velocity field

Typically the velocity profile is taken to be a polynomial in y, and the degree of fluid 

this polynominal determines the number of boundary conditions which may be 

satisfied 

EXAMPLE: LAMINAR FLOW OVER A FLAT PLATE: 
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High Reynolds Number Flow

• Laminar boundary layer        predictable
• Turbulent boundary layer poor predictability

• Controlling parameter  

• To get two boundary layer flows identical match  Re
(dynamic similarity)

• Although boundary layer’s and prediction are complicated,simplify the N-S 
equations to make job easier

2-D , planar flow 
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Dimensionless gov. eqs.

X ;

Y;

“Naïve” way of solving problem for

If you drop the viscous term           Euler’s eqs. (inviscid fluid)
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• We can not satisfy all the boundary B.C.s because order of eqs. Reduces by 1

Inside  B-L can  not get rid of viscous terms

Derivation of B-L eqs. From the N-S eqs

• Physically based argument :determine the order of terms in N-S

• Limiting procedure as     Re          ∞ eqs. and throw out small terms
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Neglect since of order
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small relative to

To good approximation pressure at the edge of B-

L. is equal to pressure on boundary layer.

• Time – dependant                                                  known from the other 

flow

• Pressure at all points is the same

• Only need to consider x-direction B-L. eqs.

*

*

P
y

∂
∂

*( )δ 
*

*

P
x

∂
∂

(1) 

( )P P x≅

( , )P P x t≅



Prandtl (1904)
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B-L.eqs.
still non-linear
but parabolic type

unknows u,v (x,y,t)

known from the potential flow( , )P P x t≅



Need B.C.s & I.C.(time dependant)

• 2-D, steady

BCs

• u=   =0 at y=0

• u=u(y) at x=0

• u=      (x) y                    (y                 )                 marching condition 

• B-L. eqs. can be solved exactly for several cases
• Can approximate solution for other cases
Limitation of B.L egs.: where they fail?
(1)   Abrupt chances

ν
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(2)    Eqs. are not applicable near the leading edge

* 1
L
δδ = 〈〈L is small                                            invalid

(3) Where the flow separates not valid beyond the separation point

Separation point

Bernouilli eqs.           =constantρ
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Valid along the streamlines

substitute the B.L eqs u,v can be found

known

0dp
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SIMILARITY SOLUTION TO B.L. EQS

Example 1

Flow over a semi-infinite flat plate

Zero pressure gradient                               p = constant

Steady ,laminar & U=constant (            )0dp
dx

=



• Bernouilli eqs. outsideB.L

U=constant , 

Governing (B.L. eqs.) become
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B.C.
• y=0      u= v =0 (no-slip)      &     y            ∞ , u          U
• x=0      u=U

Blasuis(1908) :

1.Introduce the stream function            (x,y)
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• Now, assume that we have a similarity “stretching” variable, which has all velocity 

profiles on plate scaling on .
i.e
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Or At x=0 

F’(    )=1 same with       BC 3)       Matching B.C

• Solution to blasius eg a)power series                                                 

b)runge-kutta

• results     tabulated form for F,F’,F’’,etc

p.g 121

F( η )  dimensionless function  
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##
0 0                                  0                     0.33206

F’’= 0.33206                               From the solution
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• Velocity profile

5

[ ]1
2

1 ( ' )
2

1 Re '
2 x

U F F
x x

F F
U

νψν η

ν η

∞

−

∞

∂
= − = −

∂

= −

1      (5 1 3.28)
2

10.86
Rex

U x
x

U

νη ν

ν

∞
∞

∞

∞

→ ∞ = −

=

RexU
ν

∞0.8

ηUy
xγ
∞=

5

F’= u
U∞



Shear stress distribution along the flat plate
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Non dimensionalize :
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Up to the point we are considering

Drag force acting on the flat  plate

We have to integrate shear stress
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6
xfor Re  >10        turbulent drag becomes considerably greater→

Boundary Layer Thickness : δ

     at 5     0.99      (Table)
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:defined as the distance from the wall for which u=0.99Uδ ∞

Boundary Layer Parameter (thicknesses)

Most widely used is  but is rather arbitrary   y=   when    u=0.99 Uδ δ ∞



hard to establish 
more physical parameters are needed

Displacement thickness: δ

U∞ U∞

δ*δ *δ

an imaginary displacement of fluid from the surface to account for “lost” mass flow in boundary 
layer
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*if  .      always by definition consρ δ δ= >

Momentum  thickness: θ

U∞

θ

an imaginary displacement of fluid of velocity          to  account for “lost” momentum due 
to the formation of a boundary layer velocity profile

U∞
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0 0

Mass flow in B.L
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Various thinknesses defined above are,to some extend,an indication of the distance

no
over which viscous effects extend.
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FALKNER-SKAN SIMILARITY SOLUTIONS

Stagnation-point flow (Hiemenz flow)     
Similarity methods

Flow over a flat plate (Blasius flow)
( , )x y η⇒



Falkner & Skan (1931) general similarity solution of the B-L eqs.

Family of similarity solutions to the 2-D,steady B-L egs. 

Look for general similarity solutions of the form
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Transformed gov. Eq.



If a similarity solution exists, eq.(4) must be an ODE for the function f in terms of η.

So, coefficieuts α & β must be constant for a similarity solution

( )2     Falker-Skan "' " 1 ' eq.  (0 5)f ff fα β ⎡ ⎤+ + − =⎣ ⎦

B.C same as for flat plate       (0) '(0) 0
'( ) 1

 : BCs don't depend on ,
Exact solutions to the B-L. Eqs. May be obtained by pursuing the following PRO
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   FLOW OVER WEDGE

    1,    arbitrary constant 
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= − ⇒ = −



2

2

(6 ')      

Divide eq.  (6b') by (7)

ln ln ln    outer flow is that over a wedge of angle  (Fig.)
2

        

1 1
2

                                                       

( )

dU
U dx x

U x

dUb
dx

U cxx c
β
β

ζ νβ

β πβ

β

β

β

−

=
−

=

+ ⇒ ==
−

2(1 )
2 2

2

2

2

1

    

       
2

  (9)

    Solve the BVP

''' '' 1 ( ') 0

(0) '(0) 0
      ' 1    Solve numerically to get  ( ), '( ), '

(2 )( )

Step #3

'( )

dU c x
dx

f ff f

f f
as f f

c

f

x x

f

β
β

β
β

βζ νβ ζ νβ
β

β

η η η η

ν βζ

− −

−
−

−= =
−

⎡ ⎤+ + − =⎣ ⎦

= =
→∞ →

−
=



( ) ( )

( )
( )( )

1
2 1 2

:    Go back to the physical cStep oordinate 

( , ) ( ) ( )  = 2   
( ) 2 /

 4

y yx y U x x f c x f x
x c

β β βψ ζ β ν
ζ β ν

− − − −
⎛ ⎞⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

STAGNATION-POINT ;  FLO =W 1  1β α=

Flow over a wedge     Let  1β→ =

2

Eq. (8) gives,  
( )

(9) ( )                 "' " 1 ( ') 0

                                   (0) '(0) 0   as     '( ) 1

                                        ( , )  x 
/

Not

U x cx

x f ff f
c

f f f
yx y c f
c

νζ

η η

ψ ν
ν

=

→ = + + − =

= = →∞ →

⎛ ⎞= ⎜ ⎟
⎝ ⎠

e: See Hiemenz flow
Exact solution to the full Navier-Stokes equations obtained by Hiemenz for a stagnation point.



FLOW IN A CONVERGENT CHANNEL 0   ,    1α β= =

Boundary layer flow on the wall of a 
convergent channel.
Exercise:  pg. 132.
Solve the BVP (F-S. eq.)

More on similarity solutions to the B.L.
Evans (1968) “Laminar Boundary Layers”
Numerical Solutions
Finite differences
H.B. Keller (1978)
Ann. Rev. of Fluid Mech. Vol.10.pp. 417-433
Finite Element Methods, Finite Volume Methods
Spectral (Element) Methods 

APPROXIMATE SOLUTIONS:
Solve exact eq. approximately
Von Karman Momentum Integral Eqn
(General Momentum Integral Equation for Boundary Layer)



*

  Develop an eqn. which can accept "approximate" vel. profiles as input & yield accurate 
(close, but approximate) shear stress , ,   as  output.

  Integrate the differen

I

tial B-L. eqs. Approac

ea:

h:

d

a

δ δ θ

2

2

cross the B-L.  0 y

Start with B-L. eqs.

                              

                             0

.          0     , 0
                    

First note   

u u dU uu v U
x y dx y

u v
x y

BC y u v
y u U

δ

ν

δ

≤ ≤

∂ ∂ ∂
+ = +

∂ ∂ ∂
∂ ∂

+ =
∂ ∂

= =
= =

( )

( ) 2

2
0 0 0

( )         ( )

Substitute into B.L eq. &  integrate from y=0 to y= .

                                           2

u uv v uv u uv u continuity
y y y y

v u
yx

uvu dU uu dy dy U dy
x y dx

x

y

δ δ δ

δ

ν

∂ ∂
= −

∂
∂ ∂ ∂ ∂ ∂

= − = +
∂ ∂ ∂ ∂ ∂

∂∂ ∂
+ = +

∂

∂ ∂ ∂∫ ∫ ∫

( )

0

0
0 ?

                                                 (1)               (2)                 (3)                (4)

Consider term  (2)                         0( , )

dy

uv
dy uv U v x

y

δ

δ
δ δ

∂
= = −

∂

∫

∫ �	




0

0 0 0 0

2

2
0 0 0 0

0
0

Integrate cont. eq.    dy

0    ( , ) 0 0             

Integrate term (4

( , )

)          

 

y y

y

u v u udy dy dy v x U U dy
x y x x

u u u u udy dy
y y y y y y

d

x

y

v

u
d

δ

δ δ δ δ

δδ δ

δ

δ

τ µ

δ

= =

=

∂ ∂ ∂ ∂
+ = ⇒ + − = = −

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= = = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

= ⇒

∫

∫ ∫ ∫ ∫

∫ ∫

( )

2
0 0

0 0

0

2
0

0

00

0

( )  (4)                         Term(1) 2

( )B-L. eq. becomes    

                             

u uu dy dy
x x

u dUdy U U dy
x dx

uUu dUU

u dy
x

u dy
x

U dy u
x x dx

δ

δ

δ δ

δ δ

δ

τ τν
µ ρ

τ
ρ

∂ ∂
⇒ − = − ⇒ =

∂ ∂

∂
− −

∂

⎛ ⎞∂∂
= = −⎜ ⎟∂ ∂

∂

∂ ⎠

=

∂

⎝

∂

∫ ∫

∫ ∫

∫

∫

∫
0

dy
δ

∫

=0



( )

( ) ( )

2
0

0 0 0 0

2 0

0 0

2

( )Thus, get       

                                  

                                  

uUu dU dUdy dy u dy U dy
x x dx dx

dUu uU dy u U dy
x dx

u
x

δ δ δ δ

δ δ

τ
ρ

τ
ρ

∂∂
− + − = −

∂ ∂

∂
− + − = −

∂

∂
−

∂

∫ ∫ ∫ ∫

∫ ∫

�����	����
�����	����


���	��


( )
0

uU dy
δ

∫

Using Leibnitz’s rule permits the order of integ. & dif. to be interchanged

2
2 0

2
0 0

1u u u dUU dy U dy
x U U U dx

δ δ τ
ρ

⎛ ⎞∂ ⎛ ⎞− + − = −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠
∫ ∫

Multiply by  -1 & factor U terms out of integrals,

2 0

0 0
( ) *( )

1 1

x x

u u dU uU dy U dy
x U U dx U

δ δ

θ δ

τ
ρ

⎡ ⎤
⎢ ⎥∂ ⎛ ⎞ ⎛ ⎞− + − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
���	��
 ��	�




2 * 0

2

2 *

*

0
2

( )

       

2        ,               ( )   only

Divide eq. by U   & get                  

     ( 2)               

(

2

12 )

f
f

d dU
d

dUU U
x dx

dU dU U x
x dx x dx

Cd dUor H H C
dx U dx

x U dx U
τθ δ θ

τθ δ
ρ

θ θ θθ θ

τθ θ δ
θ

ρ
+ +

∂
+ =

∂

↓
∂ ∂

+ →
∂

+

=

∂

+ = = = 0

2
           H= shape factor1

2
Uρ

Ordinary Differential eq. for θ(x) & is called von Karman Momentum Integral eqn. or 

Generalized momentum integral equation

To solve the integral eq. we first “assume” an approximate velocity profile, i.e. one that “fits” & 

has proper “shape” and satisfies the proper B.C we do thin by using similarity concept again 

& writing potential similarity velocity profiles in terms of the variable ,                      & apply 

B.C & get particular form.

evaluate θ(x), δ*(x) and from their definitions.

integral equation can be solved for the B.L. thickness, δ(x)

( )
y
x

η
δ

=

0τ



η

0 ( )nu
dy

τ ∂∼
U y δ=

An approximate velocity profile, for example

2u a b c
U

η η= + +

* 0
2

1( 2 )d dU
dx dx U

τθ δ θ
θ ρ

+ + =

( )xθ

2 ( )u a b c f
U

η η η= + + =

2u a by cy= + +

Steady ,incompressible 2-D flow with no body 

forces. Valid for laminar and turbulent flow 

O.D.E  for    

To solve eq. we first ”assume” an approximate velocity profile inside the B.L

Relate the wall shear stress to the velocity field

Typically the velocity profile is taken to be a polynomial in y, and the degree of this polynomial 

determines the number of boundary conditions which may be satisfied 

EXAMPLE: LAMINAR FLOW OVER A FLAT PLATE:

laminar profile   later as an example

or 



B.C 1-)u=0 at   y=0 (   =0) a=0 b=2

2-)u=U at  y=     (    =1) 1=b+c c=-1

3-) at  y=      (    =1) 0=b+2c                 

Now use the approximate velocity profile to obtain terms in the momentum integral eq.

NOTE: Using the approximate velocity profile across the B.L will reduce the momentum 

integral to an O.D.E for the B.L thickness, δ (x).

2 22 2( ) ( )u y y
U

η η
δ δ

= − = −

*

0

(1 )u dy
U

δ

δ = −∫ ( )
y
x

η
δ

= dydη
δ

=

1 1
* 2

0 0

(1 ) (1 2 )u d d
U

η

δ δ η δ η η η
=

= − = − +∫ ∫
1

* 2 3

0

1( )
3 3

δδ δ η η η= − + =

0u
y
∂

=
∂

η

δ

δ

η

η



or

1

0 0

(1 ) (1 )u u u udy d
U U U U

ηδ

θ δ η
=

= − = −∫ ∫
1

2 2

0

(2 )(1 2 )dθ δ η η η η η= − − +∫ 2
15

θ δ=

0
00 0

1 2
y

du du d du U
dy d dy d ηη

ητ µ µ µ µ
η δ η δ== =

= = = =

(2 2U η−
0

)
η=

2
0

0

2 2( ) ( ) 2
y

y y UU
y

τ η µ
δ δ δ=

∂ ⎡ ⎤= − =⎢ ⎥∂ ⎣ ⎦

* 0
2

1( 2 )d dU
dx U dx U

τθ δ θ
ρ

+ + =

Momentum Integral eq. becomes



For a flow over a flat plate U=const.

ODE for     (x).solve (x)first then 

Solving for    ,

,  ,

,   

2

2 4 1 2 2( ) ( )
15 3 15

d dU U
dx U dx U U

δ δ δ µ ν
δρ δ

+ + = =

0dU
dx

=

δ δ2 2
15
d
dx U
δ ν

δ
=

*
0, ,δ θ τ

δ
2

0 0

15 15
2

x xd dx
U U

δ ν δ νδ δ = ⇒ =∫ ∫

5.47730 5.477
Rex

x x x
U U
ν νδ = = = Rex

Ux
ν

=
* 1.826

3
x
U

δ νδ = =

2 0.73
15

x
U

δ νθ = =
0

2

0.73
1 Re
2

f
x

C
U

τ

ρ
= =

0 2 Uτ µ
ν

=



Comparing to (exact) blasius solution

note:2nd order profile 
but it should be zero

Additional BCs need to be imposed 

(=0 for flat plate)

5,477 1.095
5blasius

δ
δ

= =

*

*

1,826 1.061
1,72blasius

δ
δ

= = 10%∼

2

2 2

2( ,0) 0u Ux
y δ
∂

= − ≠
∂

0.73 1.099
0.664B

θ
θ

= =

2 3 4u A B C D E
U

η η η η= + + + +

u
0y

u
x

ν
=

∂
+

∂

2

2
0 0

1

y y

u P u
y x y

ν
ρ= =

∂ ∂ ∂
= − +

∂ ∂ ∂

2

2
0

1

y

u P dUU
y x dx

ν
ρ

=

∂ ∂
= = −

∂ ∂



BC#5 at   y= all higher derivates should also be zero at y=        
for a smooth transition from the B-L. to the outer flow 

Note: 2nd order profile

BC#4

by employing 3rd order profile , i.e the above condt. may be imposed

More accurate results are obtained

Flat Plate at zero incidence

Vel. Dist.

δ 2

2 0u
y
∂

=
∂

δ

22( ) ( )u y y
U δ δ

= −

2

2 2

2( ,0) 0u Ux
y δ
∂

= − ≠
∂

2 3u a b c d
U

η η η= + + +

( ) ( )u yf f
U

η
δ

= =

( )f η η=



,

Note 1:   Once the variation of        is known, viscous drag on the surface can be evaluated 

by integration over the area of the flat plate.

Note 2:   B-L thickness at transition 

air (         )   

less than 1% of development length,x.

viscous effects are confined to a very thin layer near surface of body 

2( ) 2f η η η= −

33 1( )
2 2

f η η η= −

3 4( ) 2 2f η η η η= − +

( ) sin( )
2

f πη η=

4.64
Rex

δ =

5.84
Rex

δ =

4.80δ =

0.647
Ref

x

xC =

0.685
Ref

x

xC =

0.65fC =

0τ

5Re 5.10x =

30mU s= 0.24x m= ν 5.48 0.00775
Rexx

δ
= =

0.00775 1.86x mmδ = = ←



Boundary layer seperation

Separation wake formation
increase in drag
total force exerted on body in direction of
fluid motion

Boundary layers have a tendency to separate and form wake

Wake leads to large streamwise pressure differentials across the body 

results in substantial pressure drag (form drag)

For large Re (      or higher) bluff bodies (e.g circular cylinder) pressure drag constitutes 

almost all the total drag

Total drag = pressure drag + viscous drag

due to shear stress along the surface

due to pressure differences caused by separation of flow

Wake

410



2) AIRFOILS-LIFT drops sharply “STALL” due to separation 

force normal to flow direction
Shape of streamlines near point of separation 

3) FLAT PLATE
~  No separation

REMARK: After separation point ,external (decelerating) stream ceases to flow 
nearly parallel to the boundary surface

S

chord

t
No separation



Condition for separation

Pressure gradient ,

>0     adverse pressure gradient (decelerating external stream) increasing 
pressure in the flow direction 

<0     favourable P.G and          =0  (zero pressure gradient)

NOTE: pressure gradient along a B.L is determined by the outer flow

(Bern. Eq.)

Separation occurs only for APG condition

o Momentum contained in the fluid layers adjacent to surface will be insufficient 

to overcome the force exerted by the pressure gradient , so that a region of 

reverse flow occurs.

dP
dx

dP
dx

dP
dx

dP
dx

1dU dPU
dx dxρ

= −



i.e at some point downstream, the APG will cause the fluid layers adjacent to the surface to 

flow in a direction opposite to that of the outer flow          B.L separation 

velocity profiles in a

B.L near separation 

Note :shear stress changes its sign after separation 

Definition of separation point = point at which the shear (or velocity gradient)
vanishes

( ,0) 0,   for separationu x
y
∂

=
∂

δ

0

0u
y
∂

>
∂

0

0u
y
∂

=
∂ 0

0u
y
∂

<
∂

. pointsep



• Question show that separation can occur only in region of adverse pressure gradient !
Steady state B.L eqs.

If <0

the same

u
0y

u v
x =

∂
+

∂

2

2
0 0

1

y y

u P u
y x y
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∂ ∂ ∂
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∂
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∂
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∂
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=
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case 

constant 
slope

Case APG

PI= point of inflection where 

0P
x

∂
=

∂

yy y

2

2 0u
y
∂

=
∂

u
y
∂
∂

u

0P
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∂
>

∂
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2

2 0u
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2

2 0u
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∂

=
∂

2

2 0
wall

u dP
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µ ∂
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∂
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y y

u
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Control of separation by suction

Control of separation by variable geometry and by blowing 

How to calculate the separation point ?

Goldstein

Stewartson

The Karman – Pohlhausen Approximate Method

Fourth order polynomial for u (y). Pohlhausen (1921)

Step #1 :coefs. a,b,c,d,e, in general, will be functions

of x, so that solutions which are not similar

may be obtained.

2 3 4u a b c d e
U

η η η η= + + + +

yη
δ

=



δ

2

2

( )u U x dU
y dxν
∂

= −
∂

y=0 y=

u=0 u=U

0
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u
y δ=

∂
=

∂
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dxµ

=
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2 0
y

u
y δ=

∂
=

∂

2

2
0

2

2 2
0

1 1( ) ( )

1            =

y

u u u
y y y

u U dU
dxη

δ η δ η

δ η ν

=

=

∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂

∂
= −

∂

2 2

2

impose B.C.s
=0      0=a                          :dimensionless variable; a measure of 

                                                 pressure gradient in outer flow

( )
=0     2

u dUU
dx

η

δη
η ν

Λ

∂
= −Λ = − =

∂
1    1=a+b+c+d+e

=1     0=b+2c+3d+4e
=1     0=2c+6d+12e

solution  a=0   b=2+     c=-    d=-2+    e=1-
6 2 2 6

c

η
η
η

=

Λ Λ Λ Λ
→



2

3

3

                                  

where  F( )=1-(1+ )(1- )                 Pohlhausen parameter        
           G( )= (1-

(x)=  -12 1( ) ( )      (1

)

) 2

6

u F G dU
dxU

η

η η η

η η

ν

η

δη= ≤Λ Λ Λ ≤+

Note : for             velocity profile corresponds to a flat plate

Plot function F(    )   &  G(      )

0Λ =

ηη

1
η

F(    )ηG(    )η

0.25

0.016
1

1

1

12Λ < −0Λ <

0Λ =

0Λ >

12Λ >

u
U

η



thu0 :    ( )    Flat surface in which the represantation is a 4  order  polynominal
U
u>12     1           vel. in B.L.  is not expected to exceed that of the outer flow locally.
U

                   

F ηΛ = =

Λ >

               So  must be less than 12
<-12                   negative velocity  reverse flow.B.L. theory  is not applicable after separation

Λ
Λ ⇒ ∴

*δ
1

*

0 0
1

3 3

0

1 2

0

( ) (1 ) (1 )

3          = (1+ )(1- ) (1 ) ( )        (2)
6 10 120

    momentum thickness        

37(x)= (1 ) ( )                          (3)
315 945 9072

wall

u ux dy d
U U

d

u u d
U U

δ

δ δ η

δ η η η η η δ

θ δ η δ

= − = −

Λ Λ⎡ ⎤− − = −⎢ ⎥⎣ ⎦

Λ Λ
− = − −

∫ ∫

∫

∫

N

0

0 0
0

 shear stress  : 

( )                         (2 )
6

b

U u U U

η

τ

τ µ τ µ
δ η δ=

∂ Λ
= = +

∂

Step#2  Displacement thickness



Uθ
ν

Step #3 Plug into the general momentum eq.  Multiply the mom. Eq. by

* 0

2 * 2
0

2

2 2 2
2

2

*

2

(2 )            or

1 ( ) (2 )     (5)
2

(x)=   evaluate each term in terms of (x)

37( ) ( )       
315 945 9072

3(
10 120

( )

U d dU
dx dx U
d dUU
dx dx U

dU
dx

dU dU KK x
d dxx

x

τ θθ θ θθ δ
ν ν µ

τ θθ δ θ
ν θ ν µ

δ
ν

θ θ
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θ
δ ν
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Λ Λ

Λ Λ
= Λ = − − Λ =

Λ
−

=

=

2

2
0

)
( )            (6)

37( )
315 945 9072

f( )    f(x)    but K=K(x)    f(K)

37( )   ,  g(K)=(2+ )( )
6 315 945 9072

f K

g K
U

τ θ
µ

=
Λ Λ

− −

Λ → ⇒

Λ Λ Λ
= − −



[ ]

[ ]{ }

0

2

2

2

(2 )
6

1 ( ) 2 ( ) ( )       (7)
2

where   K= ( )

 , let us take Z=  as the new dependent variable so that K=Z  and the mom,int. becomes

U 2 ( ) 2 ( ) ( U)   or    

U

dU f K K g K
dx

dU K x
dx

d

dZ

UNow
dx

dZ g K f K K H K
dx dx

τ µ
δ
θ
ν

θ
ν

θ
ν

Λ
= +

+ + =

=

= − + =

st

   (8)  

H(K)   is known (1  order nonlinear , ODE for Z , solve numericallay , start x=0 stop =-12 
                                                                                         

)

 

(

  

H K=

→ Λ

[ ]                                        separation )
but complex H( )
ODE  for Z(x) - mom. int. reduces to above form IVP for OD
for any (x)  K & H(K) may be evalu ted

E
a

Λ

Λ →

0.0783

0.47

H(K)

0.0783

0.47

H(K)

K

H(K)=0.47-6K  (9)
approximation

Linear in K over the range of interest



5
6

0

6
5

Mom. Int. eq. becomes

       U 0.47 6 ( ) 0.47 6       or

1       ( ) 0.47
U

            

0.47( ) ( )  
( )

                 

        Mom. int. may be expressed interms of this quadra
x

dZ dUK H K Z
dx dx
d ZU

Z x U d
U

dx

x
ς ς

= − = = −

=

= ∫

2

2 5
6

0

ture

then , since Z=  , the value of  will be

0.47          ( ) ( )       (10)
( )

x

x U d
U x

θ θν

νθ ς ς= ∫

Procedure: Potential flow problem should be solved to yield the outer

velocity U(x) (for a given boundary shape) 

Use eq. (10) to evaluate the momentum thickness  ( )xθ



2 2
2

Pr  parameter (x) may be evaluated from the relation

      (11)     difficult to find (x)

 found (x), (x) is evaluated from eq.   (3)

3

37  (x)

7( ) ( )
315 945

= (
315

072

945

9

essure

havi

dU K x
x

n

d

g δ

θ δ

θ
ν

Λ Λ
= = − −

Λ

Λ

Λ

Λ
− −

2
*

*

0

)       and  eq.      (2)
9072

3( )        
10 120

u ( ) ( )  vel. distribution eq (1)
U

shear stress at the surface is given by eq.    (4)

(2 )
6

F G

U
u

δ

δ δ

η η

τ µ

Λ

Λ
= −

= +Λ ←

Λ
= +



In practice it is difficult to evaluate the quality           from eq (11) unless 

is a constant

Instead : choose specific functions            and use foregoing eqs. to 

determine the outer-flow vel. & hence the nature of the boundary shape

EXAMPLE Karman-Pohlhausen approx. applied to the case of flow over 

a flat plate

( )xΛ

Λ

( )xΛ

2

x

2

x xtan          eq. (10)    0.47     =0.686          =0.686
U Re

0   eq.  (11)

 

0 ( )

xU cons t
U

dU
dx

dU
dx

ν νθ θ θ

δ
ν

= → = →

= ⇒

⇓

Λ =



* *

0
0

2 x

37 x 5.84 eq. (3)       (x)=           =5.84
315 U Re

3 1.75.(2)           
10 Re

0.686.(4)     2          1 Re
2

x

x

xFrom

xeq

Ueq
U

νθ δ δ

δ δ δ

ττ µ
δ ρ

→ =

⇒ = → =

⇒ = ⇒ = Θ
Exact          0.664

4th order vel. pr          0.686

2nd order vel. pr          0.73

3.5% error

STABILITY OF STEADY FLOWS

Boundary – Layers

Instabilities

Usually laminar flow becomes turbulent flow



EXAMPLE: Flow over a circular cylinder

~ 82D
~ 108D

Re

DC

Laminar B.L                   Turbulent B.L

• Due to vel. profile difference between lam. & turb. flow

Significant drop in the drag coefficent DC•

x

y
 flow

V(y) is known
undisturbed flow "base flow"

v=0

parallel

⎫
⎬
⎭



Linear Stability Analysis: The  Method of Small Perturbations

Introduce arbitrary small (infinitesimal) disturbance into the flow eqs. & determine whether 

this disturbance grows or decays with time

if the disturbance grows with time, the flow (the B.L) will be classified as unstable

if the disturbance decays with time, the flow (the B.L) will be classified as stable

marginal stability (neutral): the disturbance neither grows nor decays

Non linear stability analysis: no restriction on disturbance size 

A1 Introduce small disturbance to the velocity profile

u(x,y,t) = V(y) + u’(x,y,t)

0

( , , ) = ( ) + '( , , )
( , , ) 0 '( , , )
( , , ) ( ) '( , , )

u x y t V y u x y t
v x y t v x y t
p x y t p x p x y t

= +
= +

0

u' ' p'   1      ;    1    ;    1
V V p

vwhere << << <<



A2 Substitute   A1  into the N-S eqs. & continuity

2
0

2

2 2

2 2

2 2

2 2

' '          0

' ' ' 1 ' ' '  ;  ( ') '( ) ( ) ( )

' ' ' 1 ' ' '  ;  ( ') ' ( )

u v
x y

u u dV u dp u ux V u v
t x dy y dx x y
v v v dp v vy

dp V
dx y

V u v
t x x dy x y

ν
ρ

ν
ρ

∂ ∂
+ =

∂ ∂

∂ ∂ ∂ ∂ ∂
+ + + + = − + + + +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + + = − + +

∂ ∂

∂

∂

∂

∂ ∂

A3 When the perturbation is zero, the above eqs. reduce to

2
0

2

10 dp d V
dx dy

ν
ρ

= − +
Undisturbed flow

(parallel)

A4 Drop term A3 in x-mom. Eq.

Since the perturbation is assumed to be small, products of all primed quantities may be 

neglected as being small



Thus , Linearized eqs. governing the motion of the disturbances are 

2 2

2 2

2 2

2 2

' '          0

' ' 1 ' ' '  ;  ' ( )

' ' 1 ' ' '  ;  ( )

u v
x y
u u dV dp u uX V v
t x dy dx x y
v v dp v vY V
t x dy x y

ν
ρ

ν
ρ

∂ ∂
+ =

∂ ∂

∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂

             Introduce a perturbation stream - function  (to reduce number or eqs. by one)ψA5
'      ,      '=

x
u v

y
ψ ψ∂ ∂

= −
∂ ∂

In terms of this stream function the governing eqs. become

2 2 3 3

2 3

2 2 3 3

2 3 2

1 ' ( )

1 '             ( )

dV dpV
y t x y x dy dx x y y

dpV
x t x dy x x y

ψ ψ ψ ψ ψν
ρ

ψ ψ ψ ψν
ρ

∂ ∂ ∂ ∂ ∂
+ − = − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− − = − − +
∂ ∂ ∂ ∂ ∂ ∂



A6 Eliminate the pressure term by forming mixed derivative, above two eqs. 

above two eqs. may be reduced to one , 

2 'p
x y
∂
∂ ∂

2 2 2 4 4 4

2 2 2 4 2 2 4( )( ) ( 2 )d VV
t x y x dy x y y x x

ψ ψ ψ ψ ψ ψν∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

Stream function for the disturbance must satisfy this linear , 4th order , PDE

A7 Since the disturbance under consideration is arbitrary in form, Perturbation

stream function may be represented by the following Fourier – lntegral:

( )

0

( , , ) ( )                         c:time coefficienti x ctx y t y e dαψ φ α
∞

−= ∫

[ ]

:   & positive    (inverse wavelength)
2=     m

    wave length of the disturbances

realα
πλ
α

6



-i ct

-i ct
i

:  time variation    e
                         if   c  > 0         e        as   t

                                               disturbance will grow  unstable
in general co

r i

note
c c c i

α

α= + → → → ∞ →∞

→
-i ct

i

i

mplex number:    if  c  < 0         e      0  as   t

                                               disturbance will decay  stable
                                               c  =  0     ne

α→ → →∞

→
→ utrally stable

                                                (c=0)

Plug in A6 yields the integro – differential equation:

( ) 2 i (x-ct)

0

2 2 4

2 4

2 4

4 i (x-ct)

0

( " ) "  e

( ''' 2 "  ,     i 1     i 1

"   ,  ""= ,..

)  e

.

i c i V i

d d
d d

d

y

V d

y

α

α

α α φ α φ αφ α

ν φ α

φ φ

α

φ

φ φ

φ

α

∞

∞

⎡ ⎤− + − −⎣ ⎦

⎡ ⎤= − + −

=

⎣ ⎦ = =

∫

∫



Above equation should be valid for arbitrary . ,  the integrand should vanish  (because eq. 
should be valid for arbitrary disturbance)

Thusα

2 2 4(V-c)( "- )-V = ( '''' 2 " )       (A)
i

          Orr-Sommerfield equation

νφ α φ φ φ α φ α φ
α

− +

B.C disturbance should vanish at the surface y=0 and at the edge of the Boundary Layer

'  ( , 0, ) 0  ,  '( , 0, ) 0
'  ( , , ) '( , , ) 0     as    y  
u x y t v x y t
u x y t v x y t

= = = =
= = → ∞

0

0

in terms of the stream function (y)

        ' 0    

      ' 0        

y

y

u
y

v
x

ψ

ψ

ψ
=

=

∂
= = →
∂

∂
= − = →

∂

'(0) 0

          (B)
(0) 0
'( ) ( ) 0   as  y  y y

φ

φ
φ φ

=

=
= → → ∞



Solution of the Orr – Sommerfeld Equation
Undisturbed vel. profile V(y) and disturbance wavelength  is specifiedα

( )  &    knownV y α

. (A) with BC.(B)represent an eigenvalue problem for the time coefficient , c
          ,   0    flow stable
                              0    flow unstable
        ( )  ,   0 

r i i

i

i

Eq
c c i c c

c
i x ct cα

= + < ⇒
> ⇒

− =    neutral stablity⇒

i (x-ct)  (y) e αψ φ=

unstable

stable

 ,  0istable c <

*

Re Uα
ν

=

Recritical

*  α δ

Steady laminar flow 
can become another 
steady lam. flow

HT
LT

. PrRa Gr=

 Diagram:Stability



Orszag (1971):

0
0
0

i

i

i

c
c
c

<
>

<

V

α

typical stability – calculation result for fixed     ,      is varied. Then, by considering all

possible values of the undisturbed B.L vel. (which less than the outer –flow vel.) a stability 

diagram is constructed

V α

 possible values of ( ) in the range
      0 ( ) ( )
All V y

V y U x≤ ≤

Flow over a flat surface

*

Re 420cr
cr

Uα
ν

= =



unstable

boundarystability

420

*  α δ

*

Re Uα
ν

=

0.34

575 RecrSchlichting =

Re >420                  arbitrary disturbance will be unstable.

manifest themselves in the form of turbulence



FREE – SHEAR FLOWS (LAYERS) 

Unaffected by walls

Develop and spread in an open ambient fluid 

Possess vel. gradient created upstream mechanism

      viscous diffusion convective deceleration⇔

EXAMPLE: 1) The free-shear layer between parallel moving streams:

2U

1U
1U

interface

y
1

1

0

2

2

u

ρ
µ

ρ
µ

2U

u

- shaped free-shear layer 
is due to viscous diffusion
S

At x=0 , upper free stream 
              lower free stream

1

2

U
meets as x=0

U
⎫
⎬
⎭ 1 2   &  U  uniformU



For each stream , can define a Blasius – type similarity variable

Lock(1951) – two different fluids with physical parameters

1 1 2 2( , )  &  ( , )ρ µ ρ µ

1

1

j 1

 ,     ,  j=1,2
2

2  ( )

j
j j

j

j j j

uUy f
x U

U x f

η
ν

ψ ν η

′= =

=

Following the same procedure as in derivation of Blasius equation, one can 

obtain Blasius-type eq. for each layer

''' '' 0      j=1,2j j jf f f+ =



1
'( ) 1    asymptotic approach  to the two stream veloci i s t ef +∞ =. .    1) BC s

2
2 2 2

1

1 1

Uy (- )              U  '    
U

 as  +

u f

u U

η

η

→ ∞ → →−∞ ⇒ → → =

→ → ∞

. .    2) BC s 1 2 1 2Kinematics equality ,  and  at the interfaceu u v v= =

j 1 2 0 1 2

1 2
1 2 1 2

0           '(0)  '(0) 0        u u

                         (0)  (0) 0                     
x x

f f u

f f v v

η

ψ ψ

= → = ≠ = =

∂ ∂
= = = ⇒ =

∂ ∂

. .    3) BC s
11 2

1 2 j

11 1 1
1 1 1 1 1 1

1 10 0

(0) (0)     or      
2

' ''      (1)
2

i

y

y Uu u
y y x

Uu fU U f
y y x

µ µ η
ν

ηµ µ µ
η ν=

∂ ∂
= =

∂ ∂

∂ ∂ ∂
= =

∂ ∂ ∂

Equality of shear stress at the interface
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2 2 1 2
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1 1 2 2 1 2

1 11 2

''      (2)
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y x
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ρ µµ µ
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∂
=

∂

⇒ = → =

2 2
1 2

1 1

''(0) ''(0)       k=f k f ρ µ
ρ µ

=

1 2 1 2 : k=1 (identical fluids)   ; 
 : a gas flowing over a liquid  k>>1

ex

Case 1
Case 2

. air-water 

Most p

interf

ractic

ace k 60000  k 2
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ρ ρ µ µ= =

≈ ⇒ ≈





TURBULENCE
INTRODUCTION

LAMINAR FLOW : Smooth , orderly flow limited to finite values of critical 

parameters: Re, Gr, Ta, Ri

Beyond the critical parameter, Laminar flow is unstable a new flow regime turbulent

flow

Transition

Laminar 

Turbulent 

x



Characteristics

1) Disorder : not merely white noise but has spatial structure (Random variations)

2) Eddies : (or fluid packets of many sizes) Large & small varies continuously from shear –

layer thickness down to the Kolmogorov length scale , 

3) Enhanced mixing in laminar flow molecular action

mixing in turbulent flow turbulent eddies actively about in 3-D and 

cause rapid diffusion of mass, momentum & energy

Heat transfer & friction are greatly enhanced compared to Lam. Flow 

4) Fluctuations : (in pressure, vel. & temp. )

Velocity fluctuates in all three directions

5) Self-sustaining motion: Once trigged turbulent flow can maintain. Itself by 

producing new eddies to replace those lost by viscous dissipation

δ
3 1

4
3( )L

U
ν δ

=



Experimental measurement :
Hot-wire anemometer

measure fluctuations in velocity via heat transfer

Examine change in resistance assoc. with temp. (use wire ~ 0.0001” dia.)

u

t

u

t

u

t

Laminar B.L

Shedding cylinder

Turbulent B.L



Mathematical Description 

N-S eqs. do apply to turbulent flow

Direct Numerical Simulation :Solve the N-S eqs. directly using computers

Problem: wide range of flow scales involved solutions requires supercomputers and

even then are limited to very low Reynolds numbers 

Mesh points : beyond the capacity of present computers (trillions)

Eq. Turbulent flow in a pipe

7 22
dAt Re 10     requires 10  numerical operatious  computation would

 take thousand years to complete (for the fine details of the turbulent flow)
= → ⇒



Direct numerical simulation DNS

Because of complexity of the fluctuations, a purely numerical computation of turbulent flow has 

only been possible in a few special cases.

Therefore, consider time average of turbulent motion 

Difficulties in setting up eqs. of motion for mean motion 

Turbulent fluctuations coupled with mean motion 

Time averaging N-S additional terms (determined by turbulent fluctuations) 

Additional unknowns in computation of mean motion 

We have more unknowns than eqs.

To close system of eqs. of motion  need additional eqs ⇒

These eqs. can no longer be set up purely from the balances of mass momentum &  energy

But, they are model eqs. which model relation between the fluctuations & mean motion

called turbulence modelling central problem in computing the mean motion of turbulent 

flows



Mean Motion & Fluctuations

, time average valueu'u

Decompose the motion into a mean motion & a fluctuating motion

'

'

'

'

u u u

v v v

w w w

p p p

= +

= +

= +

= +

compressible turbulent flows

  = '    ;   '

In

T T Tρ ρ ρ+ = +

Average is formed as the time average at a fixed point in space

0

0

1       integral is to be taken over a sufficently large time interval T so that  ( )
t T

t

u u dt u f t
T

+

= ← ≠∫



1
22

0

Characterization of fluctuation   RMS

1 ( )
T

u u u d t
T

⇒

⎫⎧⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭
∫

 ' ( )

' ( )

u g t

u u u f t

=

= + =

 definition time average of fluctuating quautities are zero i.e. 

' 0   ,    ' 0   ,   ' 0   ,   ' 0
 assume that mean motion indep. of time  steady turbulent flow

By

u v w p
First
= = = =

⇒

u

t

steady unsteady

Turb. flow

u

u

t

steady unsteady

Lam . flow



 '  , '  , '  influence the progrees of mean motion  ,  ,  ,  so that mean motion
exhibit an apparent increase in resistance aganist deformation.Increased apparent viscosity  

  all 

Fluctuations u v w u v w
is

cenral of theoretical considerations on turbulent flow

    ,     +     ,     .  .  

u     ,       ;     ' '    ;    ' 0
x

 of computation

u u u v u v u v u v

u udx udx uv

Rul

u v u v u v
x

es

= + = =

∂ ∂
= = = + =

∂ ∂ ∫ ∫

x

' 'xy xy xylam tur

u u v
y

τ τ τ µ ρ∂
= + = −

∂
Additional shear stress

(Reynolds stress)



N N       ( ') ( ' )= ' ' ' '

              ' '            '

:

' 0
u v

uv u u v v uv uv vu u v

uv

Ex

uv u v u v

= + + + + +

= + ≠

Physical Interpretation of  ' '  as a stress
                                           a)Consider fluid particle moving up from 1 to 2 
                                              ' 0   ' 0 (since

u v

v u

ρ

> < 1 2

turb

particle has velocity deficit i.e )
                                              ' ' 0   0  cel. of flow  at 2
                                           b)if particle moves down from 

u u
u v deτ

<
< ⇒ > ⇒

turb

2 to 1
                                               ' 0   ' 0 (particle has excess vel.)
                                            ' ' 0    0   accel. of flow at 1

v u
u v τ
< >

∴ < ⇒ > ⇒

2

1
'v

'u

2

1

Momentum

exchange

Turbulent shear stress is higher



Basic Eqs. for Mean Motion of Turbulent Flows

Consider flows with constant properties

Continuity equation

(1)                          '

' of  (1)              

u v w u u u
x y z

u u uTime averaging
x x x

∂ ∂ ∂
+ + = +

∂ ∂ ∂

∂ ∂ ∂
− = +

∂ ∂ ∂

(2)        =0 

' ' '(3) Also , using (1)                      0

 time average values &fluctuations satisfy laminar flow continuity eq
      
Momentum Eqs.(Re

               
y

u v w
x y z

u v w
x y z

Both

∂ ∂ ∂
+ +

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

2Incomp.  N-S eqs.                              ( ( . ) )

nolds eqs.)

-                  (4)V V V p V
t

ρ µ∂
+ ∇ = ∇ + ∇

∂

JG JG JG



  Substitute      '     '      '     '    into N-S s1) egu u u v v v w w w p p p= + = + = + = +

2) Time average the equations

3) Drop-out terms which `average` to zero . Use  “Rules of Computation”

2

2

2

' '0        0  terms which are linear in fluctuating quantities  0

' 0         ' ' 0   terms which are quadratic in fluctuating quantities  0

u u
t x

u u v

∂ ∂
= = ← ⇒

∂ ∂

≠ ≠ ← ⇒

2

2
2

2

Resultant eqs. (called Reynolds eqs.)

( )

( )

' ' ' ' '( )

' ' ' ' '( )

u u u pu v w u
x y z

u u v u w
x y z

u v v v w
x y

x

v v v pu v w v
x y z zy

ρ

ρ

ρ µ

ρ µ

∂ ∂ ∂
+ +

∂
∂ ∂ ∂ ∂

+ + = − +
∂ ∂

∂ ∂ ∂
+

∇ −
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + = − + ∇ −

∂ ∂
+

∂∂ ∂ ∂∂



2
2

( )

treat unsteady "fluctuations"                   add

' ' ' ' '(

itional terms due to turbulent
as added stresses  call

)

ed                

w w w pu v w w
x

u w v w w
x yy z z z

µ ρρ ∂ ∂ ∂
+ +

∂ ∂ ∂
∂ ∂ ∂ ∂

+ + = − + ∇ −
∂ ∂ ∂ ∂

∴
⇒

�������������������

       fluctuating motion  momentum
Reynolds stresses(turbulent stresses)          exchange due to fluctuations "stresses"

⇒
⇒

N

2
xx

xy
Re  stress
apparent turbulentviscous stresses laminar stresses

Complete stresses consist of

2 '    fluctuatios

( ) ' ' ,.......
ynolds

up u
x

u v u v
y x

σ µ ρ

τ µ ρ

∂
= − + − →

∂
∂ ∂

= + −
∂ ∂��	�


In general , Reynolds stresses dominate over viscous stresses, except for regions 
directly at the wall



Closure problem
too few eqs : 4

too many unknowns : 10

Figure some way to approximate Reynolds stresses

Objective : Establish relationship between Reynolds stresses & mean motions, i.e ,  , u v w

model eqs. must be developed
 turbulence models or turbulence modeling.

model equations contain empirical elements

⇒
∴

lam

turb

.   cos
 Attempt to approximate a "turbulent" viscosity

idea : Since 

 ' '

                     viscosity  

A Eddy vis ity

u u
y y

uLet u v
y
Eddy

τ µ νρ

τ ρ ρ

ν

−

∂ ∂
= =

∂ ∂

∂
= = −

∂
⇒

∈

∈>>6



: how to model  ?
For some situations    const.

In general .   ( , , , .)

In general, many wild 

Pr

guesses are made, not many work

oblem 

uconst f u y etc
y

∈
⇒ ∈ ≈

∂
∈≠ ⇒ ∈ =

∂

Energy Equation

Consider the energy equation for incompressible flow with constant properties

2
p
DTc k T
Dt

ρ = ∇ +Φ

Taking the time-average of the energy eq. , we obtain following eq. for the average temp.

field T ( , , )

( )  convectionp

x y z

T T Tc u v w
x y z

ρ

=

⎫∂ ∂ ∂
+ + ⎬∂ ∂ ∂ ⎭

G G JG



2 2 2

2 2 2

p

2 2 2 2 2

  =k( + + )  molecular heat transport

' ' ' ' ' '- c ( )  turbulent heat transport("apparent" heat conduction)

+ 2( ) 2( ) 2( ) ( + ) ( + ) (

T T T
x y z

u T v T w T
x y z

u v w u v u w v
x y z y x z x z

ρ

µ

⎫∂ ∂ ∂
⎬∂ ∂ ∂ ⎭

⎫∂ ∂ ∂
+ + ⎬∂ ∂ ∂ ⎭

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
2+ )  direct dissipationw

y
⎫⎡ ⎤∂ ⎪
⎬⎢ ⎥∂ ⎪⎣ ⎦⎭

�

The same eq.holds for the average temp. fields as for laminar temp. fields, apart from

two additional terms

"apparent" heat conduction    div( ' ')

"turbulent" dissipation  ,   

V T

ρ

⇒

∈

JJG

� 2 2 2 2 2 22( ) 2( ) 2( ) ( + ) ( + ) ( + )u v w u v u w v w
x y z y x z x z y

ρ µ
⎫⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎪∈= + + + + +⎢ ⎥⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎪⎣ ⎦⎭



In turbulent flows mechanical energy is transformed into internal energy in two different ways:

a) Direct dissipation : transfer is due to the viscosity (as in laminar flow)

b) Turbulent dissipation : transfer is due to the turbulent fluctuations

The Turbulence Kinetic Energy Equation (K-equation)

Many attemps have been made to add “turbulence conservation” relations
to the time-averaged continuity, momentum and energy equations derived.

A relation for the turbulence kinetic energy K of fluctuations.

( )

1 2 3

1 1
2 2

Einstein summation notation,
( , , ) ( , , )

i i

i

K u u v v w w u u

u u u u u v w

′ ′ ′ ′ ′ ′ ′ ′≡ + + =

= =



A conservation relation for K can be derived by forming the mechanical
energy equation i.e., dot product of ui ve ith momentum equation subtract
instantaneous mechanical energy equation from its time averaged value.

Result: Turbulence kinetic energy relation for an incompressible fluid.  
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ν ν
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I. Rate of change of turbulent (kinetic) energy
II. Convective diffusion of turbulence energy
III. Production of turbulent energy
IV. Viscous diffusion (work done by turbulence viscous stresses)
V. Turbulent viscous dissipation

Reynolds stress equation: conservation equations for Reynolds stresses
see F. White pg. 406



2-D Turbulent Boundary Layer Equations

Just as laminar flows, turbulent flows at high Re also have boundary layer
character, i.e. large lateral changes and small longitudinal changes in flow
properties.

Ex.: Pipe flow, channel flow, wakes and jets. 

δ(x)<<x

y

x

Same approximations as in laminar boundary layer analysis,

    v u
x y
∂ ∂

<< <<
∂ ∂

Assume that mean flow structure is 2D

2
0    0    but  0 w w

z
∂ ′= = ≠
∂



Basic turbulent equations (Reynolds equations) reduce to

Continuity:       0                                 (1)

1x-momentum:          (2)

: free stream velocity

Thermal energy:    (3)

where 

e
e

e

p

u v
x y

dUu uu v U
x y dx y

U

T T q uc u v
x y y y

τ
ρ

ρ τ

τ

∂ ∂
+ =

∂ ∂

∂ ∂ ∂
+ ≈ +

∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂
+ ≈ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

=

N turbulent flux
molecular flux

                                           (4)p

u u v
y

Tq k c v T
y

µ ρ

ρ

∂ ′ ′−
∂

∂ ′ ′= −
∂ ��	�


Above equations closely resemble the laminar flow equations except that τ
and q contain turbulent shear stress and turbulent heat flux (Reynolds
Stress) must be modelled.   



y-momentum equation reduces to

2

    (5)p v
y y

ρ
′∂ ∂

≈ −
∂ ∂

Integrating over the boundary layer yields:

2( )ep p x vρ ′≈ −
Unlike laminar flow, p varies slightly across the boundary layer due to
velocity fluctuations normal to the the wall

2 .p v constρ ′+ ≈

Note: :  wall pressure

no-slip  v 0  ( )
w

ew

p

p p x′⇒ ≡ ⇒ =

e e edp U dUρ≈ −Bernoulli equation in the (inviscid) free stream



Boundary Conditions:
Free stream conditions Ue(x) and Te(x) are known.

No-slip, no jump:         ( ,0) ( ,0) 0   ,   ( ,0) ( )

Free stream matching:   ( , )    ,    ( , ) ( )
w

e T e

u x v x T x T x

u x U T x T xδ δ

= = =

= =

The velocity and thermal boundary layer thicknesses (δ, δT) are not necessarily equal

u v if a suitable correlation for total shear τ is known. 

but depend upon the Pr, as in laminar flow. Eqs. 1 and 2 can be solved for

Turbulent Boundary Layer Integral Relations:

The integral momentum equation has the identical form as laminar flow

( ) 2

*

0

*

2
2

1      ,        H=  (momentum shape factor)

1  

fe w

e e

e e

e

cdUd H
dx U dx U

u u dy
U U

u dy
U

τθ θ
ρ

δθ
θ

δ

∞

+ + = =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∫
Turbulent velocity profile is more complicated in shape 
and many different correlations have been proposed.



Example: Turbulent pipe flow
Often used correlation is the empirical power-law velocity profile

Rx
r

1/

1
n

c

u r
V R

⎛ ⎞= −⎜ ⎟
⎝ ⎠

n=f(Re)

for many practical flows n = 7

104
5
6

8
7

105 106

n

Re=ρVD/µ 0
0

1.0

1.0

r/R
laminar

n=6
n=8

n=10

Turbulent
profile

c

u
V



Turbulent profiles are much “flatter” than laminar profile
Flatness increases with Reynolds number (i.e., with n)

Turbulent velocity profile(s): The inner, outer, and overlap layers.
Key profile shape consist of 3 layers

Inner layer: very narrow region near the wall (viscous sublayer) 
viscous (molecular) shear dominates
laminar shear stress is dominant, random eddying nature of flow is absent
Outer layer: turbulent (eddy) shear (stress) dominates
Overlap layer: both types of shear important; profile smoothly connects 
inner and outer regions. 

Example: Structure of turbulent flow in a pipe
R

r

0

τlam τtur

τ

pipe wall

τwτ(r)

Shear
stress

0

R

r

Vc

Viscous
sublayer

overlap layer

outer layer

Average velocity



Inner law:

( , , , )      (1)wu f yτ ρ µ=

Velocity profile would not depend on free stream parameters.

Outer law:

( , , , , )      (2)e
e w

dpU u g y
dx

τ ρ δ− =

Wall acts as a source of retardation, independent of µ.

Overlap law:

     (3)inner outeru u=
We specify inner and outer functions merge together smoothly.

Dimensionless Profiles: 
The functional forms in Eqs.(1)-(3) are determined from experiment after use 
of dimensional analysis. 
Primary Dimensions: (mass, length, time) : 3
Eq.(1) : 5 variables
Π groups : 5-3 = 2 (dimensionless parameters)



Proper dimensionless inner law:
1/2*

* w
*    ;    =u yvf v
v

τ
ν ρ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

Variable v* [m/s] called wall friction velocity. 
v*  is used a lot in turbulent flow analyses.

Outer law using Π - theorem:

*
w

,    ;    =e eU u dpyg
v dx

δξ ξ
δ τ

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

Often called velocity defect law, with eU u−
being “defect” or retardation of flow due to wall effects. At any given position x, defect
g(y/δ) will depend on local pressure gradient ξ. 
Let ξ have some particular value. Then overlap function requires

Overlap law:
*

* * -eUu v y yf g
v v

δ
ν δ δ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

From functional analysis: both f and g must be logarithmic functions.



Thus, in overlap layer:
*

*

*

1Inner variables: ln

1Outer variables: lne

u yv B
v k
U u y A
v k

ν

δ

= +

−
= − +

Where K and B are near-universal constants for turbulent flow past smooth, 
impermeable walls. 
K≈0.41 , B≈5.0 pipe flow measurements, data correlations
A varies with pressure gradient ξ (perhaps with other parameters also).

*

*Let      ,    and    yu yvu
v ν

+ += =

Inner layer details, Law of the wall.
At very small y, velocity profile is linear.

5 :           w
uy or u y
y

τ µ+ + +≤ = =



Example: Thickness of viscous sublayer

* *

5      : viscous length scale of a turbulent boundary layersub v v
ν νδ =

Flat plate airfoil data: v*=1.24 m/s , νair≈1.51x10-5 m2/s
Between 5 ≤y+≤30 buffer layer.
Velocity profile is neither linear nor logarithmic but is a smooth merge 
between two. 
Spalding (1961) single composite formula.

( ) ( )2 3

1
2 6

KB Ku
Ku Ku

y u e e Ku
+

+ +
+ + − +

⎡ ⎤
⎢ ⎥= + − − − −
⎢ ⎥
⎣ ⎦

Notes:
1

1 1

1

11

   

0   0

n

c

n
c

u r
V R

Vdu r
dr n R R

dur R
dr
dur
dr

−

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = ∞

= ≠

Power law profile cannot be valid near the wall.
Power law profile cannot be precisely valid 
near the centreline. 
However, it does provide a reasonable 
approximation to measured velocity profiles 
across most of the pipe.



Example:
Water at 20 °C (ρ=998 kg/m3), ν=1.004x10-6 m2/s

Q=0.04 m3/s
D=0.1m

2.59 /dp kPa m
dx

=

δs = ? thickness of viscous sublayer?
centreline velocity, Vc = ?
ratio of turbulent to laminar shear stress, τturb/τlam = ? at a point midway 
between the centreline and pipe wall i.e., at r = 0.025 m.
Law of the wall valid 5y± ≤ viscous sublayer

*

*

*

*

5

5  5    5  s
s s

w

yvy

vy y
v

v

ν
δ νδ δ
ν

τ
ρ

±

±

= ≤

= = ⇒ = =

=



Pressure drop and wall shear stres in a fully developed pipe flow is related by

4 wlp
D
τ

∆ = (Valid for both laminar & turbulent flow)

(Exercise: Obtain the above equation considering the force balance of a 
fluid element)

3
2

2
*

3

6
5

(0,1)(2,59.10 ) 64,8 /
4 4(1 )

64,8 /So, v 0, 255 /
998 /

5.1,004.10 1,97.10 0,02
0, 255

w

s

D p Pa N m
l m

N m m s
kg m

m mm

τ

δ
−

−

∆
= = =

= =

= = ≅

Imperfections on pipe wall will protrude into this sublayer and affect some of 
the characteristics of flow(i.e.,wall shear stres & pressure drop)
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2 2

5
6

5

0,04 / 5,09 /
(0,1) / 4
5,09.(0,1)Re 5,07.10
1,004.10

Re 5,07.10     8, 4

Q m sV m s
A m
VD

n

π

ν −

= = =

= = =

= ⇒ =

Power-law profile
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= ∴ =
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∫ ∫

Recall that Vc=2V for laminar pipe flow:



0,025

?turb

lam r m

τ
τ

=

= Shear stres distribution throughout the pipe

2 wr
D
ττ = (Valid for laminar or turbulent flow)

r
R=D/2 2

1/ (1 ) /

(1 8,4) /8,4
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τ µ νρ

τ
τ

−

= − = −

= − − =
−

= =

As expected

turb lamτ τ>>Thus



Turbulent Boundary Layer on a Flat Plate

Problem of flow past a sharp flat plate at high Re has been studied extensively,
numerous formulas have been proposed for friction factor.

-curve fits of data
-use of Momentum Integral Equation and/or law of the wall
-numerical computation using models of turbulent shear

Momentum Integral Analysis

20 ( .)     
2
f wCdp dU const

dx dx U
τθ
ρ

= = = =

Momentum Interal Equation valid for either laminar or turbulent flow.

For turbulent flow
a reasonable approximation to the velocity profile ( / )u f y

U
δ=

Functional relationship describing the wall shear stress

Need to use some empirical relationship

For laminar flow
0

w
y

u
y

τ µ
=

∂
=

∂



Example: Turbulent flow of an incompressible fluid past a flat plate
Boundary layer velocity profile is assumed to be

1/ 7( )u y
U δ

= ← power law profile suggested by Prandtl
(taken From pipe data!)

Reasonable approximation of experimentally observed profiles,
except very near the plate,

0

!
y

u
y =

∂
= ∞

∂

Laminar Turbulent

10
0

1

yη
δ

=

1/ 7( )u y
U δ

=

Assume shear stress aggrees with experimentally
determined formula

1/ 4 2 1/ 40,045Re or 0,0225 ( )

Re

f wC U
U

U

δ
ντ ρ
δ

δ
ν

− ⎧ ⎫= =⎨ ⎬
⎩ ⎭

=Determine; *, ,  and  as a function of x.wδ δ θ τ
What is the friction drag coefficient CD,f=?



Momentum Integral Equation (with U=constant)
1/ 7 1/ 7

2

1 1
1/ 7 1/ 7

0 0

1/ 4 1/ 4

1/ 4 1/ 4

0 0

1/5 4/5

              ; ( )
2

7(1 ) (1 ) (1 )
72

7 0,0225Re 0,0225( )
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or in dimensionless form 1/5

0,370
Rexx

δ
=

Boundary layer at leading edge of plate is laminar but in practice,laminar boundary layer
often exists over a relatively short portion of plate.

 error associated with starting turbulent boundary layer with =0 at x=0 can be negligible.δ∴
1 1

* 1/ 7

0 0 0
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Friction drag on one side of plate,Df
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Turbulent flow: ( ) ~ ; ( ) ~
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ρ
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δ τ
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−
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= =
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∫ ∫

Note:Results presented in this example are
valid only in the range of validity of original
data, assumed velocity profile & shear stres.
The range covers smooth flat plates
with 5x105<Rel<107

See Fig 6-20 (White, page 432)



Example 1 : Momentum Integral Equation-Approximate vel. profile
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a)

The shear stres decreases with distance from the leading edge of the plate. 
Thus, even though the plate area is the same for case (a) or (b), the average
shear stress (and the drag) is greater for case (a).

Example 2 : Viscous drag in thin plate



Example 3: Thin flat plate in water tunnel

Parabolic velocity profile:
2 2

5 5
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2 * 2
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 .   ,
(0.3*0.3)*0.7 0.063 /

( ) ( 2 )  
: effective area of the duct (allowing for the decreased flowrate in the b.l.)

Thus,
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Continuity eq for incompressible flow
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