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DefinitionDefinition

• A signal is a function of independent variables such as 
time, distance, position, temperature and pressure.

• A signal carries information, and the objective of signal 
i i t t t f l i f ti i d b thprocessing is to extract useful information carried by the 

signal. 

• Signal processing is concerned with the mathematical 
representation of the signal and the algorithmic operation p g g p
carried out on it to extract the information present.
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DefinitionDefinition
• For most purposes of description and analysis, a signal can be defined 

simply as a mathematical function,

)(xfy

where x is the independent variable which specifies the domain of the 
i l

)(xfy =

signal e.g.:
• y=sin(ωt) is a function of a variable in the time domain and is thus a time 

signal;g ;

• X(ω)=1/(-mω2+icω+k) is a frequency domain signal;

• An image I(x,y) is in the spatial domain.
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Signal typesSignal types
F i l d l h b i d fi i i i• For a simple pendulum as shown, basic definition is:

where θm is the peak amplitude of the motion
and  ω=√l/g with l the length of the pendulum
and g the acceleration due to gravity.

• As the system has a constant amplitude (we assume no damping for 
now), a constant frequency (dictated by physics) and an initial ), q y ( y p y )
condition (θ=0 when t=0), we know the value of θ(t) for all time..
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Signal typesSignal types
Al t id ti l d l l d f θ θ t t 0 ill h th• Also, two identical pendula released from θ = θ0 at t=0, will have the same 
motions at all time. There is no place for uncertainty here.

• If we can uniquely specify the value of θ for all time, i.e., we know the 
underlying functional relationship between t and θ, the motion is 
deterministic or predictable In other words a signal that can be uniquelydeterministic or predictable. In other words, a signal that can be uniquely 
determined by a well defined process such as a mathematical expression or 
rule is called a deterministic signal.

• The opposite situation occurs if we know all the physics there is to know, 
but still cannot say what the signal will be at the next time instant-then the bu s c o s y w e s g w be e e e s e e
signal is random or probabilistic. In other words, a signal that is generated 
in a random fashion and can not be predicted ahead of time is called a 
random signal
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Signal typesSignal types
• Typical examples to deterministic signals are sine chirp and digital stepped 

sine.
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Signal typesSignal types
• Typical examples to random signals are random and burst random.
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Signal typesSignal types
• Random signals are characterized by having many frequency components 

present over a wide range of frequencies. 
• The amplitude versus time appears to vary rapidly and unsteadily with p pp y p y y

time. 
• The ‘shhhh’ sound is a good example that is rather  easy  to observe using a 

microphone and oscillloscope If the sound intensity is constant with timemicrophone and oscillloscope. If the sound intensity is constant with time, 
the random signal is stationary, while if the sound intensity varies with time 
the signal is nonstationary. One can easily see and hear this variation while 

ki h ‘ hhhh’ dmaking the ‘shhhh’ sound.
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Signal typesSignal types
• Random signals are characterized by analyzing the statistical 

characteristics across an ensemble of records. Then, if the process is 
ergodic, the time (temporal) statistical characteristics  are the same as the 
ensemble statistical characteristics. The word temporal means that a time 
average definition  is used  in place of an  ensemble statistical definition. 
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Signal typesSignal types
• Transient signals may be defined as signals that exist for a finite 

range of time as shown in the figure. Typical examples are hammer 
excitation of systems explosion and shock loading etcexcitation of systems, explosion and shock loading etc. 
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Signal typesSignal types
A i l i h i i i i di i l• A signal with a time varying mean is an aperiodic signal.
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Signal typesSignal types
I h ld b d h i di i d il• It should be noted that periodicity does not necessarily mean a 
sinusoidal signal as shown in the figure.

• For a simple pendulum as shown, if we define the period τ by                    
then for the pendulum, then for the pendulum,

and such signals are defined as periodic.
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Signal typesSignal types
A i di i l i h i lf i i d i• A periodic signal is one that repeats itself in time and is a 
reasonable model for many real processes, especially those 
associated with constant speed machinery. 

• Stationary signals are those whose average properties do not 
change with time Stationary signals have constant parameters tochange with time. Stationary signals have constant parameters to 
describe their behaviour.

• Nonstationary signals have time dependent  parameters. In an 
engine excited vibration where the engines speed varies with time; 
the fundamental period changes with time as well as with thethe fundamental period changes with time as well as with the 
corresponding dynamic loads that cause vibration. 

P. Gundes Bakir,      Vibration based structural health monitoring 15



Deterministic vs Random signalsDeterministic vs Random signals
ERASMUS Teaching (2008), Technische Universität Berlin

Deterministic vs Random signalsDeterministic vs Random signals
The signals can be further classified as monofrequency• The signals can be further classified as monofrequency 
(sinusoidal) signals and multifrequency signals such as 
the square wave which has a functional form made up of 

i fi it iti f diff t i ithan infinite superposition of different sine waves with 
periods τ,τ/2,τ/3,…

• 1 D signals are a function of a single independent 
variable. The speech signal is an example of a 1 D 
signal where the independent variable is timesignal where the independent variable is time.

• 2D signals are a function of two independent variables. g p
An image signal such as a photograph is an example of 
a 2D signal where the two independent variables are the 
two spatial variables.
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Classification of signalsClassification of signals
• The value of a signal at a specific value of the independent variable• The value of a signal at a specific value of the independent variable 

is called its amplitude. 

• The variation of the amplitude as a function of the independent• The variation of the amplitude as a function of the independent 
variable is called its waveform.

• For a 1 D signal the independent variable is usually labelled as• For a 1 D signal, the independent variable is usually labelled as 
time. If the independent variable is continuous, the signal is called a 
continuous-time signal. A continuous time signal is defined at 
every instant of time. y

• If the independent variable is discrete, the signal is called a 
discrete-time signal. A discrete time signal takes certain numerical g g
values at specified discrete instants of time, and between these 
specified instants of time, the signal is not defined. Hence, a discrete 
time signal is basically a sequence of numbers. 
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Classification of signalsClassification of signals

• A continuous-time signal with a 
continuous amplitude is usually 
called an analog signal Acalled an analog signal. A 
speech signal is an example of 
an analog signal. 

• A discrete time signal with 
discrete valued amplitudes 
represented by a finite number p y
of digits is referred to as a 
digital signal.
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Classification of signalsClassification of signals
A di t ti i l ith• A discrete time signal with 
continuous valued amplitudes is 
called a sampled-data signal. A 
digital signal is th s a q anti eddigital signal is thus a quantized 
sampled-data signal.

• A continuous-time signal with 
discrete valued amplitudes has 
been referred to as a quantized 
boxcar signal. This type of signal 
occurs in digital electronic circuits 
where the signal is kept at fixed 
level (usually one of two values) 
between two instants of clocking.
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CLASSIFICATIONS OF SIGNALSCLASSIFICATIONS OF SIGNALS

Stationary Non-Stationary
1 D 

signals
1 D

signals
2 D

signals

D t i i ti RandomDeterministic TransientContinuous 

Periodic Aperiodic

Monofrequency Multi- T i t I fi it i di
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Typical signal processing Typical signal processing 
operationsoperationspp

• In the case of analog signals, most signal processing 
operations are usually carried out in the time domain.p y

• In the case of discrete time signals, both time domain g
and frequency domain applications are employed.

I i h h d i d i i l d• In either case, the desired operations are implemented 
by a combination of some elementary operations such 
as:as:
– Simple time domain operations
– Filtering

A lit d d l ti
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Simple Time Domain OperationsSimple Time Domain Operations
The three most basic time-domain signal operations are:

• Scaling
• DelayDelay
• Addition

ScalingScaling is simply the multiplication of a signal by a positive or a negative 
constant. In the case of analog signals, this operation is usually called 
amplification if the magnitude of the multiplying constant called gain isamplification if the magnitude of the multiplying constant, called gain, is 
greater than one. If the magnitude of the multiplying constant is less than 
one, the operation is called attenuation. Thus, if x(t) is an analog signal, 
the scaling operation generates a signal y(t)=αx(t) where α is thethe scaling operation generates a signal y(t)=αx(t), where α is the 
multiplying constant. 
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Simple Time Domain OperationsSimple Time Domain Operations

The three most basic time-domain signal operations are:
• Scaling
• Delay
• Addition

Delay Delay operation generates a signal that is delayed replica of 
the original signal. For an analog signal x(t), y(t)=x(t-t0) is the 
signal obtained by delaying x(t) by the amount t0, which is 
assumed to be a positive number If t is negative then it is anassumed to be a positive number. If t0 is negative, then it is an 
advance operation.

P. Gundes Bakir,      Vibration based structural health monitoring 24



Simple Time Domain OperationsSimple Time Domain Operations
ERASMUS Teaching (2008), Technische Universität Berlin

Simple Time Domain OperationsSimple Time Domain Operations

The three most basic time-domain signal operations are:
• Scaling
• Delay
•• AdditionAddition

Addition Addition operation generates a new signal by the addition of 
signals. For instance, y(t)=x1(t)+x2(t)-x3(t) is the signal 
generated by the addition of the three analog signals x1(t), x2(t) 
and x (t)and x3(t) .
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Fourier transformsFourier transforms

This chapter focuses on Fourier-series expansion, the 
discrete Fourier transform, properties of Fourier 
Transforms and Fast Fourier TransformTransforms  and Fast Fourier Transform
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Fourier transformsFourier transforms
Fo rier anal sis is a famil of mathematical techniq es all based on• Fourier analysis is a family of mathematical techniques, all based on 
decomposing signals into sinusoids. 

• The discrete Fourier transform (DFT) is the family member used with• The discrete Fourier transform (DFT) is the family member used with 
digitized signals. 

• Why are sinusoids used? A sinusoidal input to a system is guaranteed to• Why are sinusoids used? A sinusoidal input to a system is guaranteed to 
produce a sinusoidal output. Only the amplitude and phase of the signal can 
change; the frequency and wave shape must remain the same. Sinusoids are 
the only waveform that have this useful property.y p p y

• The general term Fourier transform can be broken into four categories, 
resulting from the four basic types of signals that can be encountered.g yp g
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Categories of Fourier Categories of Fourier 
TransformsTransforms
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Fourier transformsFourier transforms
Th f l f i l ll t d t iti d ti i fi it Wh t if• These four classes of signals all extend to positive and negative infinity. What if 
you only have a finite number of samples stored in your computer, say a signal 
formed from 1024 points?

• There isn’t a version of the Fourier transform that uses finite length signals. Sine 
and cosine waves are defined as extending from negative infinity to positive 
infinity. You cannot use a group of infinitely long signals to synthesize somethinginfinity. You cannot use a group of infinitely long signals to synthesize something 
finite in length. The way around this dilemma is to make the finite data look like an 
infinite length signal. This is done by imagining that the signal has an infinite 
number of samples on the left and right of the actual points. If all these “imagined” 

l h l f th i l l k di d i di d thsamples have a value of zero, the signal looks discrete and aperiodic, and the 
discrete time Fourier transform applies. 

A lt ti th i i d l b d li ti f th t l 1024• As an alternative, the imagined samples can be a duplication of the actual 1024 
points. In this case, the signal looks discrete and periodic, with a period of 1024 
samples. This calls for the discrete Fourier transform to be used.
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Time and frequency domainsTime and frequency domains
• As shown in the figure, the Discrete Fourier transform changes an N point 

input signal into two N/2 + 1 point output signals. The input signal contains the p g p p g p g
signal being decomposed, while the two output signals contain the
amplitudes of the component sine and cosine waves. The input signal is said 
to be in the time domain. This is because the most common type of signal 
entering the DFT is composed of samples taken at regular intervals of time.entering the DFT is composed of samples taken at regular intervals of time. 
The term “time domain” in Fourier analysis, may actually refer to samples 
taken over time. The term frequency domain is used to describe the 
amplitudes of the sine and cosine waves.
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Time and frequency domainsTime and frequency domains
• The frequency domain contains exactly the same information as the time domain,The frequency domain contains exactly the same information as the time domain, 

just in a different form. If you know one domain, you can calculate the other. 

• Given the time domain signal, the process of calculating the frequency domain isGiven the time domain signal, the process of calculating the frequency domain is 
called decomposition, analysis, the forward DFT, or simply, the DFT. 

• If you know the frequency domain, calculation of the time domain is called y q y ,
synthesis, or the inverse DFT. Both synthesis and analysis can be represented in 
equation form and computer algorithms.

• The number of samples in the time domain is usually represented by the variable N. 
While N can be any positive integer, a power of two is usually chosen, i.e., 128, 
256, 512, 1024, etc. There are two reasons for this. First, digital data storage uses 
bi dd i ki f t t l i l l th S d th tbinary addressing, making powers of two a natural signal length. Second, the most 
efficient algorithm for calculating the DFT, the Fast Fourier Transform (FFT), 
usually operates with N that is a power of two. Typically, N is selected between 32 
and 4096. In most cases, the samples run from 0 to N-1 , rather than 1 to N.
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Time and frequency domainsTime and frequency domains
• Lower case letters represent time• Lower case letters represent time 

domain signals and upper case 
letters represent frequency domain 
signals.

• The figure shows an example DFT 
with N = 128. The time domain signal 
is contained in the array: x [0] to xis contained in the array: x [0] to x 
[127]. Notice that 128 points in the 
time domain corresponds to 65 
points in each of the frequency 
domain signals with the frequencydomain signals, with the frequency 
indexes running from 0 to 64.

• That is, N points in the time domain p
corresponds to N/2 + 1 points in the 
frequency domain (not N/2 points). 
Forgetting about this extra point is a 
common bug in DFT programs.
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Time and frequency domainsTime and frequency domains
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Fourier series expansionFourier series expansion
• Fourier series are infinite series designed to represent general periodic 

functions in terms of simple ones, namely cosines and sines. 

• A function f(x) is called a periodic function if f(x) is defined for all real x and if 
there is a positive number p, called a period of f(x), such that 

• The graph of such a function is obtained by periodic repetition of its graph in 
any interval of length p.

)()( xfpxf =+

y g p
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Fourier series expansionFourier series expansion
• Familiar periodic functions are the cosine and sine functions. Examples of 

functions that are not periodic are:

• If f(x) has period p, it also has the period 2p because the equation

xxexxx x ln,cosh,,,, 32

implies that

)()( xfpxf =+

implies that

thus for any integer n=1,2,3,...
[ ]( ) )()()2( xfpxfppxfpxf =+=++=+

)()( xfnpxf =+
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Fourier series expansionFourier series expansion
• Furthermore if f(x) and g(x) have period p, then af(x)+bg(x) with any constants 

a and b also has the period p.Our problem in the first few slides will be the 
representation of various functions f(x) of period 2π in terms of the simplerepresentation of various functions f(x) of period 2π in terms of the simple 
functions 

f f
nxnxxxxx sin,cos,,2sin,2cos,sin,cos,1 L

• All these functions have the period 2π. They form the so called trigonometric 
system. The figure shows these functions all have period 2π except for  the 
constant 1, which is periodic with any period. 
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Fourier series expansionFourier series expansion
• The series to be obtained will be a trigonometric series, that is a series of the 

form: 

( )∑
∞

=

++=+++++
n

nno nxbnxaaxbxaxbxaa sincos2sin2cossincos 02211 L

• Here                                   are constants called the coefficients of the series. 
We see that each term has the period 2π. Hence if the coefficients are such 
that  the series converges, its sum will be a function of period 2 π.

L,,,,, 2211 babaao

g p
• Now suppose that f(x) is a given function of period 2 π and is such that it can 

be represented by a series as above which converges and moreover has the 
sum f(x). Then using the equality sign, we write: ( ) g q y g ,

( )∑
∞

++=
n

nn nxbnxaaxf sincos)( 0
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Fourier series expansionFourier series expansion
• The equation

( )∑
∞

++= sincos)( nxbnxaaxf

is called the Fourier series of f(x). We shall prove that in this case, the

( )∑
=

++=
1

0 sincos)(
n

nn nxbnxaaxf

is called the Fourier series of f(x). We shall prove that in this case, the 
coefficicents of the above equation are the so called Fourier coefficients of f(x) 
given by the Euler formulas. 

1
∫
π

L,2,1cos)(1

)(
2
1

0

==

=

∫

∫
−

nnxdxxfa

dxxfa

n

π

ππ

L,2,1sin)(1

,,)(

== ∫

∫

−

−

nnxdxxfb

f

n

n

π

π

π

π

π
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Fourier series expansionFourier series expansion
• Let f(x) be periodic with period 2π and piecewise continuous in the interval 

. Furthermore, let f(x) have a left hand derivative and a right hand 
d i ti t h i t f th t i t l Th th F i i f

 ππ ≤≤− x
derivative at each point of that interval. Then the Fourier series of 

( )∑
∞

=

++=
1

0 sincos)(
n

nn nxbnxaaxf

with coefficients

L,2,1cos)(1

)(
2
1

0

==

=

∫

∫
−

nnxdxxfa

dxxfa

π

π

ππ

L,2,1sin)(1

,2,1cos)(

== ∫

∫

−

−

nnxdxxfb

nnxdxxfa

n

n

π

π

π

π

π

converges. Its sum is f(x) except at points xo where f(x) is discontinuous. 
There the sum of the series is the average of the left and right limits of f(x) at 
xo. 
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Fourier series expansionFourier series expansion
• The left hand limit of f(x) at xo is defined as the limit of f(x) as x approaches xo 

from the left and is commonly denoted by f(xo-h). Thus,

values.positivethrough 0as)(lim)( 0 →−=− → hhxfhxf oho

• The right hand limit of f(x) at xo is defined as the limit of f(x) as x approaches 
xo from the right and is commonly denoted by f(xo+h). Thus,

litith h0)(li)( →++ hhfhf values.positivethrough 0as)(lim)( 0 →+=+ → hhxfhxf oho
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ExampleExample
Fi d h F i ffi i f h i di f i f( ) i h fi• Find the Fourier coefficients of the periodic function f(x) in the figure. 
The formula is:

0xifk⎧ <<−− π

)()2(
0

0
)(

xfxfand
xifk
xifk

xf

=+
⎩
⎨
⎧

<<
<<

=

π
π

π
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ExampleExample
Fi d h F i ffi i f h i di f i f( ) i h fi• Find the Fourier coefficients of the periodic function f(x) in the figure. 
The formula is:

0xifk⎧ <<−− π

)()2(
0

0
)(

xfxfand
xifk
xifk

xf

=+
⎩
⎨
⎧

<<
<<

=

π
π

π

1 π

)(1)(1)(1

)(
2
1

0

0

+−==

=
−

∫∫∫

∫π
ππ

π

π

dxkdxkdxxfa

dxxfa

0
2
1

2
1)(

2
1)(

2
1

)(
2

)(
2

)(
2

0

0

0
0

=+−=+−=

+−==

−

−−
∫∫∫

π
π

π
πππ

πππ
π

π

ππ

kkkxkx

dxkdxkdxxfa

• The above can also be seen without integration, since the area 
d th f f( ) b t d iunder the curve of f(x) between -π and π is zero.
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ExampleExample
• From cos)(1

= ∫
π

nxdxxfan

cos)(cos)(1cos)(1
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ExampleExample
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ExampleExample
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• Their graph seems to indicate that the series is convergent and has 
the sum f(x), the given function.
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ExampleExample
W i h 0• We notice that at x=0 
and x=π, the points of 
discontinuity of f(x), all 
partial sums have the 
value zero, the 
arithmetic mean of the 
limits k and –k of our 
function at these 
pointspoints.
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Derivation of the Euler formulasDerivation of the Euler formulas
Th k h E l f l i h h li f• The key to the Euler formulas is the orthogonality of

a concept of basic importance as follows:
nxnxxxxx sin,cos,,2sin,2cos,sin,cos,1 L

a concept of basic importance as follows:
THEOREM 1: The trigonometric system above is orthogonal on the 
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Fourier series expansion of any Fourier series expansion of any 
period p=Tperiod p=T

• The functions considered so far had period 2π, for the simplicity of the formulas. However, we will 
mostly use the variable time  t and work with functions x(t) with period T. We now show that the 
transition from 2π to period T is quite simple.  The idea is simply to find and use a change of scale 
that gives from a function f(x) of period 2π to a function of period T. 

• In the equations below we can write the change of scale as: x=kt with n such that the old period x=2 
π gives for the new variable t the new period t=T. Thus
2 π=kT hence k=2 π/T and x=kt= 2πt/T. This implies dx= 2πdt/T which upon substitution into2 π kT  hence k 2 π/T and x kt  2πt/T. This implies dx  2πdt/T which upon substitution into
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Fourier series expansionFourier series expansion
• Since we will mostly use the variable time  t and in the frequency domain  

2πn/T, the equation
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Fourier series expansion of the Fourier series expansion of the 
periodic loadingperiodic loading

• For a function x(t) defined on the interval [-τ/2, τ/2], we have the 
representation on that interval

• The coefficients are obtained as follows: Consider the integral

• When x(t) is substituted from the first equation this integral breaks down into• When x(t) is substituted from the first equation,  this integral breaks down into 
Im(1), Im(2) and Im(3). The first is:
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Fourier series expansion of the Fourier series expansion of the 
periodic loadingperiodic loading

but this is zero as sin(πm)=0  for all m. The second integral is:

• Assuming we can change the order of integration and summation we obtain

• Using the identity

P. Gundes Bakir,      Vibration based structural health monitoring 51



Fourier series expansion of theFourier series expansion of the
ERASMUS Teaching (2008), Technische Universität Berlin

Fourier series expansion of the Fourier series expansion of the 
periodic loadingperiodic loading

• Now if n and m are different integers then n-m and n+m are both nonzero integers 
and the sine terms in the last expression vanish. If n and m are equal, we have a 
problem with the second term above. We could use a limit argument but it is 
simpler to go back to the first equation with n=m.
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Fourier series expansion of the Fourier series expansion of the 
periodic loadingperiodic loading

• This breaks down to:

• An orthogonality relation has been proved. 
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• A similar analysis for the third integral 
gives
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Fourier series expansion of the Fourier series expansion of the 
periodic loadingperiodic loading

• Derives along the way the orthogonality relation

• As 

• We have 0for                                
2
 

≠== nmaI mm
τ

• Or in terms of the original expression: 

0for                                 0 === nmaI m τ
2

0for  ≠= nm
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Fourier series expansionFourier series expansion

If 0 i h b l i• If m=n=0 in the below equation:
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• Performing the same operations using a multiplier of sin(2πm/τ) 
gives:
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Fourier series expansion of the Fourier series expansion of the 
periodic loadingperiodic loading

Fourier Series Expansion in Exponential Form
• Recall the standard Fourier series in terms of 

• Now suppose we apply de Moivres Theorem
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Fourier series expansion of the Fourier series expansion of the 
periodic loadingperiodic loading

• This allows us to write the equation

in the following form:

where
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Fourier series expansionFourier series expansion
U i th ti• Using the equations

L

22

,2,12cos)(2

2/

2/

2/

==

∫

∫
−

nt

ndt
T
nttx

T
a

T

T

T
n

π

π

in

L,2,12sin)(2

2/

== ∫
−

ndt
T
nttx

T
b

T
n

π

in
( ) dt

T
nttxidt

T
nttx

T
ibac

T

T

T

T

T
nnn ∫ ∫

+

+

−

+

−

⎞⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

2/

2/

2/

2/

2/

221

2sin)(2cos)(2
2
1

2
1 ππ

Gives:
dt

T
nti

T
nttx

T

T

T
∫

+

−

⎟
⎠
⎞

⎜
⎝
⎛ −=

2/

2/

2sin2cos)(1 ππ

T+ 2/1 dtetx
T

c
T

T

Tnti
n ∫

+

−

−=
2/

2/

/2)(1 π

P. Gundes Bakir,      Vibration based structural health monitoring 58



Fourier series expansionFourier series expansion
ERASMUS Teaching (2008), Technische Universität Berlin

Fourier series expansionFourier series expansion
Alt ti l i th th lit ti• Alternatively, using the orthogonality equation 

0for     0
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≠+=∫ mndtee tim
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and multiplying the equation
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mnT
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and multiplying the equation 

by exp(imωt), and integrating directly gives: 
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Fourier transformFourier transform
If t t l k t th t l t t f i di i l• If we want to look at the spectral content of nonperiodic signals we 
have to let τ→∞ as all the interval t ∈[-∞, ∞]  contains important 
information. Recall the exponential form of the Fourier series

where

C bi i th b t ti iCombining the above two equations give:

and we now have to let τ→0
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Fourier TransformFourier Transform
• If we suppose that the position of the t axis is adjusted so that the pp p j

mean value of x(t) is zero. Then according to the first of the below 
equation the coefficient ao will be zero.

Th i i ffi i t d b ill i l ll b diff t
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• The remaining coefficients an and bn will in general all be different 
and their values may be illustrated graphically as shown. 
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Fourier TransformFourier Transform

Recall that the spacing between the frequency lines is

so that the kth spectral line is at

From the first equation, we see that

The equation

becomes
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Fourier TransformFourier Transform
A 0 h b l d l h d h• As τ→0, the ωn become closer and closer together and the 
summation turns into an integral with  Δω=dω (assuming that x(t) is 
appropriately well behaved. In the limit

It f ll th t if d fi• It follows that if we define

where F denotes the Fourier transform then the first equation 
implies that

and this is the inverse Fourier transform
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Fourier TransformFourier Transform
N t th f l i il it t th L l t f i f t bt i• Note the formal similarity to the Laplace transform in fact we obtain 
the Fourier transform by letting s= iω in the Laplace transform. The 
main difference between the two is the comparative simplicity of the 
inverse Fourier transforminverse Fourier transform. 

• {x(t),X(ω)} are a Fourier transform pair. As they are uniquely 
constructable from each other they must both encode the same 
information but in different domains. X(ω) expresses the frequency 
content of x(t). It is another form of spectrum. However note that it 
h t b ti f ti f i d t thas to be a continuous function of ω in order to represent non-
periodic functions.
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Discrete Fourier TransformDiscrete Fourier Transform
I li l ill h i l b f fi i d i b i ill b• In reality not only will the signal be of finite duration but it will be 
sampled. It is not possible to store a continuous function on a 
computer as it would require infinite memory.

• What one usually does is take measurements from the signal at 
regular intervals  say t seconds apart  so the signal for manipulation 
takes the form of a finite vector of N samplestakes the form of a finite vector of N samples

where t is a reference time. If we take t0=0 from now on we will have 

• How do we compute the spectrum of such a signal? We need the 
Discrete Fourier Transform DFT.
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Discrete Fourier TransformDiscrete Fourier Transform
R ll h i l f f h F i i h l• Recall the exponential form of the Fourier series the spectral 
coefficients are

• In keeping with our notation for the Fourier transform we will relabel 
cn by Xn from now on. Also the equation above is not in the most 
convenient form for the analysis so we will modify it slightly.

• Recall that x(t) is assumed periodic with period τ Consider the• Recall that x(t) is assumed periodic with period τ. Consider the 
integral
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Discrete Fourier TransformDiscrete Fourier Transform
L t t′ t th i t l b• Let t′= t+τ, the integral becomes

but x(t′)=x(t′-τ) by periodicity. Also, τπττπ /2/)(2  nittin ee −−′− =
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• Now, as we have only x(t) sampled at tr=rΔ t, we have to approximate the 

Discrete Fourier TransformDiscrete Fourier Transform

integral by a rectangular sum,

and as τ=NΔ t, this becomes, 

• As we started off with only N independent quantities xr we can only derive 
N i d d t t l li t t Thi t h l tiN independent spectral lines at most. This means we must have relations 
between the Xn . The simplest one is periodicity. Consider,
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Discrete Fourier TransformDiscrete Fourier Transform
• Therefore, it has been confirmed that we have at most N independent lines. 

In fact, there must be less than this as the Xn are the complex quantities. 
Given N real numbers, we can only specify N/2 complex numbers. 

• Looking at the exponent in 

if this is to be identified with the exponent iωnt of the Fourier transform, we 
must have,,

or
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Discrete Fourier TransformDiscrete Fourier Transform
Alt ti l if if th f i i H t• Alternatively, if we specify the frequency spacing in Hertz

• When n=0, the spectral line is given by:

which is the arithmetic mean or DC component of the signal Therefore Xwhich is the arithmetic mean or DC component of the signal. Therefore X0
corresponds to the frequency ω=0 as we might expect. 

• This means that the highest frequency that we can represent is

22
1

22
sf

ttN
NfN

=
Δ

=
Δ

=Δ

where fs is the sampling frequency. This frequency is very important in 
signal processing and is called the Nyquist Frequency.
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Discrete Fourier TransformDiscrete Fourier Transform
Thi t th t l th fi t h lf f th t l li• This argument says that only the first half of the spectral lines are 
independent-so what are the second half? Consider:
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• A similar argument shows that generally,
*
kkN XX =−
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Discrete Fourier TransformDiscrete Fourier Transform

• Recall that it is a property of the Fourier Transform that

)()( * ωω −= XX

• This means that the spectral coefficient XN-1 corresponds to the frequency 
-Δω or more generally XN-k corresponds to the frequency -kΔω. So the 
array X stores the frequency representation of the signal x as follows:array Xn stores the frequency representation of the signal xr as follows:
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Discrete Fourier TransformDiscrete Fourier Transform
h h if h i l f k f hi h k k? hi i li h 2k• What happens if there is a value of k for which N-k=k? This implies that N=2k so 

the number of sample points is even. 

• Actually this turns out to be the most usual situation, in fact it is a requirement of 
the Fast Fourier Transform which we shall meet in the next lecture.

• In this case, we have 

2/
*

2/ NN XX =

so this spectral line is real. 

• This finally justifies our assertion that the maximum frequency represented is 
NΔω/2. 
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Discrete Fourier TransformDiscrete Fourier Transform
Proof of the inversion theoremProof of the inversion theorem

• Let us proove that
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Discrete Fourier TransformDiscrete Fourier Transform
If h th d f th ti bt i• If we change the order of the summations, we obtain:
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Discrete Fourier TransformDiscrete Fourier Transform
• Thus, if n≠p, within the equationp q
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we have a geometric series as follows: ...1 2
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If we call the left hand side of the above equation sr, we have:
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Discrete Fourier TransformDiscrete Fourier Transform
W bt i th l f f h• We can obtain the value of sr from here as:
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Discrete Fourier TransformDiscrete Fourier Transform
F h i b k i h i b l b 1• For n=p, the term in brackets in the equation below becomes 1.

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

= −
−−

∑∑ rNpni
N

p

N

n ex
N

x /)(2
11 1 π

• The summation of all ones r times gives N. N’s cancel each other in 

[ ]
⎭⎩ ==

∑∑
r

p
p N 00

the above equation and letting p=n gives:
N

xNx∑
−

δ
11

• Thus, the above equality is proved to be satisfied which consequently 

npn
p

p xNx
N

=∑
=

δ
0

, q y p q y
proves the inversion theorem. This takes us to the final proven 
Discrete Fourier Transform formulas in the next slide.
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Discrete Fourier TransformDiscrete Fourier Transform
Di F i T f• Discrete Fourier Transform

Nnri
N

exX /2
1

π−
−

∑=
• Inverse Discrete Fourier Transform

r
rn exX

0=
∑=

Nnri
N

rn eX
N
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=
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∑
=
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Gibb s phenomenonGibb s phenomenon
• The first figure shows a time domain signal being synthesized from• The first figure shows a time domain signal being synthesized from 

sinusoids. The signal being reconstructed is shown in the graph on the left 
hand side.  Since this signal is 1024 points long, there will be 513 individual 
frequencies needed for a complete reconstruction. The figure on the right  
sho s a reconstr cted signal sing freq encies 0 thro gh 100 This signalshows a reconstructed signal using frequencies 0 through 100. This signal 
was created by taking the DFT of the signal on the left hand side, setting 
frequencies 101 through 512 to a value of zero, and then using the Inverse 
DFT to find the resulting time domain signal. The figure in the middle  shows 

t t d i l i f i 0 th h 30a reconstructed signal using frequencies 0 through 30. 

P. Gundes Bakir,      Vibration based structural health monitoring 80



Gibb’s phenomenonGibb’s phenomenon
ERASMUS Teaching (2008), Technische Universität Berlin

Gibb s phenomenonGibb s phenomenon
• When only some of the frequencies are used in the reconstruction each edge shows• When only some of the frequencies are used in the reconstruction, each edge shows 

overshoot and ringing (decaying oscillations). This overshoot and ringing is known as 
the Gibbs effect, after the mathematical physicist Josiah Gibbs, who explained the 
phenomenon in 1899. 

• The critical factor in resolving this puzzle is that the width of the overshoot becomes• The critical factor in resolving this puzzle is that the width of the overshoot becomes 
smaller as more sinusoids are included. The overshoot is still present with an infinite 
number of sinusoids, but it has zero width. Exactly at the discontinuity the value of the 
reconstructed signal converges to the midpoint of the step. As shown by Gibbs, the 
summation converges to the signal in the sense that the error between the two has g g
zero energy. 
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Gibb s phenomenonGibb s phenomenon
• Problems related to the Gibbs effect are frequently encountered in• Problems related to the Gibbs effect are frequently encountered in 

DSP. For example, a low-pass filter is a truncation of the higher 
frequencies, resulting in overshoot and ringing at the edges in the 
time domain. Another common procedure is to truncate the ends of p
a time domain signal to prevent them from extending into 
neighboring periods. By duality, this distorts the edges in the 
frequency domain. These issues will resurface in future chapters on 
filter designfilter design.
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Example: An important DFT pairExample: An important DFT pair
• Figure is an example signal we wish to synthesize an impulse at sample• Figure is an example signal we wish to synthesize, an impulse at sample 

zero with an amplitude of 32. Figure  b shows the frequency domain 
representation of this signal. The real part of the frequency domain is a 
constant value of 32. The imaginary part (not shown) is composed of all 
eroszeros. 

• As discussed in the next chapter, this is an important DFT pair: an impulse 
in the time domain corresponds to a constant value in the frequency 
domain. For now, the important point is that (b) is the DFT of (a), and (a) is , p p ( ) ( ), ( )
the Inverse DFT of (b).

P. Gundes Bakir,      Vibration based structural health monitoring 83



BandwidthBandwidth
ERASMUS Teaching (2008), Technische Universität Berlin

BandwidthBandwidth
• As shown in the figure the• As shown in the figure, the 

bandwidth can be defined by 
drawing dividing lines between the 
samples. For instance, sample 
n mber 5 occ rs in the bandnumber 5 occurs in the band 
between 4.5 and 5.5; sample 
number 6 occurs in the band 
between 5.5 and 6.5, etc. 
E d f ti f thExpressed as a fraction of the 
total bandwidth (i.e., N/2), the 
bandwidth of each sample is 2/N. 
An exception to this is the 

l h d hi h h
• DFT can be calculated by the fast 

samples on each end, which have 
one-half of this bandwidth, 1IN. 
This accounts for the 2/N scaling 
factor between the sinusoidal 

Fourier transform (FFT), which is 
an ingenious algorithm that 
decomposes a DFT with N points, 
i N DFT h i h i lamplitudes and frequency domain, 

as well as the additional factor of 
two needed for the first and last 
samples.

into N DFTs each with a single 
point.

P. Gundes Bakir,      Vibration based structural health monitoring 84

p



Frequency responseFrequency response--ImpulseImpulse
ERASMUS Teaching (2008), Technische Universität Berlin

Frequency responseFrequency response Impulse Impulse 
responseresponse

• A system’s frequency response is the Fourier transform of its impulse 
response.

• Keeping with standard DSP notation, impulse responses use lower-case p g , p p
variables, while the corresponding frequency responses are upper case. 
Since h[ ] is the common symbol for the impulse response, H[ ]  is used for 
the frequency response That is convolution in the time domainthe frequency response. That is, convolution in the time domain 
corresponds to multiplication in the frequency domain.
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yy
the frequency response?the frequency response?

• The answer is: infinitely high, if you are willing to pad the impulse response with an 
infinite number of zeros. In other words, there is nothing limiting the frequency 
resolution except the length of the DFT. 

• Even though the impulse response is a discrete signal, the corresponding frequency 
response is continuous. An N point DFT of the impulse response provides N/2 + 1 
samples of this continuous curve. If you make the DFT longer, the resolution improves, 
and you obtain a better idea of what the continuous curve looks like.

• This can be better understood by the discrete time Fourier transform (DTFT). 
Consider an N sample signal being run through an N point DFT, producing an N/2 + 1 
sample frequency domain. DFT considers the time domain signal to be infinitely long p q y g f y g
and periodic. That is, the N points are repeated over and over from negative to positive 
infinity. Now consider what happens when we start to pad the time domain signal with 
an ever increasing number of zeros, to obtain a finer and finer sampling in the 

P. Gundes Bakir,      Vibration based structural health monitoring 86

g p g
frequency domain. 



How much resolution can you obtain in How much resolution can you obtain in 
ERASMUS Teaching (2008), Technische Universität Berlin

yy
the frequency response?the frequency response?

• Adding zeros makes the period of the time domain longer while simultaneously• Adding zeros makes the period of the time domain longer, while simultaneously 
making the frequency domain samples closer together.

• Now we will take this to the extreme, by adding an infinite number of zeros to theNow we will take this to the extreme, by adding an infinite number of zeros to the 
time domain signal. This produces a different situation in two respects. 

• First, the time domain signal now has an infinitely long period. In other words, it 
h d i i di i lhas turned into an aperiodic signal. 

• Second, the frequency domain has achieved an infinitesimally small spacing 
between samples That is it has become a continuous signal This is the DTFT thebetween samples. That is, it has become a continuous signal. This is the DTFT, the 
procedure that changes a discrete aperiodic signal in the time domain into a 
frequency domain that is a continuous curve. In mathematical terms, a system's 
frequency response is found by taking the DTFT of its impulse response. Since this 
cannot be done in a computer the DFT is used to calculate a sampling of the truecannot be done in a computer, the DFT is used to calculate a sampling of the true 
frequency response. This is the difference between what you do in a computer (the 
DFT) and what you do with mathematical equations (the DTFT).
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Close peaksClose peaks
• Suppose there are peaks very close together such as shown in the figure• Suppose there are peaks very close together, such as shown in the figure. 

There are two factors that limit the frequency resolution that can be 
obtained-that is,how close the peaks can be without merging into a single 
entity. The first factor is the length of the DFT. The frequency spectrum 
prod ced b an N point DFT consists of N/2 + 1 samples eq all spacedproduced by an N point DFT consists of N/2 + 1 samples equally spaced 
between zero and one half of the sampling frequency. To separate two 
closely spaced frequencies, the sample spacing must be smaller than the 
distance between the two peaks. For example, a 512-point DFT is sufficient 
t t th k i th fi hil 128 i t DFT i tto separate the peaks in the figure,while a 128-point DFT is not.
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Output of a systemOutput of a system
• What are you going to do if given an input signal and impulse response, and 

need to find the resulting output signal? Transform the two signals into theneed to find the resulting output signal? Transform the two signals into the 
frequency domain, multiply them, and then transform the result back into the 
time domain.
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Properties of the Fourier TransformProperties of the Fourier Transform
• Homogeneity means that a change in amplitude in one domain produces an identical change 

i lit d i th th d i Wh th lit d f ti d i f i h din amplitude in the other domain. When the amplitude of a time domain waveform is changed, 
the amplitude of the sine and cosine waves making up that waveform must also change by an 
equal amount. In mathematical form, if x[ ] and X[ ] are a Fourier Transform pair, then kx[ ] 

d k [ ] l i f i f kand kX[ ] are also a Fourier Transform pair, for any constant k.

P. Gundes Bakir,      Vibration based structural health monitoring 90



Properties of the Fourier TransformProperties of the Fourier Transform
ERASMUS Teaching (2008), Technische Universität Berlin

Properties of the Fourier TransformProperties of the Fourier Transform
• Additivity of the Fourier transform means that addition

i d i d t dditi i th thin one domain corresponds to addition in the other 
domain. An example of this is shown in the figure. In this 
illustration, (a) and (b) are signals in the time domain 

ll d [ ] d [ ] ti l Addi th i lcalled x1[n] and x2[n], respectively. Adding these signals 
produces a third time domain signal called x3[n], shown 
in (c). ( )
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Properties of the Fourier TransformProperties of the Fourier Transform
• In spite of being linear, the Fourier transform is not shift invariant. In other p g

words, a shift in the time domain does not correspond to a shift in the 
frequency domain. 

• Let h(t) be the impulse response, i.e., the system’s response to a Dirac ( ) p p , , y p
impulse, it can be proved that the response g(t) of the system to an input f(t)
is the convolution of f(t) and h(t):

+∞

Th l ti th i F i l i t t th t l ti i

∫
∞−

∗=−= )()()()()( tfthdthftg τττ

• The convolution theorem in Fourier analysis states that convolution in one 
domain corresponds to multiplication in the other domain.

• Hence the frequency response function H(f) is the ratio between the 
d th i t f ti f th fresponse and the input as a function of the frequency.

)()()(
)()()(
fFfHfG

tfthtg ∗=
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Properties of the Fourier TransformProperties of the Fourier Transform

Diff i i i h i d i i i l l i li i b• Differentiation in the time domain is equivalent to multiplication by a 
factor iω in the frequency domain.

[ ] )()()( ωω XitxF =&

• Integration in the time domain is equivalent to division by iω in the 
f d i

[ ] )()()( ωω XitxF =

frequency domain.

ω
ωττ

i
XdxF

t )()( =⎥⎦
⎤

⎢⎣
⎡∫ ∞−

• If the input is the harmonic probe eiωt, the output is eiωt multiplied by 
the FRF evaluated at ω.

ωi⎦⎣

tieHty ωω)()( =
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Fourier transformFourier transform
M d i l i d i f i I i i• Measured signals are time domain functions. It is important to 
investigate the signals in the frequency domain in order to study 
their frequency content. The Fourier tansform is a tool to transform 
signals from the time domain to the frequency domain. 

• The signal can be transformed back to the time domain using the 
inverse Fourier transform:
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Fast Fourier TransformFast Fourier Transform
Th FFT i l l ith f idl l l ti th DFT• The FFT is a clever algorithm for rapidly calculating the DFT. 

• The N point DFT of an N point sequence xn is given by:p p q n g y

Nj
N

nk
N

N

r
nk eWWxX /2

1

0
       where π−

−

=

==∑

• Because xn may be either real or complex, evaluating Xk requires on the 
order of N complex multiplications and N complex additions for each 

l f k Th f b th N l f X ti Nvalue of k. Therefore, because there are N values of Xk, computing an N 
point DFT reqires N2 complex multiplications and additions. 

• The basic strategy that is used in the FFT algorithm is one of divide and 
conquer, which involves decomposing an N point DFT into succesively 
smaller DFTs. 
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Fast Fourier TransformFast Fourier Transform
• Suppose that the length of xn is even, (i.e., N is divisible by 2). If xn is pp g n , ( , y ) n

decimated into two sequences of length N/2, computing the N/2 point 
DFT of each of these sequences requires approximately (N/2)2

multiplications and the same number of additions.Thus, the two DFTs 
require 2*(N/2)2=N2/2 multiplications and the same number of additions.require 2 (N/2) N /2 multiplications and the same number of additions.

• Therefore, if it is possible to find the N point DFT of xn from these two N/2 
point DFTs, great computational time will be saved because N2/2 

ti ill b i d i t d f N2operations will be required instead of N2.

• Let xn be a sequence of length N=2v, and suppose that xn is split 
(decimated) into two subsequences each of length N/2(decimated) into two subsequences, each of length N/2. 

• The first sequence gn is formed from the even-index terms,

1
2

,...,1,02 −==
Nnxg nn
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Fast Fourier TransformFast Fourier Transform
Th d i f d f th dd i d t• The second sequence hn is formed from the odd-index terms,

1,...,1,012 −== +
Nnxh nn

• In terms of these sequences, the N-point DFT of xn is

2
, ,,12 +nn
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Fast Fourier TransformFast Fourier Transform
Si• Since

Nj
N eW /2π−= lk

N
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N WW 2/
2 =

• Substituting the above result into the equation:
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• We obtain:
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Fast Fourier TransformFast Fourier Transform
N t th t i th ti• Note that in the equation

∑ ∑
− −

+=
1

2
1

2
N

lk

N

klk WhWWgX

the first term is the N/2 point DFT of g and the second is the N/2 point

∑ ∑
= =
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2/
l

N
l
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the first term is the N/2 point DFT of gn and the second is the N/2 point 
DFT of hn:

1,....,1,0 −=+= NkHWGX k
k

Nkk

• Although the N/2 point DFTs of gn and hn are sequences of length N/2, the 
periodicity of the complex exponentials allows us to write:

, ,,kNkk

2/Nkk

HH
GG +

=
=
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Fast Fourier TransformFast Fourier Transform
Th f X b t d f th N/2 i t DFT G d H• Therefore, Xk may be computed from the N/2 point DFTs Gk and Hk.

• If N/2 is even, gn and hn may again be decimated. For example, Gk may be 
l t d f llevaluated as follows:
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• As before, this leads to 
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where the first term is the N/4 point DFT of the even samples of gn, and the second 
is the N/4 point DFT of the odd samples.

nn 00 ==
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Fast Fourier TransformFast Fourier Transform
• If N is a power of 2, the decimation may be continued until there are 

only two-point DFTs. A block diagram showing the computations 
that are necessary for the first stage of an eight point decimation in 
time is shown in the figure. This diagram is called the FFT butterfly. g g y
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Fast Fourier TransformFast Fourier Transform
C ti N i t DFT i FFT i h ff ti th• Computing an N point DFT using FFT is much more effective than 
calculating the DFT directly. 

• For example, if N=2v, there are log2N=v stages of computation. At each of 
these stages, we are required to carry out N multiplications. The total cost 
of the algorithm is then Nlog2N. 

• The saving in moving from the DFT to FFT is:

NNN 2

v
N

N
N

NN
N

==
22

2

loglog

• Suppose N=1024, we get a saving of computational effort of the order 
100:1, and this saving increases with N. 
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Problems associated with ADCProblems associated with ADC
W ill l th i f li i d t i l• We will now explore the issues of aliasing and apparent signal 
distortion associated with choosing a sample rate for digital 
conversion of analog signals.  This process is known as analog to 
digital conversion (A/D)digital conversion (A/D).

• The process of sampling reduces an infinite set to a finite set of 
data resulting in a loss of information which is responsible for the 
i d t il d i thi tiissues detailed in this section.

• Since the original analog signal contains infinite information 
(knowledge of the signal at any point in time), the frequencies within 
th i l l kthe signal are also known. 

• Information lost in the sampling process is also lost in the frequency 
representation. We will explain how this leads to the problem of 
leakage where high frequency components can not be distinguished 
from low frequency components.
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SamplingSampling
N l ll d i i i l d i h if i• Nearly all data acquisition systems sample data with uniform time 
intervals. For evenly sampled data, time can be expressed as:

tNT Δ= )1(

where N is the sampling index which is the number of equally 
d l F t F i l N i t i t d t

tNT Δ−= )1(

spaced samples. For most Fourier analyzers N is restricted to a 
power of 2.

• The sample rate or the sampling frequency is:

fNf Δ−== )1(1 fN
t

fs Δ=
Δ

= )1(
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SamplingSampling
S li f i th i l f th ti l d• Sampling frequency is the reciprocal of the time elapsed 
Δt from one sample to the next. 

• The unit of the sampling frequency is cycles per second 
or Hertz (Hz), if the sampling period is in seconds. ( ) p g p

• The sampling theorem asserts that the uniformly spaced 
di l l i f hdiscrete samples are a complete representation of the 
signal if the bandwidth fmax is less than half the sampling 
rate. The sufficient condition for exact reconstructabilityrate. The sufficient condition for exact reconstructability 
from samples at a uniform sampling rate fs (in samples 
per unit time) (fs≥2fmax). 
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AliasingAliasing
• One problem encountered in A/D conversion is that a high frequency• One problem encountered in A/D conversion is that a high frequency 

signal can be falsely confused as a low frequency signal when 
sufficient precautions have been avoided.

• This happens when the sample rate is not fast enough for the signal 
and one speaks of aliasing.

• Unfortunately, this problem can not always be resolved by just 
sampling faster, the signal’s frequency content must also be limited. 

• Furthermore, the costs involved with postprocessing and data 
analysis increase with the quantity of data obtained. Data acquisition 
systems have finite memory, speed and data storage capabilities. y y, p g p
Highly oversampling a signal can necessitate shorter sample 
lengths, longer time on test, more storage medium and increased 
database management and archiving requirements.
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AliasingAliasing
• The central concept to avoid aliasing is that the sample rate must be 

at least twice the highest frequency component of the signal 
(fs≥2fmax). We define the Nyquist or cut-off frequency( s max) yq q y

t
ff s

N Δ
==

2
1

2

• The concept behind the cut-off frequency is often referred to as 

tΔ22

Shannon’s sampling criterion. Signal components with frequency 
content above the cut-off frequency are aliased and can not be 
distinguished from the frequency components below the cut-offdistinguished from the frequency components below the cut off 
frequency. 
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AliasingAliasing
• Conversion of analog frequency into digital frequency during sampling is 

shown in the figure Continuous signals with a frequency less than one-halfshown in the figure. Continuous signals with a frequency less than one half 
of the sampling rate are directly converted into the corresponding digital 
frequency. Above one-half of the sampling rate, aliasing takes place, 
resulting in the frequency being misrepresented in the digital data. Aliasing 
always changes a higher frequency into a lower frequency between 0 and 
0.5. In addition, aliasing may also change the phase of the signal by 180 
degrees.
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AliasingAliasing
• What happens if the original signal actually has a component above the Nyquist 
frequency?frequency?

• Now if the spectrum of the continuous signal extends beyond the Nyquist    
frequency we see overlap

P. Gundes Bakir,      Vibration based structural health monitoring 110



AliasingAliasing
ERASMUS Teaching (2008), Technische Universität Berlin

AliasingAliasing
If i h i i l i l d b d h N i• If any energy in the original signal extends beyond the Nyquist 
frequency, it is folded back into the Nyquist interval in the spectrum 
of the sampled signal. This folding is called aliasing

fs≥2fmax
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AliasingAliasing
• Just as aliasing can change the frequency during sampling, it can 

also change the phase For example the aliased digital signal in thealso change the phase. For example, the aliased digital signal in the 
figure is inverted from the original analog signal; one is a sine wave 
while the other is a negative sine wave. In other words, aliasing has 
changed the frequency and introduced a 180" phase shift Only twochanged the frequency and introduced a 180  phase shift. Only two 
phase shifts are possible: 0" (no phase shift) and 180" (inversion). 

fs≥2fmax
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LeakageLeakage
Wh i i l f h i d i h f• When converting a signal from the time domain to the frequency 
domain, the Fast Fourier Transform (FFT) is used.

• The Fourier Transform is defined by the equation:y q

which requires a signal sample from –∞ to ∞. 

• The Fast Fourier Transform however only requires a finite number of• The Fast Fourier Transform however only requires a finite number of 
samples (which must be a value of 2n where n is an integer. i.e. 2, 4, 
8, 16 … 512, 1024). The FFT is defined as:
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LeakageLeakage
• The Fast Fourier Transform is commonly used because it requires• The Fast Fourier Transform is commonly used because it requires 

much less processing power than the Fourier Transform. Like all 
shortcuts, there are some  compromises involved in the FFT. 

• The signal must be periodic in the sample window or leakage will 
occur. 

• The signal must start and end at the same point in its cycle. 

• Leakage is the smearing of energy from the true frequency of the• Leakage is the smearing of energy from the true frequency of the 
signal into adjacent  frequencies. 

• Leakage also causes the amplitude representation of the signal to• Leakage also causes the amplitude representation of the signal to 
be less than the true amplitude of the signal.
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LeakageLeakage
• An example of a nonperiodic signal can be seen in the Figure.p p g g
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LeakageLeakage
B i h Fi i• By comparing the Figures, it 
can be seen that the frequency 
content of the signal is 
smeared into adjacent 
frequencies when the signal is 
not periodic. p

• In addition to smearing, the 
lit d t ti f thamplitude representation of the 

signal is less than the true 
value.
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LeakageLeakage
• The only solution to the leakage problem is to make sure that the• The only solution to the leakage problem, is to make sure that the 

signal is periodic or completely observed within the observation 
window. 

• Generally, this is very difficult to achieve. For systems with a perfect 
linear behaviour, it can be accomplished by exciting the structure 
with a periodic signal. Excitation signals as burst random also p g g
minimize this problem.

• Decreasing the frequency step Δf increases the observation time g q y p
T and hence will improve the periodicity of the signal. 

• The use of a time window other than a rectangular one offers an g
approximate solution to the leakage problem. 
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WindowingWindowing
• In signal processing a window function is a function that is zero• In signal processing, a window function is a function that is zero-

valued outside of some chosen interval. 

• Applications of window functions include spectral analysis and• Applications of window functions include spectral analysis and 
filter design. 

• The first type of window is called the “rectangular” window; it does• The first type of window is called the rectangular  window; it does 
not weight the signal in any way and is equivalent to saying that no 
window was used. 

• Rectangular window is used whenever frequency resolution is of 
high importance. This window can have up to 36% amplitude error if 
the signal is not periodic in the sample interval. It is good for signals g p p g g
that inherently satisfy the periodicity requirement of the FFT 
process.
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WindowingWindowing
A t l i d i f ti th t i t t i id th• A rectangular window is a function that is constant inside the 
interval and zero elsewhere, which describes the shape of its 
graphical representation. When another function or a signal (data) is 
multiplied by a window function the product is also zero valuedmultiplied by a window function, the product is also zero-valued 
outside the interval: all that is left is the "view" through the window. It 
can be shown that there is no window with a narrower main lobe 
than the rectangular windowthan the rectangular window.
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WindowingWindowing
• Windows work by weighting the• Windows work by weighting the 

start and end of a sample to zero 
while at the same time 
increasing the amplitude of the g p
signal at the center as to 
maintain the average amplitude 
of the signal. 

• The effect of a Hanning window
on a non-periodic signal in the 
Frequency Domain can be seenFrequency Domain can be seen 
in the Figure.

• Figure shows that the window• Figure shows that the window
reduces smearing and better 
preserves the amplitude of the 
signal.
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WindowingWindowing
Th ff t f th• The effect of the same 
Hanning Window on the 
time domain signal can g
be seen in the Figure.

• Figure shows how the 
Hanning window
weights the beginningweights the beginning 
and end of the sample to 
zero so that it is more 

i di d i th FFTperiodic during the FFT 
process.
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WindowingWindowing
• The Flat Top window is used whenever signal amplitude is of very 

high importance. The flat top window preserves the amplitude of 
a signal very well; however it has poor frequency resolution so 
that the exact frequency content may be hard to determine, this is q y y ,
particularly an issue if several different frequency signals exist in 
close proximity to each other. The flat top window will have at most 
0 1% amplitude error0.1% amplitude error.
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WindowingWindowing
Th H i i d i i b h Fl T d• The Hanning window is a compromise between the Flat Top and 
Rectangular windows. It helps to maintain the amplitude of a signal 
while at the same time maintaining frequency resolution. This 
window can have up to a 16% amplitude error if the signal is not 
periodic.
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WindowingWindowing
Th i d d f d i i d• The most common window used for random excitations exerted 
by shakers is the Hanning window.
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WindowingWindowing
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WindowingWindowing
Th ti l i d i• The exponential window is 
used to make a measurement 
from a vibrating structure more 
accurateaccurate. 

• It is used when the “ringing” of 
a structure does not attenuate 
adequately during the sample 
interval. 

• An example of the 
exponential window can be p
seen in the figure.
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WindowingWindowing
The exponential window• The exponential window
can cause some 
problems if not used 

lproperly. 

• As an example a veryAs an example, a very 
simple lightly damped 
structure was subjected 
to an impact test Theto an impact test. The 
signal processing 
parameters were selected 
for a 400 Hz bandwidthfor a 400 Hz bandwidth 
which resulted in a 1 sec 
time window. 
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Exponential WindowExponential Window
O th i ht• On the right more 
damping is applied and 
the peaks are muchthe peaks are much 
wider now! 

• If an excessive amount 
of damping is needed toof damping is needed to 
minimize the effects of 
leakage then you runleakage, then you run 
the risk of missing 
closely spaced 
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Exponential WindowExponential Window
Before any window is applied itBefore any window is applied, it 
is advisable to try alternative 
approaches to minimize the 
leakage in the measurementleakage in the measurement 
such as:

• Increasing the number of spectral 
lines

• Halving the bandwidth
which both result in increasedwhich both result in increased 
total time for measurement.

fN
t

fs Δ−=
Δ

= )1(1
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WindowingWindowing
• Impact testing always causes some type of transient response that• Impact testing always causes some type of transient response that 

is the summation of damped exponential sine waves. 

• If the entire transient event can be captured such that the FFT• If the entire transient event can be captured such that the FFT 
requirements can be met, leakage will not be a problem.

• But for lightly damped structures in many impact testing situations• But for lightly damped structures, in many impact testing situations, 
the use of an exponential window is necessary.

• However the use of exponential window can cause some difficulties• However, the use of exponential window can cause some difficulties 
when evaluating structures with light damping and closely spaced 
modes.

• The use of windows may also hide or distort the modes in the 
measurement.
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WindowingWindowing
• The effects of leakage can only be minimized through the use of a• The effects of leakage can only be minimized through the use of a 

window. It can never be eliminated!

• All windows distort data!• All windows distort data!

• Almost all the time when performing a modal test, the input 
excitation can be selected such that the use of windows can beexcitation can be selected such that the use of windows can be 
eliminated. e.g.,signals such as pseudo random, burst random, sine 
chirp, and digital stepped sine.
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AveragingAveraging
• Suppose that now we want to estimate the spectrum of a random• Suppose that now we want to estimate the spectrum of a random 

signal. In the limit as τ ∞, we would get an accurate spectrum but 
for  finite τ , we have a problem. Any finite realisation of a random 
process will not represent exactly the long term frequency content p p y g q y
precisely because it is random.

• Assuming no problems with aliasing we will find

where X is the true spectrum and is an error term associated withwhere X is the true spectrum and     is an error term associated with 
the finite sample size. Now for each spectral line      is a random 
variable and is just as likely to cause an underestimate as an 
overestimate.

• This means we can remove it by averaging
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AveragingAveraging
Th i b i l t d b t ki N t f ti• The averaging can be implemented by taking N segments of time 
data xi(t) and transforming to

then

• For a signal

• The frequency of the sine wave is chosen such that it is periodicThe frequency of the sine wave is chosen such that it is periodic 
over the window, so we don’t have to worry about leakage from the 
sine wave.
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AveragingAveraging
Th fi i h Al h h h• The first is one average- a one-shot measurement. Although the 
sine wave (at 10.24 Hz) is visible, there is a lot of background noise 
from the single average.
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AveragingAveraging
Th fi h h l f ki 10• The next figure shows the result of taking 10 averages.

P. Gundes Bakir,      Vibration based structural health monitoring 136



AveragingAveraging
ERASMUS Teaching (2008), Technische Universität Berlin

AveragingAveraging
Fi ll h ff f ki 100• Finally, we see the effect of taking 100 averages.
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Power spectral densityPower spectral density
Oft l t E[|X|] 2 thi i ti l t It i ll d th• Often we plot E[|X|] 2 as this is proportional to power.  It is called the 
power spectral density and is denoted

• The autocorrelation of a random process is defined by:

• It is a measure of how much a signal looks like itself 
when shifted by an amount τ.   It is used to find 
regularities in data. Suppose that x(t)=sin(2πt/ τ’), then 
there will be regular peaks in φ (τ) when τ=nτ’ So thethere will be regular peaks in φxx (τ) when τ nτ . So the 
autocorrelation function can also be used to detect 
periodicities.
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• If x(t) is zero mean, then

Power spectral densityPower spectral density
If x(t) is zero mean, then 

and if x is not zero mean, φxx (0) is the mean 
square of the process.

• As x(t) is stationary, we can change the origin of 
t to t- τ without changing the autocorrelation, i.e.

• So φxx (τ) is an even function of τ
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FiltersFilters
• Assume that we are trying to build a Fourier transforming device• Assume that we are trying to build a Fourier transforming device 

which can give us the spectrum of a given time signal. Suppose that 
we have a maximum sampling frequency of 1000 Hz i.e. a Nyquist 
frequency of 500 Hz.q y

• If the time signal has a broadband spectrum which is flat up to 750 
Hz, what will the estimated spectrum look like? So energy is aliased , p gy
into the range 250-500 Hz from the range 500-750 Hz and we obtain 
a completely fictitious spectrum.

• How can we help this?Suppose we had a device which removed the 
part of the signal at frequencies between 500 and 750 Hz. Then we 
would have changed the signal admittedly but the FFT would at 
least give us an accurate spectrum all the way up to 500 Hzleast give us an accurate spectrum all the way up to 500 Hz.
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FiltersFilters
S h d i hi h t f i l f• Such a device which passes parts of a signals frequency 
content and suppresses others is called a filter. The 
particular filter described above is called an antialiasing p g
filter for obvious reasons.
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FiltersFilters
A fil i f i h i h f d i h l l• A filter is a function that in the frequency domain has a value close 
to 1 in the range of frequencies that the analyst wishes to retain 
and close to zero in the range of frequencies that the analyst 
wishes to eliminate. 

• The filter can be applied in the time domain by convolution of its• The filter can be applied in the time domain, by convolution of its 
transform with the time history, or in the frequency domain by 
multiplying the filter frequency response function with the 
F i lit d t (FAS) f th ti hi t d thFourier amplitude spectrum (FAS) of the time history, and then 
obtaining the filtered time history through the inverse Fourier 
transform. 

[ ])()()( fXfHIDFTty =
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FiltersFilters
• Equally unimportant is the choice of the actual generic filter: users• Equally unimportant is the choice of the actual generic filter: users 

are faced with a wide range of filters to choose from, including 
Ormsby, elliptical, Butterworth, Chebychev and Bessel. 

• The correct application of the chosen filter is much more important 
than the choice of a particular filter.

• The terminology used to describe filters can be confusing, especially 
for engineers more accustomed to thinking in terms of periods than 
frequencies. q

• A filter that removes high frequencies (short periods) is usually 
referred to as a low-pass filter because motion at lower frequencies p q
gets through and higher frequencies are, in effect, blocked by the 
filter. For such a filter civil engineers prefer the term high-cut, which 
refers directly to the frequencies being removed.
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Classification of filtersClassification of filters
• If it is judged that there is significant high-frequency noise in the record, or 

if for some other reason it is desirable to reduce or remove high frequencies 
introduced by interaction effects at the recording station, this can be easily 
achieved by the application of filters.

• Filters can be applied in the frequency domain or the time domain but their• Filters can be applied in the frequency domain or the time domain but their 
function is best understood in the frequency domain.

• If the filter is a mechanical or electrical device which operates on the 
continuous time physical signal it is called an analogue filter.

• If the filter is a numerical algorithm or mechanical device which operates 
on sampled data it is called a digital filter.
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High passHigh pass--low pass filterslow pass filters
Th f l filt i t th t t f th i l• The purpose of a low pass filter is to remove that part of the signal 
that is judged to be heavily contaminated by high-frequency noise 
that is often observed in strong-motion records. 

• A low-pass filter passes low-frequency components in the signal 
with minimal distortion and attenuates the high-frequency 
components. 

• The so-called cutoff or corner frequency divides the pass band andThe so called cutoff or corner frequency divides the pass band and 
the stop band. A low pass causal Butterworth filter is an all pole filter 
with a squared magnitude response given by:
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High passHigh pass--low pass filterslow pass filters
T id ti i t t h l i hi h t filt• Two considerations are important when applying a highcut filter. 

– The first is that the application of the filter will act in a contradictoryThe first is that the application of the filter will act in a contradictory 
manner to any instrument correction and at least in some frequency 
ranges the two will counteract each other. 

– The second consideration is that an upper frequency limit on the 
usable range of high frequencies in the motion is imposed by the 
sampling rate: the Nyquist frequency, which is the highest frequency 
at which characteristics of the motion can be correctly determined, is 
equal to (1/2Δt) where Δ t is the sampling interval. equa to ( / t) e e t s t e sa p g te a

– A high-cut filter applied at frequencies greater than the Nyquist will 
h ff t th d
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Analogy between mechanical Analogy between mechanical 
and electrical systemsand electrical systemsyy

Electrical system Mechanical system

( ) ( )Input Voltage, e(t) Force, F(t)

Output Charge q(t) Displacement y(t)

Current i(t)=dq/dt Velocity v(t)=dy/dt

Constant parameters Inductance, L Mass,m

Resistance, R Damping,c

Capacitance,C Compliance, 1/k
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Analogue filtersAnalogue filters
W ill t t th di i ith l t i l l filt C id th• We will start the discussion with an electrical analogue filter. Consider the 
circuit below with an alternating voltage input,

)cos()( tVtV ii ω= )cos()( tVtV ii ω
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Analogue filtersAnalogue filters
El t i it th i th t t lt V (t) th l ti f th• Elementary circuit theory gives the output voltage Vo(t) as the solution of the 
differential equation:

)(tVVdVRC o +

where R is the resistance and C is the capacitance. Passing to the frequency 
domain gives:

)(tVV
dt

RC io
o =+

domain gives:

S

)()()( ωωωω ioo VVViRC =+

• So
ωωω VHV io =

where
)()()(

ω
ω

iRC
H

+
=

1
1)(

where
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Analogue filtersAnalogue filters
• The gain of the system is:• The gain of the system is:

1
1)(

222
ω

CR
H

+
=

)(tan)(
:is phase  theand

1

1

222

ωω

ω

RCH

CR

−∠

+

• When RCω=0.1, |H(ω)|=0.995

)(tan)( ωω RCH −=∠

, | ( )|

• When RCω=10, |H(ω)|=0.0995

• As we have a filter that attenuates high frequencies and passes low 
frequencies, it is called a low-pass filter.
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Digital low pass filtersDigital low pass filters
• How can we implement a filter of the sort described above on sampled• How can we implement a filter of the sort described above on sampled 

data?

• First let us adopt a more general notation. Let x(t) or xi be the input to theFirst let us adopt a more general notation. Let x(t) or xi be the input to the 
filter and y(t) or yi be the output. The differential equation of the electrical 
analogue filter is then,

)(txydyRC +

• Now suppose that x and y are sampled with an interval Δt, so       x(t)       
xi=x(ti)=x(i Δt) and y(t) yi=y(ti)=y(i Δt) The derivative above can be

)(txy
dt
yRC =+

xi=x(ti)=x(i Δt) and y(t)        yi=y(ti)=y(i Δt). The derivative above can be 
approximated by:

yydy iii − −1

t
yy

dt
y iii

Δ
= 1
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Digital low pass filtersDigital low pass filters
Thi lt i diff ti• This results in a difference equation

iiii xyyy
t

RC
=+−

Δ − )( 1

• With a bit of arrangement:

RC 1 ⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛

iiii x

t
RCyy

t
RC

RCy 1

1

1

1 ⎟⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜

⎝
+

Δ

=+
⎟⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜

⎝
+

Δ

= −

with appropriate definitions for a1 and b0. Consider the signal
iii xbyay 011 += −

)502i ()52i ()(

sampled with Δt=0.003 as shown in the next slide.
)50.2sin()5.2sin()( tttx ππ +=
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Digital low pass filtersDigital low pass filters
N i i• Noisy sine wave
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Digital low pass filtersDigital low pass filters
• After one pass through the digital filter• After one pass through the digital filter

iii xyy 3345.06655.0 1 += −

• The resulting noisy sine wave after one pass through the filter is:
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Digital low pass filtersDigital low pass filters
• The resulting noisy sine wave after five passes through the digital filter is:• The resulting noisy sine wave after five passes through the digital filter is:
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Digital low pass filtersDigital low pass filters
S h fil i bl h hi h f i• So the filter is able to remove the high frequency sine-wave 
effectively. However, note that the amplitude of the carrier signal 
has also been attenuated. Also, importantly, the phase of the signal 
has been altered.

• The next question we should ask is what is the frequency response• The next question we should ask is-what is the frequency response 
of the new digital filter derived from the original analogue filter?

• We use a theorem from an earlier lecture which says that if the input 
to a system is x(t)=eiwt, then the response is y(t)=H(w) eiwt. Now 
define the backward shift operator Z-1 by:define the backward shift operator Z by:

1
1

−
− = ii yyZ
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Digital low pass filtersDigital low pass filters
Thi ll i h i• This allows us to write the equation

iii xbyay 011 += −

• As:
ii xbyZa 0

1
1 )1( =− −

• Let 

Th

iti
i ex ω=

• Then
iti

i eHy ωω)(=

titittititi ΔΔ )(1 iiii titittititi eeeeeZ ωωωωω Δ−Δ−− === − )(1 1
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Digital low pass filtersDigital low pass filters
Th• Then

becomes:

ii xbyZa 0
1

1 )1( =− −

becomes:

• It follows that the FRF is:
ii

ti xbyea 01 )1( =− Δ− ω

I t f th FRF d i d b h h t bt i

tiea
bH Δ−−

= ωω
1

0

1
)(

• In terms of the FRF derived above, we have enough now to obtain a 
general result. A general digital filter would then be:

nn

∑∑
=

−
=

− +=
xy n

j
jij

n

j
jiji xbyay

01
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A high pass filterA high pass filter
• Recall the formula for the low pass filter:

ω
ω

iRC
H

+
=

1
1)(

• The desired properties for a low pass filter are that:

→→ ωω 0as1)(H

∞→→

→→

ωω

ωω

   as    0)(

0  as   1)(

H

H

• The desired properties for a high pass filter would be:

→→ ωω 0as0)(H

∞→→

→→

ωω

ωω

   as    1)(

0   as   0)(

H

H

P. Gundes Bakir,      Vibration based structural health monitoring 160



A high pass filterA high pass filter
ERASMUS Teaching (2008), Technische Universität Berlin

A high pass filterA high pass filter
• Now we can obtain this characteristic by making a simple 

t f ti th b l titransformation on the below equation:

ω
ω

iRC
H

+
=

1
1)(

• Namely:
ω

ω
ω

ω 1-or          1
→→

i
i

• The FRF of the low pass filter becomes:

i ωω
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A high pass filterA high pass filter
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A high pass filterA high pass filter
Thi filt i hi h i d• This  filter is high pass as required.

0995.0)(,1.0
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• One of the most useful families of analog filters is that of Butterworth
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• One of the most  useful families of analog filters is that of Butterworth 
filters.  These are controlled by two parameters for the low-pass filter. 
The FRF gain is specified as:

nn
f

H 22
2

1

1

1

1)(

⎟⎟
⎞

⎜⎜
⎛

+

=

⎟⎟
⎞

⎜⎜
⎛

+

=
ω

ω

where ωc is the cut-off frequency and n is a steepness factor which    
specifies how fast the signal should die away after the cut off frequency.

cc f
11 ⎟⎟

⎠
⎜⎜
⎝

+⎟⎟
⎠

⎜⎜
⎝

+
ω

P. Gundes Bakir,      Vibration based structural health monitoring 162

p g y q y



High passHigh pass low pass filterslow pass filters
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High passHigh pass--low pass filterslow pass filters

where n is the order of the filter (number of poles in the system function) 
and ωc is the cut off frequency of the Butterworth filter which is the 
frequency where the magnitude of the causal filter |H(ωc )| is 1/√2 

dl f th d f th filtregardless of the order of the filter. 

• The purpose of a low-cut filter is to remove that part of the signal that is 
j dged to be hea il contaminated b long period noise The ke iss e isjudged to be heavily contaminated by long-period noise. The key issue is 
selecting the period beyond which the signal-to-noise ratio is unacceptably 
low. Applying a filter that abruptly cuts out all motion at periods above the 
desired cut-off can lead to severe distortion in the waveform, and therefore ,
a transition—sometimes referred to as a ramp or a rolloff— is needed 
between the pass-band, where the filter function equals unity, and the 
period beyond which the filter function is equal to zero.
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High passHigh pass low pass filterslow pass filters
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High passHigh pass--low pass filterslow pass filters
• The figure shows an illustration of a low-cut Butterworth filter as a 

f ti f f d i d Th filt f i 0 05 H hi hfunction of frequency and period. The filter frequency is 0.05 Hz, which 
means that periods above 20 s are at least partially removed. The 
different curves are for different orders of filter: the higher the order, 
the more abrupt the cut-off (the more rapid the roll-off (but withthe more abrupt the cut off (the more rapid the roll off (but with 
increased filter-response oscillations for the higher order filters)). For 
the lower order filters, information will be removed from periods as low 
as 10 s.
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CausalCausal--acausal filtersacausal filters
• Although the choice of filter type is less important the way in which• Although the choice of filter type is less important, the way in which 

the filter is applied to the accelerogram has been shown to be very 
important. 

• The fundamental choice is between causal and acausal filters, the 
distinguishing feature of the latter being that they do not produce 
any phase distortion in the signal, whereas causal filters do result y p g ,
in phase shifts in the record. 

• The zero phase shift is achieved in the time domain by passing p y p g
the transform of the filter along the record from start to finish and 
then reversing the order and passing the filter from the end of the 
record to the beginning.
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CausalCausal acausal filtersacausal filters
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CausalCausal--acausal filtersacausal filters
Th i l i f h fil i h i h i h• The imlementation of a zero phase filtering scheme is shown in the 
figure.

P. Gundes Bakir,      Vibration based structural health monitoring 166



High passHigh pass low pass filterslow pass filters
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High passHigh pass--low pass filterslow pass filters
|H( )| t k th l f 0 5 f l filt Th th ti l• |H(ωc )| takes the value of 0.5 for acausal filters. The mathematical 
reasoning behind this can be explained as follows: If we let Hc(ω) be 
the frequency response of the causal Butterworth filter given by the 
second equation, this filter has unity gain at frequency ω = 0. The 
cutoff frequency ωc is the frequency at which the power of the filter 
ouput is half the power of the filter input,i.e. |Hc(ωc )|2 = 1/2. The c c
frequency response of an acausal Butterworth filter Ha(ω) is given 
by:

| ( )| 1/2• The previous equation shows that |Ha(ωc )|=1/2 . 
• The frequency response of a Butterworth filter decreases 

monotonically with increasing frequency, and as the filter order 
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Classification of filtersClassification of filters
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Classification of filtersClassification of filters
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Classification of filtersClassification of filters
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Classification of filtersClassification of filters
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ClassificationClassification
Th l d it ti i l b• The commonly used excitation signals can be 
categorized in several ways. For practical purposes, it is 
easy to consider two main groups: broad band or single y g p g
frequency signals. 

• The signal frequency group contains:
– Swept sine

Stepped sine– Stepped sine
• The broadband group consist of three subgroups:

– Transients
– Periodic
– Nonperiodic
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ClassificationClassification
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ClassificationClassification
T i t• Transients
– Burst random
– Burst chirp (or burst swept sine)Burst chirp (or burst swept sine)
– İmpact excitation

• Periodic
– Pseudo random
– Periodic randomPeriodic random
– Chirp (fast swept sine)

• Nonperiodic
– Pure random
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ClassificationClassification
R d i l l b d fi d b th i• Random signals can only be defined by their 
statistical properties. 

• For stationary random signals, these properties 
do not vary with respect to translations in time.do not vary with respect to translations in time.

• All random excitation signals are of the ergodicAll random excitation signals are of the ergodic 
random type, which means that a time average 
on any particular subset of the signal is the 
same for any arbitrary subset of the randomsame for any arbitrary subset of the random 
signal.
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Pure randomPure random
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Pure randomPure random
• Pure random is a nonperiodic stochastic signal with a Gaussian probability 

distribution. Averaging is essential when estimating the frequency spectrum.

• The main problem of the pure random signal is leakage. Since the signal is p p g g g
not periodic within the observation time window, this error can not be 
avoided. The application of dedicated time windows (e.g. Hanning) to the 
input and output signals can not completely remove the effects of leakage 
without causing undesired side effects such as a decreased frequency 
resolution.
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Pure randomPure random
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Pure randomPure random
• Pure random easily averages out noncoherent noise.Pure random easily averages out noncoherent noise. 

• It yields the best linear approximation of nonlinear systems, since in 
h d i d h li di i ill b diffeach averaged time record, the nonlinear distortions will be different 

and tend to cancel with sufficient averaging.

• Test time is relatively long due to the necessary number of 
averages.

• However, the total time becomes shorter when using overlap 
averaging.  In the overlap averaging procedure, each averaged g g p g g p , g
time record will contain the last part of the previous one. 
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Pseudo randomPseudo random
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Pseudo randomPseudo random
• The pseudo random is an ergodic stationary signal with a spectrum• The pseudo random is an ergodic stationary signal with a spectrum 

consisting of integer multiples of the discrete Fourier transform 
frequency increment. Hence it is perfectly periodic within the sample 
time windowtime window.

• Due to the periodicity of the signal, no leakage problem exists.Due to the periodicity of the signal, no leakage problem exists.

• However, since the same time block is repeated for averaging, 
pseudo random excites the nonlinearities the same way in each 
average. Therefore, averaging will not remove distortion caused by 
nonlinearities.

• For linear structures, only a few averages are necessary in general. 
Hence this excitation signal may be very fast
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Periodic randomPeriodic random
• Periodic random excitation is simply a different use of a pseudoPeriodic random excitation is simply a different use of a pseudo 

random signal, so that non-linearities can be removed with spectrum 
averaging. 

• For periodic random testing, a new pseudo random sequence is 
generated for each new spectrum average. 

• The advantage of this is that when multiple spectrum averages of 
different random signals are averaged together, randomly excited 
non-linearities are removed.

• Although periodic random excitation overcomes the disadvantage of 
pseudo random excitation, it takes at least three times longer to 
make the same measurement This extra time is required betweenmake the same measurement. This extra time is required between 
spectrum averages to allow the structure to reach a new steady-
state response to the new random excitation signal. 
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Periodic randomPeriodic random
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Periodic randomPeriodic random
• Other advantages are:• Other advantages are:

– Signals are periodic in the sampling window, 
so measurements are leakage freeso measurements are leakage free.

– Removes non-linear behavior when used with 
spectrum averagingspectrum averaging.

• Disadvantages are:
– Slower than other random test methods.
– Special software required for implementation
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Burst randomBurst random
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Burst randomBurst random
• Burst random excitation is• Burst random excitation is 

similar to periodic random 
testing,but faster.

• In burst random testing, a true 
random signal can be used, but it 
is turned off prior to the end of 
the sampling window time periodthe sampling window time period. 

• This is done in order to allow the 
structural response to decay 

i hi h li i d Thiwithin the sampling window. This 
insures that both the excitation 
and response signals are 
completely contained within the p y
sampling window. 

• Hence, they are periodic in the 
sampling window
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Burst randomBurst random
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Burst randomBurst random
Advantages :

• Signals are periodic in the 
li i dsampling window, so 

measurements are 
leakage freeleakage free.

• Removes non-linear 
behavior when used with be a o e used
spectrum averaging.

• Fast measurement time.
Disadvantages :

• Special software required 
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Burst randomBurst random
Th t l d it ti f d l t ti !• The most commonly used excitation for modal testing!

• In order to have the entire transient be captured, the length of the excitation 
burst can be reduced.

• Generally, the use of windows for this type of excitation technique is not 
required!
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Chirp  and Burst ChirpChirp  and Burst Chirp
• A swept sine excitation signal canA swept sine excitation signal can 

also be synthesized in an FFT 
analyzer to coincide with the 
parameters of the sampling pa a e e s o e sa p g
window, in a manner similar to the 
way a pseudo random signal is 
synthesized. y

• Since the sine waves must sweep 
from the lowest to the highestfrom the lowest to the highest 
frequency in the spectrum, over the 
relatively short sampling window 
time period (T), this fast sine sweeptime period (T), this fast sine sweep 
often makes the test equipment 
sound like a bird chirping, hence 
the name chirp signal.
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Chirp  and Burst ChirpChirp  and Burst Chirp
• A burst chirp signal is the same as a chirp• A burst chirp signal is the same as a chirp, 

except that it is turned off prior to the end of 
the sampling window just like burst randomthe sampling window, just like burst random. 

• This is done to ensure that the measured 
signals are periodic in the window. 
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Chirp  and Burst ChirpChirp  and Burst Chirp
• The advantage of burst chirp over chirp is that 

the structure has returned to rest before the 
next average of data is taken.

• This insures that the measured response is 
only caused by the measured excitation, anonly caused by the measured excitation, an 
important requirement for any multichannel 
measurement such as a FRF.measurement such as a FRF.
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Chirp and Burst ChirpChirp and Burst Chirp
Advantages of Burst Chirp Excitation
• High signal–to-noise and RMS-to-peak ratios.g g p
• Signals are periodic in the sampling window, 

so measurements are leakage free.so measurements are leakage free.
• Fast measurement time.

Disadvantages of Burst Chirp Excitation
• Special software required for implementation.
• Doesn’t remove non-linear behavior.
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Swept sineSwept sine
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Swept sineSwept sine
Th i it ti i l h b d i th• The sine wave excitation signal has been used since the 
early days of structural dynamic measurement. It was 
the only signal that could be effectively used with y g y
traditional analog instrumentation.

• Even broad band testing methods (like impact testing), 
have been developed for use with FFT analyzers, sine 
wave excitation is still useful in some applications Thewave excitation is still useful in some applications. The 
primary purpose for using a sine wave excitation signal 
is to put energy into a structure at a specific frequency. 

• Slowly sweeping sine wave excitation is also useful for 
characterizing non linearities in structures
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Swept sineSwept sine
Ad t f Si T tiAdvantages of Sine Testing
• Best signal-to-noise and RMS-to-peak ratios of 

i lany signal.
• Controlled amplitude and bandwidth.
• Useful for characterizing non-linearities.
• Long history of use.

• Disadvantages of Sine TestingDisadvantages of Sine Testing
• Distortion due to over-excitation.
• Extremely slow for broad band measurements
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Stepped sineStepped sine
St d i it ti i d i f th t i• Stepped sine excitation is a modern version of the swept sine 
technique that makes maximum use of the developments in DSP 
during the last two decades.
I t d f ti l i f t d i i t• Instead of a continuously varying frequency, stepped sine consists 
of a stepwise changing frequency. 

• It remains a rather slow procedure due to the frequency scan and 
wait periods needed for the transients to decay. This can be 
overcome by multi-channel acquisition.

• The application of stepped sine excitation requires special soft and pp pp q p
hardware.

• The digital processing allows for varying frequency spacing, yielding 
data condensation and testing time reduction, and for a better g ,
control against aliasing and leakage problems.

• Useful for characterizing non-linearities.
• Excellent signal-to-noise ratios
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Processing strong-motionProcessing strong-motion 
records

The focus of this section is on the
effects of noise in accelerograms, and the effects ofg ,

‘correction’ procedures, on the peak ground-motion amplitudes
and on the ordinates of acceleration and displacement

response spectra.



Processing of earthquake recordsProcessing of earthquake records
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Processing of earthquake recordsProcessing of earthquake records
• High-pass filters are an effective way of removing the low-frequency 

i th t i t i if t t l d di it l tnoise that is present in many, if not most, analog and digital strong-
motion recordings.

Thi l f i ll d ift i th• This low frequency noise usually appears as drifts in the 
displacements derived from double integration of acceleration, 
making it difficult to determine the true peak displacement of the 
ground motionground motion. 

• It can never be claimed that a complete and accurate description of 
the ground shaking can be obtained from accelerogramsthe ground shaking can be obtained from accelerograms.

P. Gundes Bakir,      Vibration based structural health monitoring 192



Processing of earthquake recordsProcessing of earthquake records
ERASMUS Teaching (2008), Technische Universität Berlin

Processing of earthquake recordsProcessing of earthquake records

• For engineering uses of strong motion data it is important to be able• For engineering uses of strong-motion data it is important to be able 
to estimate the level of noise present in each accelerogram and the 
degree to which this may affect different parameters that are derived 
from the records.

• The main parameters of interest for engineering application are:

– The ordinates of response spectra, both of acceleration and 
displacement.

– The peak ground acceleration (PGA),although of limited significance 
from both geophysical and engineering perspectives, is also a widely 
used parameter in engineering. 

– The peaks of velocity (PGV),and displacement (PGD), measured from 
the time-histories obtained by integration of the acceleration, are also 
important parameters.
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Processing of earthquake recordsProcessing of earthquake records
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Processing of earthquake recordsProcessing of earthquake records
• It is important for users of strong-motion data to g

appreciate that digitized accelerograms are never pure 
and complete reproductions of the seismic signal.

• From the outset, however, it is important to be clear that 
it is not possible to identify, separate and remove the 
noise in order to recover the unadulterated seismicnoise in order to recover the unadulterated seismic 
signal. 

• The best that can be achieved in general is to identify 
those portions of the frequency content of the record 
where the signal-to-noise ratio is unacceptably low andwhere the signal to noise ratio is unacceptably low and 
to thus identify that portion of the record, in the 
frequency domain, that can be used with some 
confidence
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Analog accelerogramsAnalog accelerograms
• In light of these considerations it is not appropriate to refer to most of the• In light of these considerations, it is not appropriate to refer to most of the 

processing procedures described herein as ‘corrections’, since the term 
implies that the real motion is known and furthermore that it can be 
recovered by applying the procedures.

• In order to estimate the signal-to-noise ratio, a model of the noise in the 
digitized record is required. Most analog accelerographs, such as the SMA-
1 produce two fixed traces on the film together with the three traces of1, produce two fixed traces on the film together with the three traces of 
motion (two horizontal, one vertical) and the time marks. If these fixed 
traces are digitized together with the motion, then any ‘signal’ they contain 
can be interpreted as being composed entirely of noise since the traces are 
produced by infinitely stiff transducers that experience no vibration duringproduced by infinitely stiff transducers that experience no vibration during 
the operation of the instrument. 

• Unfortunately, the fixed traces are very often not digitized or else the y y g
digitized fixed traces are not kept and distributed with the motion data, 
hence it is rare that a model of the noise can be obtained from this 
information. 
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Standard vs nonstandard noiseStandard vs nonstandard noise
• Some types of noise particularly• Some types of noise, particularly 

step changes in the baseline, can 
also be identified from the ‘jerk’, 
which is the first derivative of the 
acceleration traceacceleration trace.

• Figure shows horizontal 
component of the Bajestancomponent of the Bajestan 
recordings of the 1978 Tabas 
earthquake in Iran; spurious 
spikes are  obvious in the 
acceleration record at 10 8 and 16acceleration record at 10.8 and 16 
s. The derivative of the 
acceleration trace (to produce the 
quantity called ‘jerk’) will convert a 
spike into a double sided pulsespike into a double sided pulse, 
making it easier to identify spikes. 
By doing this (bottom panel), 
spikes at 12.3, 26 and 33.2 s are 
also identified
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Standard vs nonstandard noiseStandard vs nonstandard noise
• In this particular case, the 

i t f th ikspurious nature of these spikes 
was confirmed by comparison with 
a reproduction of the original 
analog record.

• The origin of the spikes has not 
been ascertained, although a 
possible cause in this instancepossible cause in this instance 
was the misplacement of the 
decimal point in transcribing the 
digitized values.

• Once the spikes have been 
identified as erroneous, they 
should be removed from the 
digitized record; one way to 
achieve this is replace the 
acceleration ordinate of the spike 
with the mean of the accelerations
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Standard vs nonstandard noiseStandard vs nonstandard noise
• The spectra in the Figure were• The spectra in the Figure were 

obtained with the record shown 
in the figure in the last slide and 
after the spikes were removed.

• The spikes clearly constituted a 
serious noise contamination at 
short periods but it is also noted 
that their elimination appears tothat their elimination appears to 
have led to slight modifications in 
the spectrum at long periods 
(spikes are broadband and have(spikes are broadband and have 
energy content at long as well as 
short periods). 

• If the misplacement of decimal 
i i id ifi d hpoints is identified as the cause 

of the errors, then an exact 
correction could be made.
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Instrument correctionInstrument correction
A t d li th t d f i l i t t i• As noted earlier, the transducer frequency in analog instruments is 
limited to about 25 Hz, and this results in distortions of amplitudes 
and phases of the components of ground motion at frequencies 
close to or greater than that of the transducerclose to or greater than that of the transducer. 

• The digitization process itself can also introduce high-frequency 
noise as a result of the random error in the identification of the exact 

id i t f th fil t h i th fimid-point of the film trace as shown in the figure. 
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Instrument correctionInstrument correction
• Fourier acceleration spectrum of an analog recording at a site underlain by• Fourier acceleration spectrum of an analog recording at a site underlain by 

thick sediments is shown in the figure. Natural processes along the 
propagation path have removed energy at frequencies much below those 
affected by the instrument response (see dashed line; the  instrument 
response has been shifted erticall so as not to be obsc red b the data)response has been shifted vertically so as not to be obscured by the data), 
leading to the decreasing spectral amplitudes with increasing frequency up 
to about 26 Hz (coincidentally the same as the instrument frequency), at 
which point noise produces an increase in spectral amplitudes. Instrument 

ti l b t th t i ti f th i l b hi hcorrection only exacerbates the contamination of the signal by high 
frequency noise.

P. Gundes Bakir,      Vibration based structural health monitoring 200



Fourier SpectraFourier Spectra
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Fourier SpectraFourier Spectra
• The left hand plot in the figure shows an example of the Fourier spectra of• The left-hand plot in the figure shows an example of the Fourier spectra of 

high-frequency ground motion obtained at a very hard rock site in Canada 
at a distance of 4 km from the source of a small magnitude earthquake. 
Softer sites, even those classified as ‘rock’ such as class B in the 2003 
NEHRP guidelines, will tend to filter out such high frequency motion. 

• Very high-frequency motions will also tend to attenuate rapidly with 
distance and hence will not be observed at stations even a few tens of 
kil t f th f lt tkilometers from the fault rupture.
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Fourier SpectraFourier Spectra
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Fourier SpectraFourier Spectra
• The figure shows the Fourier acceleration spectra of earthquakes recorded• The figure shows the Fourier acceleration spectra of earthquakes recorded 

in eastern and western North America (left and right graphs, respectively). 
The eastern North America recording has much higher frequency content 
than that from western North America, even without instrument correction. 
The record from Miramichi as recorded on an analog instr ment hereasThe record from Miramichi was recorded on an analog instrument, whereas 
those from the Big Bear City earthquake were recorded on digital 
instruments (the response curves of the instruments are shown by the 
dashed lines and have been shifted vertically so as not to be obscured by 
th d t )the data).
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Fourier SpectraFourier Spectra
Th l t i th fi l h th t i l t d f th• The plot in the figure also shows the typical transducer response for the 
instrument (SMA-1) on which the record was obtained, and the effect of 
applying a correction for the instrument characteristics, which is to 
increase slightl the amplit des at freq encies greater than 30 H Theincrease slightly the amplitudes at frequencies greater than 30 Hz. The 
nature of such motions, at periods of less than 0.03 s, will only be relevant 
to particular engineering problems, such as the response of plant machinery 
and nonstructural componentsand nonstructural components.
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Fourier SpectraFourier Spectra
• The right hand plot in the figure show the Fourier spectra of more• The right-hand plot in the figure show the Fourier spectra of more 

typical ground motions obtained at soil sites during a moderate 
magnitude earthquake in California. These records were obtained 
on digital instruments and are lacking in very high frequency motion g g y g q y
mainly because of the attenuating effect of the surface geology at 
these sites compared to the very hard site in Canada. The plot also 
shows the transducer response for these digital instruments, which 
is almost flat to beyond 40 Hzis almost flat to beyond 40 Hz.
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Corrections for transducer characteristicsCorrections for transducer characteristics

• For digital recordings instrument corrections should not be• For digital recordings, instrument corrections should not be 
necessary. For analog recordings, if the engineering application is 
concerned with motions at frequencies above 20 Hz and the site 
characteristics are sufficiently stiff for appreciable amplitudes at y pp p
such frequencies to be expected, a correction should be considered. 

• However, it should be borne in mind that the instrument ,
corrections essentially amplify the high-frequency motions; if 
the digitization process has introduced high-frequency noise into the 
record, then the instrument correction will amplify this noise. 

• Unless there are compelling reasons for applying a correction for the 
instrument characteristics, we recommend that no attempt should be 
made to do so The one exception to this may be the very earliestmade to do so. The one exception to this may be the very earliest 
recordings obtained in the US with accelerographs that had natural 
frequencies of the order of 10 Hz.
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Baseline adjustmentsBaseline adjustments
• A major problem encountered• A major problem encountered 

with both analog and digital 
accelerograms are distortions 
and shifts of the reference 
baseline, which result in 
unphysical velocities and 
displacements. 

• One approach to 
compensating for these 
problems is to use baselineproblems is to use baseline 
adjustments, whereby one or 
more baselines, which may be 
straight lines or low-order g
polynomials, are subtracted 
from the acceleration trace.
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Baseline adjustmentsBaseline adjustments
• The figure illustrates 

the application of a 
piece-wise sequential 
fitting of baselines to 
the velocity trace from 
a digital recording in 
which there are 
clearly identifiable 
offsets in the 
baseline. 
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Baseline adjustmentsBaseline adjustments
A similar procedure could• A similar procedure could 
be applied directly to the 
acceleration time-history 
t t f th t fto correct for the type of 
baseline shifts shown in 
the figure.

• The figure shows NS 
component of the 21 Maycomponent of the 21 May 
1979 Italian earthquake 
(12:36:41 UTC) recorded 
at Nocera Umbraat Nocera Umbra, 
showing shifts in the 
baseline at 5.6 and 8.3 s.
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Baseline adjustmentsBaseline adjustments
• The procedure applied in the 

fi i t id tif (b bl ifigure is to identify (by blowing up 
the image) sections of the velocity 
that appear to have a straight 
baseline, and then fitting a straight 
li t thi i t lline to this interval. 

• This line in effect is then 
subtracted from the velocity tracesubtracted from the velocity trace, 
but in practice it is necessary to 
apply the adjustment to the 
accelerations. 

• The adjustment to the acceleration 
is a simple shift equal to the 
gradient (i.e. the derivative) of g ( )
the baseline on the velocity; this 
shift is applied at a time tv0, which 
is the time at which the line fit to 
the velocity crosses the zero axis.
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Baseline adjustmentsBaseline adjustments
• The adjusted velocity trace is• The adjusted velocity trace is

then inspected to identify the
next straight line segment,
which is fit in the same way.y

• In the particular case illustrated
in the figure, a total of four lineg ,
segments were required to
remove the most severe
distortions of the baseline
visible in uppermost plotvisible in uppermost plot,
although the baseline
instabilities are not entirely
removed, as evident in the,
residual long-period trends.
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Baseline adjustmentsBaseline adjustments
Th di t ti f th b li t d i di iti d• The distortion of the baseline encountered in digitized 
analog accelerograms is generally interpreted as being 
the result of long-period noise combined with the signal.g p g

• Baselines can be used as a tool to remove at least part p
of this noise—and probably some of the signal with it—
as a means of recovering more physically plausible 
velocities and displacements There are manyvelocities and displacements. There are many 
procedures that can be applied to fit the baselines, 
including polynomials of different orders. A point that is 

th ki l l i th t i ff t b liworth making clearly is that, in effect, baseline 
adjustments are low-cut filters of unknown 
frequency characteristics.
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Baseline adjustmentsBaseline adjustments
• The figure on the left: Shaded line: velocity from integration of the east–west g y g

component of acceleration recorded at TCU129, 1.9 km from the surface 
trace of the fault, from the 1999 Chi-Chi earthquake, after removal of the 
pre-event mean from the whole record. A least-squares line is fit to the 
velocity from 65 s to the end of the record. Various baseline correctionsvelocity from 65 s to the end of the record. Various baseline corrections 
using the Iwan et al. (1985) scheme are obtained by connecting the 
assumed time of zero velocity t1 to the fitted velocity line at time t2. Two 
values of t2 are shown: 30, and 70 s. 
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Baseline adjustmentsBaseline adjustments
• The dashed line is the quadratic fit to the velocities, with the q

constraint that it is 0.0 at t=20 s.
• The acceleration time series are obtained from a force-balance 

transducer with natural frequency exceeding 50 Hz, digitized using q y g , g g
16.7 counts/cm/s2 (16,384 counts/g). Right: The derivatives of the 
lines fit to the velocity are the baseline corrections applied to the 
acceleration trace .
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Baseline adjustmentsBaseline adjustments
• The line fit approach is the more complex scheme proposed by Iwan et al. 

The method was motivated by studies of a specific instrument for which the y p
baseline shifted during strong shaking due to hysteresis; the accumulation 
of these baseline shifts led to a velocity trace with a linear trend after 
cessation of the strong shaking. The correction procedure approximates the 
complex set of baseline shifts with two shifts, one between times of t1 and t2,complex set of baseline shifts with two shifts, one between times of t1 and t2, 
and one after time t2. The velocity will oscillate around zero (a physical 
constraint), but the scheme requires selection of the times t1 and t2.
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Baseline adjustmentsBaseline adjustments
• Figure shows the response spectra• Figure shows the response spectra 

of the east–west component of 
acceleration recorded at TCU129 
from the 1999 Chi-Chi, Taiwan,  
earthq ake modified sing aearthquake, modified using a 
variety of baseline corrections.

• Without a physical reason forWithout a physical reason for 
choosing these times (for example, 
based on a knowledge of a specific 
instrument), the choices of t1 and t2
become subjectivebecome subjective.

• Figure shows that the long-period 
response spectrum ordinates are 

• It is important to note that for this 
particular accelerogram thep p

sensitive to the choice of t2 (t1 was 
not varied in this illustration).

particular accelerogram the 
differences in the response 
spectrum are not significant until 
beyond 10 s oscillator period).
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Baseline adjustmentsBaseline adjustments
• A commonly used simplification• A commonly used simplification 

of the generalized Iwan et al. 
method is to assume that t1=t2, 
with the time given by the zero g y
intercept of a line fit to the later 
part of the velocity trace.

• This corresponds to the 
assumption that there was only 
one baseline offset and that it 
occurred at a single time (foroccurred at a single time (for 
many records this seems to be 
a reasonable assumption). We 
call this simplification the v0p 0
correction.
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Residual displacements
O f th ibl• One of the possible 
advantages of baseline fitting 
techniques just discussed is 
that the displacement tracethat the displacement trace 
can obtain a constant level at 
the end of the motion and can 
have the appearance of thehave the appearance of the 
residual displacement 
expected in the vicinity of faults 
as shown in the figureas shown in the figure.

• This character of the 
displacement record cannot bedisplacement record cannot be 
achieved using low-cut filters.
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Residual displacementsResidual displacements
• At the end of the ground• At the end of the ground 

shaking caused by an 
earthquake, the ground 
velocity must return to zero, y ,
and this is indeed a criterion by 
which to judge the efficacy of 
the record processing.

• The final displacement, 
however, need not be zero 
since the ground can undergosince the ground can undergo 
permanent deformation either 
through the plastic response of 
near-surface materials or 
through the elastic deformation 
of the earth due to co-seismic 
slip on the fault. 
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Residual displacementsResidual displacements
• Close to the fault rupture of large• Close to the fault rupture of large 

magnitude earthquakes (~Mw = 
6.5 and above) this residual 
displacement can be on the order 
of tens or h ndreds ofof tens or hundreds of 
centimeters. 

• This can become an importantThis can become an important 
design consideration for 
engineered structures that cross 
the trace of active faults, cases in 
point being the Trans Alaskanpoint being the Trans Alaskan 
Pipeline System and the Bolu 
viaduct in Turkey,  the former 
being traversed by the fault 
rupture of the November 2002rupture of the November 2002 
Denali earthquake, the latter by 
the rupture associated with the 
November 1999 Duzce 
earthquake
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Residual displacementsResidual displacements
• The problem presented by trying• The problem presented by trying 

to recover the residual placement 
through baseline fitting is that the 
resulting offset can be highly 
sensitive to the choice ofsensitive to the choice of 
parameters as shown in the 
figure.

• Furthermore there are few dataFurthermore there are few data 
with independently measured 
offsets exactly at the location of 
strong-motion instruments. 

• The lack of  independently-
measured offsets is beginning to 
be overcome with the installation 
of continuous GPS stations 
sampling at sufficiently high rates 
colocated with accelerographs.
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High pass filtersHigh pass filters
• The most widely used—and also the most effective and least subjective—y j

tool for reducing the long-period noise in accelerograms is the low-cut filter. 
The figure shows the accelerograms after the application of filters to the 
acceleration time-history, and the improvement in the appearance of 
velocity and displacement time histories is obvious.velocity and displacement time histories is obvious.

• It should also be noted that there is little discernable difference between the 
filtered and unfiltered accelerations.
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High pass filtersHigh pass filters
• Although the benefits of applying filters are clear it is important to be aware of the• Although the benefits of applying filters are clear, it is important to be aware of the 

sensitivity of the results obtained to the actual parameters selected for the filter.
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High pass filtersHigh pass filters
• NS component of the FAT record of the Duzce earthquake: displacementNS component of the FAT record of the Duzce earthquake: displacement 

and velocity time history obtained by using acausal high pass Butterworth 
filters with different corner frequencies (from the left column to the right: fc 
= 0.02 Hz, fc = 0.05 Hz, fc = 0.1 Hz, and fc = 0.2 Hz). 0.02 Hz, fc  0.05 Hz, fc  0.1 Hz, and fc  0.2 Hz).
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High pass filtersHigh pass filters
Th th t th filt• The reason that the filters are 
described as acausal is that to 
achieve the zero phase shift 
they need to start to act prior tothey need to start to act prior to 
the beginning of the record, 
which can be accomplished by 
adding lines of data points ofadding lines of data points of 
zero amplitude, known as 
pads, before the start of the 
record and after the end of therecord and after the end of the 
record. 

The length of the pads• The length of the pads 
depends on the filter frequency 
and the filter order.
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High pass filtersHigh pass filters
• Pad length proposed by Brady:

• The required length of the filter pads will often 
exceed the usual lengths of pre and postexceed the usual lengths of pre and post-
event memory on digital recordings, hence it is 
not sufficient to rely on the memory to act asnot sufficient to rely on the memory to act as 
the pads.
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Zero padsZero pads
• The figure shows the total• The figure shows the total 

length of the time-domain zero 
pad recommended by 
Converse and Brady to allow y
for the filter response in 2-pass 
(acausal), nth-order 
Butterworth filters (these pads 
are needed regardless ofare needed regardless of 
whether the filtering is done in 
the time- or frequency-
domain). )

• Pre- or post-event data count 
as part of the required pad p q p
length. Shown are the pad 
lengths for three values of the 
filter corner frequency, as a 
function of filter order
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Zero padsZero pads
• One of the causes for data• One of the causes for data

incompatibility for the records
disseminated by the Strong-
motion processing centers is the
remo al of the pads that areremoval of the pads that are
added for the application of the
filter.

• This is an issue that creates some
controversy because some argue
that the pads are artificial and
therefore do not constitute part oftherefore do not constitute part of
the data and hence should be
removed. The consequence of
their removal, however, is to
undermine the effect of the filterundermine the effect of the filter
and this can result in offsets and
trends in the baselines of the
velocity and displacements
obtained by integration
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Zero padsZero pads
• The removal of the pads p

also has an influence on the 
long period response 
spectral ordinates as shown 
in the figure (with pads 
(dashed line), without pads 
(solid line)). 

• For this reason, it is 
recommended that when 
acausal filters are used, 
sufficient lengths of zero 
pads should be added to the 
records and these pads 
should not be stripped out 
from the filtered data.
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CausalCausal--acausal Butterworth filtersacausal Butterworth filters

• NS component• NS component 
of the CNA 
record of therecord of the 
Duzce 
earthquake 
processed by 
SPIDER using 

l (d h dcausal (dashed 
line) and 
acausal (solidacausal (solid 
line) filters.
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CausalCausal--acausal Butterworth filtersacausal Butterworth filters
• The application of causal and acausal filters, even with very similar filter pp , y

parameters (the transfer functions will not be identical if time-domain 
filtering is used, since the causal filter will have a value of 1/√2 at the filter 
corner frequency f whereas the acausal filter will have a value of 0 5corner frequency, fc, whereas the acausal filter will have a value of 0.5, 
regardless of the filter order), have been shown to produce very different 
results in terms of the integrated displacements
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Causal vs Acausal FiltersCausal vs Acausal Filters
• Response spectra (damping ratio  = 5%) of the FP component of the p p ( p g ) p

Bolu record of the Duzce earthquake processed by acausal (solid 
line) and causal filters (dashed line).
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Causal vs Acausal FiltersCausal vs Acausal Filters
R t• Response spectra 
(damping ratio  = 5%) for 
the FP component of the p
Bolu record of the 1999 
Duzce, Turkey 
earthquake processed byearthquake processed by 
acausal filters with 
different corner 
frequencies: fc = 0.025 Hz 
(solid line), fc = 0.06 Hz 
(dashed line) f = 0 1 Hz(dashed line), fc  0.1 Hz 
(dotted line), and fc = 0.2 
Hz (dashed–dotted line).
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Causal vs Acausal FiltersCausal vs Acausal Filters
Th i fl f l d• The influence of  causal and 
acausal filters on both elastic 
and inelastic response spectra 
has been investigatedhas been investigated.

• It is found that both elastic 
response spectra and inelastic 
response spectra computed 
from causally-filtered 

l ti b itiaccelerations can be sensitive 
to the choice of filter corner 
periods even for oscillator 
periods m ch shorter than theperiods much shorter than the 
filter corner periods.
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TapersTapers
• When adding zero pads to accelerograms prior to filtering a• When adding zero pads to accelerograms prior to filtering, a 

potential undesired consequence is to create abrupt jumps where 
the pads abut the record, which can introduce ringing in the filtered 
record. 

• There are two different ways to avoid this, one being to use tapers 
such as a half-cosine function for the transition from the motion to 
the zero pad. 

• A simpler procedure is to start the pad from the first zero crossing p p p g
within the record, provided that this does not result in the loss of a 
significant portion of record, as can happen if the beginning or end 
of the acceleration time series is completely above or below zero.
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Selection of the longSelection of the long period cutperiod cut
offsoffs

• As noted previously, the most important issue in processing strong-
motion accelerograms is the choice of the long-period cut-off, or 
rather the longest response period for which the data are judged to 
b li bl i t f i l t i ti A b f b dbe reliable in terms of signal-to-noise ratio. A number of broad 
criteria can be employed by the analyst to infer the period beyond 
which it is desirable to apply the filter cut-off, including:

• Comparison of the FAS of the record with that of a model of the 
noise, obtained from the pre-event memory for digital records, the 
fixed trace from analog records or from studies of the instrument andfixed trace from analog records or from studies of the instrument and 
digitizing apparatus.A point of clarification is appropriate here 
regarding signal-to-noise ratios: the comparison of the record FAS 
with the FAS of the noise indicates the ratio of signal-plus-noise to 

i h if th d i d t t i i l t i ti f 2 thnoise, hence if the desired target is a signal-to-noise ratio of 2, the 
ratio of the record FAS to that of the noise model should be 3.
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Selection of the longSelection of the long--period cutperiod cut--offsoffs
• Fourier amplitude spectrum p p

of the FN horizontal 
component of the Bolu record 
of Duzce earthquake (thickof Duzce earthquake (thick 
solid line) and the noise 
spectrum (thick dashed line). 
Superimposed on this graphSuperimposed on this graph 
are the functions f2 (dotted 
line), f (dotted line), and f−2

(d h d d d li )(dashed–dotted line).

• Seismological theory dictatesSeismological theory dictates 
that at low frequencies, the 
FAS of acceleration decays 
according to f2
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Selection of the longSelection of the long--period cutperiod cut--offsoffs

• The figure shows the selection of• The figure shows the selection of 
filter parameters for a component of 
the Anderson Dam (analog) 
recording of the 1989 Loma Prieta 
earthq ake The FAS of the recordearthquake. The FAS of the record 
is compared with the model for the 
digitization noise proposed by Lee 
and Trifunac. 

• Also shown is the gradient of the f2
line, superimposed as a best fit (by 
eye) on the section of the FASeye) on the section of the FAS 
where the decay at low frequencies 
commences. Also shown in the 
graph are the FAS of the record 
after applying filters with threeafter applying filters with three 
different low-frequency cut-offs.
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Selection of the longSelection of the long--period cutperiod cut--offsoffs

• These decay more rapidly than• These decay more rapidly than 
indicated by the f2 model, which is 
the expected result of effectively 
trying to remove all of the record—
both signal and noise at periodsboth signal and noise—at periods 
greater than the cut-off. 

• Designing a filter with a gradualDesigning a filter with a gradual 
roll-off that will produce an FAS 
that approximates to the f2 model 
is not advisable since the 
agreement with the theoreticalagreement with the theoretical 
seismological model would not 
mean that the real earthquake 
signal has been recovered, but 
only that an unknown mixture ofonly that an unknown mixture of 
signal and noise has been 
manipulated to produce the 
appearance of a genuine seismic 
motion
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StrongStrong--motion processingmotion processing
• Processing should be accomplished on a component by component• Processing should be accomplished on a component by component 

basis. 

• Analog recordings have limited usefullness at periods shorter than• Analog recordings have limited usefullness at periods shorter than 
about 2 or 3 s.

• An issue to be considered in record processing is whether the same• An issue to be considered in record processing is whether the same 
filter parameters should be used for all three components or whether 
optimal processing should be used to obtain the maximum 
information possible from each of the three components. If the same p p
processing is applied to all three components, the filter cut-off will 
generally be controlled by the vertical component since this will 
usually have a lower signal-to-noise ratio than the horizontal 
components particularly in the long period range Therefore unlesscomponents, particularly in the long-period range. Therefore, unless 
there is a compelling reason for the vertical and horizontal 
components to be processed with the same filter, this practice is not 
recommended.
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Usable range of response periodsUsable range of response periods

• The amplitude of long period response spectral ordinates are highly• The amplitude of long-period response spectral ordinates are highly 
sensitive to the parameters of low-cut filters, and this is most clearly 
visible when looking at the spectra of relative displacement. Care 
must be taken in deciding the range of periods for which the spectral g g p p
ordinates can be reliably used, which depends on both the filter 
frequency and the order of the filter. 

• For a low-order filter applied at 20 s, the spectral ordinates should 
probably not be used much beyond 10 s. The studies by 
Abrahamson and Silva and Spudich et al.  to derive predictive 
equations for response spectral ordinates only used each record forequations for response spectral ordinates only used each record for 
periods up to 0.7 times the cut-off period. 

• Bommer and Elnashai in deriving predictions for displacement• Bommer and Elnashai, in deriving predictions for displacement 
spectral ordinates, used each record up to 0.1 s less than its cut-off 
period, which will have inevitably resulted in underestimation of the 
spectral displacements at longer periods. 
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