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Abstract

Finite element (FE) model updating technique belongs to the class of inverse problems in classical mechanics. According to the continuum
damage mechanics, damage is represented by a reduction factor of the element bending stiffness. In this study, a global optimization method
called ‘Coupled Local Minimizers’ (CLM) is used for updating the finite element model of a complex structure. In CLM, the local optimi-
zation processes are coupled so that better solutions than multistart local optimization consisting of independent runs are obtained. This is
achieved by minimizing the average cost function of the local minimizers subjected to pairwise synchronization constraints. An augmented
Lagrangian which contains the synchronization constraints both as soft and hard constraints is used and a network is derived in which the
local minimizers communicate and exchange information through the synchronization constraints. In this study, the finite element model
updating method is applied on a complex structure with a complex damage pattern and 24 design variables using CLM. The damage scenario
on the structure is based on the hinge pattern obtained from nonlinear dynamic time history analysis. The results show that damage is
detected, localized and quantified very accurately by the FE model updating algorithm used. In the second phase of the paper, two levels
of noise, namely; moderate and high noise are applied on the modal parameters. In the presence of noise, damage is located and detected
very accurately. The extent of the damage is also quantified precisely and the MAC values as well as the relative eigenfrequency differences
are improved substantially. In the third phase of the study, the CLM method is compared with other local optimization methods such as the
Levenberg–Marquardt algorithm, Sequential Quadratic Programming and Gauss–Newton methods and the results show that the CLM
algorithm gives better results in FE model updating problems compared to the above-mentioned local optimization methods.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural damage in civil engineering structures results
in changes in the modal parameters such as; the natural fre-
quencies, mode shapes and modal damping values. Modal
parameters can be easily obtained from vibration testing.
Four levels of damage identification is possible as proposed
by Rytter [1].
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(1) Level 1 – detection: Is the structure damaged or not?
(2) Level 2 – localization: What is the location of the

damage in the structure?
(3) Level 3 – quantification: What is the extent of

damage?
(4) Level 4 – prediction: What is the remaining service life

of the structure?

During the past few years, significant amount of damage
identification techniques have been proposed and success-
fully validated on vibration data from a wide range of
mechanical, aerospace and civil engineering structures [2].
A detailed literature survey on the topic can be found in
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[3–7]. Levin and Lieven [8] state that the FE model updat-
ing methods can be categorized into two. The first are the
direct methods in which the mass and the stiffness matrices
are updated directly. The second are indirect or parametric
methods in which parametric changes are made to the
model. It has been shown that direct methods are not phys-
ically meaningful [9]. Most studies in literature make use of
an analytical model (e.g., finite element (FE) model) of the
structure [10–14]. Other studies aim for the same objective
without using such models [15,16].

There are different approaches in the literature for
model updating via parametric changes to an existing
model [17]. One common approach is to consider an objec-
tive function that quantifies the difference between the mea-
sured and the analytical data. A set of parameters are then
updated to minimize this function. Thus, model updating
becomes a constrained optimization problem. Levin and
Lieven [8] state that an optimization problem is difficult
if it satisfies criteria such as: high dimension, many local
minima, high nonlinearity, non-smoothness, noisiness and
discreteness. Model updating problems generally satisfy
the first five of these six criteria. Therefore, optimization
problems either do not converge or get stuck in local min-
ima. Global optimization techniques are imperative to find
the global minimum in optimization problems which may
have many local minima. Levin and Lieven [8] have suc-
cessfully applied two new global optimization methods;
namely, genetic algorithms and simulated annealing to
finite element model updating problems. Both of the meth-
ods are probabilistic search algorithms that are derived
from analogies with the natural phenomena. Simulated
annealing is developed based on inspiration from a thermo-
dynamic cooling process and genetic algorithms from nat-
ural evolution.

In this study, a newly proposed global optimization
method called ‘Coupled Local Minimizers’ (CLM) [18,19]
is used for updating the FE model of a complex structure
with 24 design variables. The initial starting values selected
for the design variables affect the results of the optimiza-
tion processes. Multi start local optimization methods have
been used in the past to overcome this problem. The advan-
tage of the CLM over the multistart local optimization
methods is the fact that these points communicate and
exchange information throughout the process. The local
optimizers are coupled by pairwise synchronization con-
straints so that the design variables are forced to converge
to the same point. The average of the objective function
obtained from all the CLM points is then minimized.
Instead of the probabilistic search common to the genetic
algorithms and simulated annealing methods, CLM uses
derivative information in each of the search points to direct
the global search process [14,20] which results in faster con-
vergence. In this study, FE model updating by the CLM
method will be applied on a complex civil engineering
structure that has a complex damage pattern.

This paper is organized as follows. In Section 2, the
‘Coupled Local Minimizers’ are explained. In Section 3,
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the theoretical background of the FE model updating is
introduced. In Section 4, the description of the structure
type considered in the FE model updating problem is
given. In Section 5, the background for the damage sce-
nario is discussed. Section 6 presents the analysis of the
results. Section 7 gives the comparison of the CLM method
with other optimization algorithms. In Section 8, the appli-
cation of the method on actual structures is discussed. Sec-
tion 9 summarizes the Conclusions.
2. Coupled Local Minimizers

The originality of the CLM comes from the fact that an
ensemble of optimizers which is subject to pairwise state
synchronization constraints are considered. When two
local minimizers are stuck in different local minima, the
state synchronization constraint urges them to take a deci-
sion and avoid the local minimum. The synchronization
constraints have to be achieved in an asymptotical sense,
i.e. the particles have to reach the same final state [18].
The difference of the CLM from the multistart local opti-
mization methods is the interaction and communication
between the several different starting points. In this study,
the CLM technique is implemented with an augmented
Lagrangian method. The augmented Lagrangian function
LA is defined by the average objective function of the pop-
ulation together with the synchronization constraints
between the individual local minimizers. An unconstrained
optimization algorithm is used to minimize LA.
2.1. Augmented Lagrangian method

The augmented Lagrange multiplier (ALM) method is
explained in detail in the books of Rao [21] and Nocedal
and Wright [22]. ALM method combines the Lagrange
multiplier and the penalty function methods as shown
below:

Minimize f ðxÞ ð1Þ
subject to hjðxÞ ¼ 0; j ¼ 1; 2; . . . ; p; p < n: ð2Þ

The Lagrangian corresponding to these equations will
be given as

Lðx; kÞ ¼ f ðxÞ þ
Xp

j¼1

kjhjðxÞ; ð3Þ

where kj, j = 1,2, . . . ,p, are the Lagrange multipliers. The
exterior penalty function approach is used to define the
new objective function LAðx; k; cÞ, termed the augmented
Lagrangian function, as

LAðx; k; cÞ ¼ f ðxÞ þ
Xp

j¼1

kjhjðxÞ þ c
Xp

j¼1

h2
j ðxÞ; ð4Þ

where c is the penalty parameter. It can be noted that the
function LA reduces to the Lagrangian if c = 0 and to
the function used for the classical penalty function methods
nite element model updating method by the ..., Comput Struct
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if all kj = 0. It can also be shown that if the Lagrange mul-
tipliers are fixed at their optimum values k�j , the minimiza-
tion LAðx; k; cÞ gives the solution of the problem
mentioned in Eqs. (1) and (2) in one step regardless of
the value of c. In such a case, there is no need to minimize
the function LA for an increasing values of sequence of c.
Since the values of kj are not known in advance, an iterative
scheme is used to find the solution of the problem. In the
first iteration, the values of kj are chosen as zero, the value
of c is set to an arbitrary constant and the function LA is
minimized with respect to x to find x*. The values of kj

and c are then updated for the next iteration. The updating
is carried out as follows. The necessary conditions for the
stationary point of the Lagrangian L can be expressed as

dL
dxi
¼ df

dxi
þ
Xp

j¼1

k�j
dhj

dxi
¼ 0; i ¼ 1; 2; . . . ; n; ð5Þ

where k�j are the optimum values of the Lagrangian at the
stationary point. Similar to the above case, the necessary
conditions for the minimum of the augmented Lagrangian
can be expressed as

dLA

dxi
¼ df

dxi
þ
Xp

j¼1

ðkj þ 2chjÞ
dhj

dxi
¼ 0; i ¼ 1; 2; . . . ; n: ð6Þ

A comparison of the right hand sides of the above two
equations gives:

k�j ¼ kj þ 2chj; j ¼ 1; 2; . . . ; p: ð7Þ

These equations are used to update the values of kj as

kkþ1
j ¼ kk

j þ 2ckhjðxðkÞÞ; j ¼ 1; 2; . . . ; p; ð8Þ

where k is the iteration number. The value of ck is updated
as

ckþ1 ¼ cck; c > 1: ð9Þ

Teughels [10] has shown that updating the penalty param-
eter c does not improve the CLM. Furthermore, updating c
implies the choice of an additional unknown parameter,
the updating factor c. For this reason, the augmented
Lagrangian method is implemented with a constant c in
the FE model updating study presented in this paper.
2.2. Coupled local minimizers method

In CLM, an ensemble of q local minimizers are consid-
ered whose average objective function are calculated as

hf i ¼ 1

q

Xq

i¼1

f ðxðiÞÞ: ð10Þ

Pairwise synchronization constraints are applied to the
design vectors x(i) (=vectors of variables), resulting in a
constrained minimization problem:

minxðiÞ�Rn such that xðiÞ � xðiþ1Þ ¼ 0 ð11Þ
Please cite this article in press as: Bakir PG et al., An improved fi
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for i = 1,2, . . . ,q and with boundary condition
x(q+1) = x(1). The augmented Lagrangian is defined for this
problem as

LAðx;KÞ ¼
g
q

Xq

i¼1

f ðxðiÞÞ þ
Xq

i¼1

hkðiÞ; ½xðiÞ � xðiþ1Þ�i

þ c
2

Xq

i¼1

kxðiÞ � xðiþ1Þk2 ð12Þ

with x = [x(1), . . . ,x(q)] and K ¼ ½kð1Þ; . . . ; kðqÞ�; ðxðiÞ; kðiÞ�RnÞ.
h.,.i denotes the inner product for the hard constraints, and
k.k the Euclidean norm of a vector for the soft constraints,
and g is a weighting factor of the average objective function.
The synchronization constraints have to be achieved in an
asymptotical sense, i.e. the particles have to reach the same
final state.

2.3. Numerical aspects

Suykens et al. [18,19] applied the CLM method with a
steepest descent algorithm. In this paper, just as imple-
mented in Teughels et al. [14], the CLM method is applied
with a Trust Region Newton Method [22] for minimizing
LAðx;KÞ with respect to x. Therefore, a quadratic approx-
imation m(p) of L from a truncated Taylor series is mini-
mized within a trust region Ds:

min
p

mðpÞ ¼LA þ ½rLA�Tpþ 1

2
pT½r2LA�p;

such that kpk 6 D; ð13Þ

where p denotes a step vector from xs, and LA;rLA and
r2LA are the function, the gradient and the Hessian of
LA at xs, respectively. It is accepted that each local mini-
mizer is independent of the values of other minimizers.
The gradient as well as the Hessian of the augmented
Lagrangian are expressed as

rxðiÞLA ¼
g
q
rxðiÞf ðxðiÞÞ � kði�1Þ þ kðiÞ

� c½xði�1Þ � xðiÞ� þ c½xðiÞ � xðiþ1Þ�; ð14Þ

r2
xðiÞLA ¼

g
q
r2

xðiÞf ðxðiÞÞ þ 2cI; ð15Þ

r2
xðiÞxði�1ÞLA ¼ �cI; ð16Þ
r2

xðiÞxðiþ1ÞLA ¼ �cI; ð17Þ

where I denotes the identity matrix n · n. Since a Newton
based method is used, the speed of the CLM algorithm is
accelerated. The convergence of the algorithm is improved
by the use of a Trust Region strategy. In addition, bound-
ary constraints on the design variables are applied so that
the trust region is restricted more effectively.

3. FE model updating

Sensitivity-based FE model updating method is the most
frequently used updating method [11–13]. This method
directly compares eigenfrequencies and mode shapes. The
nite element model updating method by the ..., Comput Struct
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cost function is stated as a nonlinear least squares problem
and the model updating is carried out by minimizing the
residual:

f ðaÞ ¼ 1

2
krðaÞk2

; ð18Þ

where

rðaÞ ¼
rfðaÞ
rsðaÞ

� �
rf : Rn ! Rmf ; rs : Rn ! Rms : ð19Þ

a is the vector of design variables, mf denotes the number of
identified eigenfrequencies that are used in the updating
process and ms is equal to the product of the number of
identified mode shapes mm and the number of DOFs used
for mode /i. The eigenfrequency residuals, rf, can be ex-
pressed as

rfðaÞ ¼
x2

j ðaÞ � ~x2
j

~x2
j

; ð20Þ

where xj and ~xj are the numerical and experimental eigen-
frequencies in [rad/s], respectively. The weighted mode
shape residuals rs(a) can be expressed as

rsðaÞ ¼
/l

jðaÞ
/r

jðaÞ
�

~/l
j

~/r
j

; ð21Þ

where l and r denote an arbitrary and a reference DOF of
numerical mode shape /j (or experimental mode shape ~/j),
respectively. The value of each uncertain variable Xe is
determined from the dimensionless updating parameter ae

as follows:

X e ¼ X e
oð1� aeÞ; ð22Þ

where X e
o is the initial value of the uncertain variable. The

above-mentioned uncertain physical properties of the
numerical model are the stiffness values in the presented
FE model updating problem. Damage results in a stiffness
reduction in civil engineering structures. The updated stiff-
ness of an element of the model can be expressed as

Ke ¼ Ke
oð1� aeÞ: ð23Þ

The global stiffness matrix will then be:

K ¼ Ku þ
Xn

e¼1

Ke
oð1� aeÞ; ð24Þ

where Ke
o and Ke are the initial and updated element stiff-

ness matrix, respectively; K is the global stiffness matrix
and Ku is the stiffness matrix of the elements whose proper-
ties remain unchanged, n is the number of elements that are
updated. The gradient and the Hessian of f(a) are:

rf ðaÞ ¼
Xk

j¼1

rjðaÞrrjðaÞ ¼ JaðaÞTrðaÞ; ð25Þ

r2f ðaÞ ¼ JaðaÞTJaðaÞ þ
Xk

j¼1

rjðaÞr2rjðaÞ � JaðaÞTJaðaÞ;

ð26Þ
Please cite this article in press as: Bakir PG et al., An improved fi
(2007), doi:10.1016/j.compstruc.2007.08.009
where Ja is the Jacobian matrix (or sensitivity matrix),
which contains the partial derivatives of the residuals rj

with respect to a:

Drj ¼
Xn

e¼1

drj

dae
Dae ð27Þ

or in full form:

½J�m�p ¼

dr1

da1

dr1

da2

dr1

da3

. . .
dr1

dap

dr2

da1

dr2

da2

dr2

da3

. . .
dr2

dap

dr3

da1

dr3

da2

dr3

da3

. . .
dr3

dap
. . . . . . . . . . . . . . .
drm

da1

drm

da2

drm

da3

. . .
drm

dap

2
66666666666664

3
77777777777775
; ð28Þ

where m = mf + ms and p is the number of the updating
parameters. The first partial derivative of each frequency
residual rf and mode shape residual rs with respect to a are:

drf

dae
¼ 1

~x2
j

dx2
j

dae
; ð29Þ

drs

dae
¼ 1

/r
j

d/l
j

dae
�

/l
j

ð/r
jÞ

2

d/r
j

dae
: ð30Þ
4. FE model updating of a frame type structure

The natural frequencies and mode shapes are directly
related to the stiffness of a structure. Therefore, a drop in
natural frequencies or mode shapes will indicate a loss of
stiffness which is a consequence of damage in certain ele-
ments of the structure. As the number of elements to be
updated increases, the ill posedness of the model updating
problem increase. Damage functions have been recom-
mended for decreasing the number of parameters to be
updated in the FE model updating of a reinforced concrete
beam structure by Teughels et al. [10]. The principal idea in
this methodology is that in order to prevent an ill-condi-
tioned Jacobian matrix due to a high number of updating
variables, the distribution of the unknown physical prop-
erty is approximated by combining a limited set of damage
functions. The updating parameters are then selected as the
factors by which each of the damage functions has to be
multiplied before combining them. By this methodology,
not only the number of the updating parameters are
reduced but also the ill posedness of the optimization prob-
lem is prevented. However, in structures with complicated
geometries, the damage may have a distributed irregular
pattern and the use of damage functions may not be appro-
priate. As mentioned above, in this study, the FE model
updating problem is applied on a reinforced concrete frame
structure in which, the use of the damage functions is not
appropriate. In the following subsections, the reinforced
concrete building type selected is explained first. The dam-
nite element model updating method by the ..., Comput Struct



Fig. 1. The location of the response points of the reinforced concrete
frame.

Fig. 2. The first vibration mode of the reinforced concrete frame.

Fig. 3. The second vibration mode of the reinforced concrete frame.
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age mechanisms of the reinforced concrete frames are then
discussed followed by the description of the damage sce-
nario applied on the building.

4.1. Criteria for the choice of the building type considered

and the description of the building

The building type that is going to be studied in the pres-
ent study is a ‘good’ quality typical existing building in the
region to the north of the Marmara Sea in Turkey with a
beam side-sway failure mechanism. The building is chosen
such that its geometrical, material and limit state properties
are within the confidence intervals of the ‘good’ building
classification for the Marmara region.

The building considered is located in Bolu and is a
moment resisting reinforced concrete frame system that
represents a typical residential building in the Marmara
region isolated from other buildings at both sides. The
drawings of the building are taken from the curated depos-
itory of Turkish building data on the Kocaeli and Duzce
earthquakes of 1999 maintained by Purdue University,
University of Michigan and University of Texas at Austin
[23]. The building is a four storey structure with three bays.
The floor system is flat slab with beams. The building has a
typical storey height of 2.85 m and considered as regular in
elevation. The dimensions of the columns are typically
0.5 m · 0.25 m and the dimensions of the beams are
0.25 m · 0.5 m for beams. The concrete design strength is
16 MPa. The building does not have a basement and is
fixed at the foundations. The building was under construc-
tion when the 1999 Mw = 7.4 Kocaeli and Mw = 7.1 Duzce
earthquakes hit the region. After the 1999 earthquakes, it is
reported that the reinforced concrete frame was moderately
damaged.

4.2. FE model of the reinforced concrete frame

The structure is modeled by the FE package program
ANSYS [24] and is idealized as a two-dimensional frame
taking into account the weights of the slabs in the trans-
verse direction in the FE model. Eight beam elements per
beams and 6 beam elements for columns are generated
for the FE model. The measurement locations are shown
in Fig. 1.

In the first stage, in order to obtain the natural frequen-
cies and mode shapes of the system, modal analysis is car-
ried out by using the Block Lanczos extraction method
with a sparse matrix solver. The mode shapes are normal-
ized to unity. This stage of the analysis gives the undam-
aged structure’s modal properties. The first two mode
shapes of the frame are shown in Figs. 2 and 3.

5. Damage scenario and nonlinear dynamic time history

analysis

Typically, in modeling the response of reinforced con-
crete structures to earthquake loading, it is assumed that
Please cite this article in press as: Bakir PG et al., An improved finite element model updating method by the ..., Comput Struct
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the joint regions are rigid and the damage is limited to flex-
ural yielding of beams, columns, slabs and walls. If the
beam–column joint regions are adequately designed, and
if the reinforced concrete frame is designed appropriately
according to the weak beam–strong column philosophy,
then the plastic hinges will form in beams close to the face
of the columns. On the other hand, the joints are antici-
pated to fail by bond slip or joint shear failure modes if
the beam–column joint region does not have transverse
reinforcement, the development lengths of beam bars or
column depth to beam bar diameter ratio are less than
the recommended values in codes and smooth bars are used
for the beam longitudinal reinforcement. In this study, a
damage scenario is considered such that the joint region
is assumed to be adequately detailed with closely spaced
stirrups and the frame is assumed to be designed according
to the weak beam–strong column philosophy. Conse-
quently, the joints are assumed to remain rigid during seis-
mic excitations and the plastic hinges are expected to occur
in the beams close to the beam–column joint regions
spreading towards the point of contra flexure in the beams.
Research [25] has shown that the damaged region in this
case can not be represented by two springs because crack-
ing spreads over a finite region at the ends of the reinforced
concrete girders. For this type of scenario, the stiffnesses of
the beam elements in the FE model close to the beam–col-
umn joint regions are decreased. It is reasonable to assume
that the stiffness at this cracked region is constant. This is
primarily due to the fact that the reinforcement layout will
not change along the cracked zone length provided this
zone does not extend beyond the quarter span point.
Fig. 4 shows the elements of the reinforced concrete frame
to which damage is simulated by reducing their stiffnesses.
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Fig. 4. The material numbers for the damaged elements in the FE model
of the reinforced concrete frame. Materials numbers 2 to 25 represent the
damaged elements whose stiffnesses will be updated. Material number 1
corresponds to the undamaged elements.
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To assume a realistic damage scenario, nonlinear
dynamic analysis is carried out. The modeling approach
in the nonlinear dynamic analysis is explained in the
Appendix section in detail. In order to ensure that the
structure does not significantly yield, very strong ground
motions should not be used for the dynamic analysis since
the method proposed in this study is limited to structures
which are damaged during an earthquake but that behave
linear during an ambient vibration survey after the earth-
quake. In this study, Bolu record of the 1999 Duzce earth-
quake in Turkey is scaled down by a factor of 0.7 as the
original record has significantly high PGA and PGV due
to the forward directivity effects. For the nonlinear
dynamic analysis, beam elements are modeled as nonlinear
frame elements with lumped plasticity where the plastic
hinges are defined at both ends of the beams. The force–
deformation relationship for the plastic hinges is defined
as shown in Fig. 5 according to FEMA-356 [26] and
ATC-40 [27]. The performance levels of ‘Immediate Occu-
pancy (IO)’, ‘Life Safety (LS)’ and ‘Collapse Prevention
(CP)’, are also shown in the figure. The ‘Immediate Occu-
pancy’ performance level corresponds to the post-earth-
quake damage state in which only very limited structural
damage has occurred. The ‘Life Safety’ performance level
corresponds to the damage state in which significant dam-
age to the structure may have occurred but in which some
margin against either total or partial structural collapse
remains. The level of damage is lower than that for the
‘Structural Stability’ level that is represented by point C
in the figure. The ‘Structural Stability’ performance level
is the limiting post-earthquake structural damage state in
which the building’s structural system is on the verge of
experiencing partial or total collapse. After point C, the
system experiences a strength degradation and reaches
point D followed by final collapse and loss of gravity load
capacity at point E.

The hinge pattern of the 4 storey frame that is generated
at the end of the nonlinear dynamic analysis is plotted in
Deformation

Fo
rc

e

B

C

D                            E

IO
LS

CP

Fig. 5. Force–deformation relationship of a typical plastic hinge.
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Table 1
Stiffness reduction factors for the 24 damaged elements

Material
no.

Damage
scenario

FEM
update

Detected
damage

Actual
damage

a a (Yes/No) (Yes/No)

1 0 NA NA NA
2 0.90 0.90 Yes Yes
3 0.80 0.80 Yes Yes
4 0.65 0.65 Yes Yes
5 0.30 0.30 Yes Yes
6 0.60 0.60 Yes Yes
7 0.45 0.45 Yes Yes
8 0.20 0.20 Yes Yes
9 0 0 No No
10 0.50 0.50 Yes Yes
11 0.55 0.54 Yes Yes
12 0 �0 No No
13 0.10 0.11 Yes Yes
14 0.55 0.55 Yes Yes
15 0.40 0.39 Yes Yes
16 0 �0 No No
17 0 �0 No No
18 0.65 0.65 Yes Yes
19 0.60 0.60 Yes Yes
20 0.10 0.10 Yes Yes
21 0.15 0.15 Yes Yes
22 0.85 0.85 Yes Yes
23 0.75 0.75 Yes Yes
24 0.60 0.60 Yes Yes
25 0.30 0.30 Yes Yes
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Fig. 6. The plastic hinges that have reached a deformation
level between yield point B and IO level are assumed to
have yielded lightly. The plastic hinges between IO and
CP levels are accepted to have yielded moderately and
the hinges beyond the CP level are assumed to have col-
lapsed. Points B and C indicate the yield and ultimate cur-
vatures, respectively.

The use of displacement-based design is becoming
accepted as the logical direction for seismic design prac-
tice. The particular form known as Direct Displacement
Based Design (DDBD) has been developed over the past
10 years by Priestley [28] and Priestley and Kowalsky
[29] with recent specific studies by Pettinga and Priestley
[30] demonstrating that it provides consistent results for
reinforced concrete structural design. In this study, the
stiffness reduction factors for each hinge region are calcu-
lated by evaluating the performance level obtained for
each hinge in the reinforced concrete frame at the end
of the dynamic analysis using the effective stiffness concept
proposed by Priestley [30] where the stiffnesses of the
hinge regions are represented by the equivalent secant
stiffnesses at maximum rotation response reached. The
stiffness reduction factors obtained in this way are given
in Table 1.

In the rest of the paper, the model of the damaged frame
will be referred to as the model of the simulated
experiment.
Damage level Yielding Immediate Occupancy Life safety

Symbol

Fig. 6. The resultant plastic hinge patterns for the reinforced concrete
frame structure at the end of the nonlinear dynamic analysis.
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6. Analysis of results

The index MAC (Modal Assurance Criterion) indicates
the correlation between two sets of mode shapes [31]. MAC
produces a matrix of inner products between the mode
shape vectors as

MACð/i;
~/jÞ ¼

j/i
~/jj2

ð/T
i /iÞð~/T

j
~/jÞ

: ð31Þ

MAC matrix values change between 0 and 1. A MAC
value close to 1 indicates a good correlation, and a MAC
value close to 0 indicates a poor correlation. All the analyt-
ical modes are correlated with all the measured modes and
the results are placed in a matrix. The MAC matrix is cal-
culated for two cases. In the first case, the correlation
between the initial FE model and the damaged model is
investigated. In the second case, the reference FE model
is updated and the correlation between the updated FE
model and the damaged model is again calculated. Table
1 shows the actual and detected damage states by the
model as well as the actual and predicted stiffness reduction
factors. The table shows that all the damage states and the
stiffness reduction factors are predicted accurately by the
model. The FE model updating scheme used can accom-
plish the first three levels of damage identification, namely;
detection, localization and quantification, successfully.
Fig. 7 shows that the relative eigenfrequency differences
between the numerical model and the simulated experimen-
nite element model updating method by the ..., Comput Struct
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Fig. 7. Relative eigenfrequency differences x�~x
x ½%� between numerical and

simulated experimental modes for the reinforced concrete building using
the CLM algorithm.
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Fig. 9. Relative eigenfrequency differences x�~x
x ½%� between numerical and

simulated experimental modes in the presence of moderate noise using the
CLM algorithm.
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tal model are substantially decreased after model updating.
Fig. 8 shows the comparison of the MAC values before and
after model updating. It is apparent that the MAC values
are also improved after FE model updating.

Next, the FE model updating scheme is tested in the
presence of noise. In particular the jth component of the
ith mode contaminated with noise for the kth measurement,
/k

ij, is computed from the corresponding component of the
same noise-free mode, /ij as

/k
ij ¼ /ij � ð1þ 1fk

i Þ; ð32Þ

where 1 is the standard deviation; and fk
i is a random num-

ber in the range [�1,1]. For the frequencies contaminated
with noise, the same definition has been used. Two noise
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Fig. 8. The comparison of MAC values before and after model updating
for the first four modes using the CLM algorithm.
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levels are considered to simulate measurement errors. The
first is moderate noise level in which 1 is 0.5% and 2%
for the eigenfrequencies and mode shapes, respectively.
The second noise level simulates substantially noisy mea-
surements. In the high noise level, 1 is 3% and 10% for
the eigenfrequencies and mode shapes, respectively.

Figs. 9 and 10 show the relative eigenfrequency differ-
ences and the MAC values between the numerical and
the simulated experimental modes in the presence of mod-
erate noise, respectively. The results show that the relative
differences in the eigenfrequencies and the MAC values are
considerably improved after the FE model updating. Table
2 shows the detected and actual damage as well as the pre-
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Fig. 10. MAC values between numerical and simulated experimental
modes for the reinforced concrete building in the presence of moderate
noise using the CLM algorithm.
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Table 2
Stiffness reduction factors predicted for the 24 damaged elements in the
presence of random noise with normal distribution and 0.5% standard
deviation applied to the eigenvalues; 2% standard deviation relative to the
maximum amplitude applied to the mode shapes

Material
no.

Damage + noise FEM
update

Detected
damage

Actual
damage

a a Yes/No Yes/No

1 0 NA NA NA
2 0.90 0.90 Yes Yes
3 0.80 0.79 Yes Yes
4 0.65 0.66 Yes Yes
5 0.30 0.30 Yes Yes
6 0.60 0.59 Yes Yes
7 0.45 0.41 Yes Yes
8 0.20 0.31 Yes Yes
9 0 �0 No No

10 0.50 0.45 Yes Yes
11 0.55 0.57 Yes Yes
12 0 �0 No No
13 0.10 0.09 Yes Yes
14 0.55 0.55 Yes Yes
15 0.40 0.45 Yes Yes
16 0 �0 No No
17 0 �0 No No
18 0.65 0.67 Yes Yes
19 0.60 0.57 Yes Yes
20 0.10 0.17 Yes Yes
21 0.15 0.17 Yes Yes
22 0.85 0.85 Yes Yes
23 0.75 0.74 Yes Yes
24 0.60 0.63 Yes Yes
25 0.30 0.29 Yes Yes

Table 3
Stiffness reduction factors predicted for the 24 damaged elements in the
presence of random noise with normal distribution and 3% standard
deviation applied to the eigenvalues; 10% standard deviation relative to
the maximum amplitude applied to the mode shapes

Material
no.

Damage + noise FEM
update

Detected
damage

Actual
damage

a a (yes/no) (yes/no)

1 0 NA NA NA
2 0.90 0.90 Yes Yes
3 0.80 0.80 Yes Yes
4 0.65 0.64 Yes Yes
5 0.30 0.39 Yes Yes
6 0.60 0.62 Yes Yes
7 0.45 0.52 Yes Yes
8 0.20 0.25 Yes Yes
9 0 �0 No No

10 0.50 0.50 Yes Yes
11 0.55 0.52 Yes Yes
12 0 �0 No No
13 0.10 0.02 Yes Yes
14 0.55 0.51 Yes Yes
15 0.40 0.40 Yes Yes
16 0 �0 No No
17 0 �0 No No
18 0.65 0.68 Yes Yes
19 0.60 0.63 Yes Yes
20 0.10 0.18 Yes Yes
21 0.15 0.22 Yes Yes
22 0.85 0.86 Yes Yes
23 0.75 0.80 Yes Yes
24 0.60 0.60 Yes Yes
25 0.30 0.50 Yes Yes
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dicted stiffness reduction factors in the presence of noise. It
is apparent that the first three levels of damage identifica-
tion are again possible with the FE model updating scheme
in the presence of moderate noise.

The second case considered is the substantial noise in
measurements. Table 3 shows the stiffness reduction factors
predicted. The results show that in the presence of substan-
tial amount of noise, the model can very slightly under or
overestimate the stiffness reduction factors, but 22 out of
24 damage parameters are predicted accurately again even
for the complex damage pattern adopted. Figs. 11 and 12
also show that the MAC values as well as the relative eigen-
frequency differences are improved substantially after FE
model updating.
1 2 3 4 5 6 7
Mode

Initial
Updated

Fig. 11. Relative eigenfrequency differences x�~x
x ½%� between numerical

and simulated experimental modes for the reinforced concrete building in
the presence of substantial noise using the CLM algorithm.
7. Comparison of the coupled local minimizers with other
optimization techniques

In this part of the study, the ‘Coupled Local Minimizers’
technique used for FE model updating is compared with
other optimization techniques in terms of accuracy, condi-
tion number of the Jacobian and the CPU time. Relative
eigenfrequency and relative mode shape differences have
established and widespread use in the literature to estimate
the accuracy of the updating process, e.g. Refs. [20,32]. Just
as implemented by Teughels [20] and Modak et al. [32], rel-
Please cite this article in press as: Bakir PG et al., An improved fi
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ative frequency and mode shape difference indices are used
in this study in which percentage average error in natural
frequencies (IAENF) and percentage average error in
mode shapes (IAEMS) are calculated as:
nite element model updating method by the ..., Comput Struct
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Fig. 12. MAC values between numerical and simulated experimental
modes for the reinforced concrete building in the presence of substantial
noise using the CLM algorithm.

Table 5
Number of iterations, CPU time and the condition number of the
Jacobian for the model updating algorithm for different number of modes

Optimization method Iteration no. CN* of Jacobian CPU [s]

CLM 8 137.2 911
CLM (MN*) 8 181.24 1016
CLM (SN*) 23 182.675 3330
SQP* 4 – 13,177
LM* 2 204.39 52.82
GN* 2 61.24 33.91

Notes: * CN is the condition number, MN is moderate noise, SN is sub-
stantial noise, LM is the Levenberg–Marquardt algorithm, GN is the
Gauss–Newton algorithm, SQP is the Sequential quadratic programming
method.
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IAENF ¼ 100

mf

Xmf

i¼1

abs
xu � ~x

~x

� �
ð33Þ

IAEMS ¼ 100

mmN

Xmm

i¼1

XN

j¼1

abs
/j

i u � ~/j
i

~/j
i

 !
; ð34Þ

where xu and /u are the updated natural frequencies and
mode shapes, respectively and N is the number of measured
degrees of freedom.

For comparison purposes, the FE model updating tech-
nique is applied with different optimization methods such
as the Gauss–Newton method, Levenberg–Marquardt
algorithm and Sequential Quadratic Programming. In the
following subsections, these methods are briefly explained
and the results of the comparative study are discussed.
The error indices obtained from different optimization rou-
tines are summarized in Table 4 and the condition num-
bers, number of iterations, CPU time for a computer
with an Intel-Core 2 Duo processor are compared in Table
5.
Table 4
Error indices before and after model updating for different number of
modes

Optimization
method

IAENF
(BU) (%)

IAENF
(AU) (%)

IAEMS
(BU) (%)

IAEMS
(AU) (%)

CLM 7.18 0.01 150.12 1.47
CLM (MN*) 6.9 0.37 185.18 3.56
CLM (SN*) 7.49 2.72 208.76 17.54
SQP* 7.18 NI* 150.12 NI*

LM* 7.18 3.08 150.14 55.47
GN* 7.18 NI* 150.14 NI*

Note:* NI means that no improvement in error index is achieved, MN is
moderate noise, SN is substantial noise, LM is the Levenberg–Marquardt
algorithm, GN is the Gauss–Newton algorithm, SQP is the Sequential
quadratic programming method.
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7.1. Gauss–Newton method

Gauss–Newton method is a modification of Newton’s
method with line search. In Newton method, the search
direction pk is generated by solving the standard equation:

r2f ðxkÞp ¼ �rf ðxkÞ: ð35Þ

In Gauss–Newton method, the second term in Eq. (26)
is excluded and the solution pGN

k is obtained by solving:

J T
k J kpGN

k ¼ �J T
k rk: ð36Þ

In the Gauss–Newton method, a line search is per-
formed along the direction pGN

k .

xkþ1 ¼ xk þ akpGN
k : ð37Þ

The Gauss–Newton search direction is calculated with a
QR decomposition of Jk. The step length a can be deter-
mined using the Wolfe sufficient decrease and curvature
conditions given below:

f ðxk þ akpkÞ 6 f ðxkÞ þ c1akrf T
k pk ð38Þ

rf ðxk þ akpkÞ
T
pk P c2rf T

k pk ð39Þ

with 0 < c1 < c2 < 1.
The Gauss–Newton algorithm is applied on the FE

model updating problem for comparison purposes. It is
apparent from the results that no improvement is achieved
in the MAC values and the eigenfrequency errors after
updating. The comparison of the updated stiffness reduc-
tion factors and the reduction factors from the damage sce-
nario shows that only 9 out of 24 stiffness reduction factors
are predicted within reasonable accuracy using the Gauss–
Newton algorithm.

7.2. Sequential quadratic programming

The Sequential Quadratic Programming (SQP) methods
are known to be powerful when solving problems with sig-
nificant nonlinearities. A quadratic programming subprob-
lem is solved at each iteration which can be expressed as

min
p

qðpÞ ¼ rf Tpþ 1

2
pT½r2

xxL�p; ð40Þ
nite element model updating method by the ..., Comput Struct
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Fig. 14. The comparison of MAC values before and after model updating
for the first four modes using the Levenberg–Marquardt algorithm.
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Fig. 13. Relative eigenfrequency differences x�~x
x ½%� between the numerical

and simulated experimental modes for the reinforced concrete building
using the Levenberg–Marquardt algorithm.
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where L is the Lagrange function defined by Eq. (3). The
quadratic programming subproblems are solved with an
active set method which starts with an initial guess of the
optimal active set A*, which is also called the working set
W and which repeatedly adapt the current working set by
dropping and adding constraints to the set. In the Sequen-
tial Quadratic Programming, a new step length pk and new
Lagrange multiplier estimates kk+1 are obtained from Eq.
(40). The iterations are stopped when the algorithm con-
verges and the optimum minimizer x* and Lagrange multi-
pliers k* of the subproblem are determined. A line search
strategy is pursued in the sense that the solution of the qua-
dratic programming subproblem produces a vector pk,
which is used to generate a new iterate:

xkþ1 ¼ xk þ akpSQP
k ; ð41Þ

where a is the step length parameter which is determined in
order to result in a sufficient decrease in a merit function
W(x) expressed as

WðxÞ ¼ f ðxÞ þ
X

j�e

kjjhjðxÞj þ
X

j�I

cj maxðhjðxÞ; 0Þ; ð42Þ

where cj > 0 are penalty parameters. The line search algo-
rithm requires that the Hessian of the Lagrangian function
B, is calculated using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) formula:

Bkþ1 ¼ Bk þ
qkqT

k

qT
k sk
� BT

k Bk

sT
k Bksk

; ð43Þ

where

sk¼ xkþ1�xk; ð44Þ

qk ¼rf ðxkþ1Þþ
Xn

i¼1

kirhiðxkþ1Þ� rf ðxkÞþ
Xn

i¼1

kirhiðxkÞ
 !

:

ð45Þ

The FE model updating problem is applied with the
Sequential Quadratic Programming (SQP) method. It is
apparent from the results that no improvement in percent-
age average errors in frequencies and mode shapes is
achieved by the implementation of the SQP algorithm.
The CPU time was the highest for this algorithm and the
stiffness reduction factors could not be predicted
accurately.

7.3. Levenberg–Marquardt algorithm

The Levenberg–Marquardt algorithm is applied with a
line search strategy where the search direction is calculated
by solving:

ðJT
k Jk þ lkIÞpLM ¼ �JT

k rk; ð46Þ

where lk P 0 is the parameter which limits the size of p. It
should be noted that when this parameter has a value equal
to zero, then the solution to the Levenberg–Marquardt
algorithm is identical with the solution to the Gauss–New-
Please cite this article in press as: Bakir PG et al., An improved fi
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ton algorithm. On the other hand, if the parameter
lk!1, then kpkk ! 0 and pk approaches the steepest des-
cent direction JT

k rk. Therefore, the Levenberg–Marquardt
direction is between the steepest descent and Gauss–New-
ton directions depending on the value of l.

For comparison purposes, the Levenberg–Marquardt
algorithm is applied on the FE model updating problem
considered. The algorithm terminated abruptly after just 2
iterations as no improvement in the search direction is
achieved. Fig. 13 shows that the eigenfrequency errors
decreased after updating for all modes. As shown in
Fig. 14, the MAC values also improved for all modes after
model updating. Nevertheless, if the MAC values and the
eigenfrequency errors obtained from the CLM method in
Figs. 7 and 8 are compared with the MAC and eigenfre-
nite element model updating method by the ..., Comput Struct
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quency error values in Figs. 13 and 14 obtained from the
Levenberg–Marquardt algorithm, it becomes apparent that
the CLM method gives better results than the Levenberg–
Marquardt algorithm in FE model updating problems.
Moreover, although the CPU time is shorter, only 3 stiffness
reduction factors out of 24 are predicted within reasonable
accuracy using the Levenberg–Marquardt algorithm.

7.4. Discussion of the results of the comparative study

The analysis of the results show that the CLM method
always gives better results than the other optimization
methods. Table 4 shows that the percentage average error
in mode shapes and natural frequencies are substantially
lower using the CLM algorithm in comparison to the
Levenberg–Marquardt, Gauss–Newton and Sequential
Quadratic Programming algorithms. In this study, the
CLM method is applied using an Augmented Lagrangian
that is implemented with a trust region Newton method
to improve convergence. The trust region strategy adopted
prevents the iterates from taking very large steps and con-
sequently avoids divergence of the process. As a result, the
optimization process gives better results than the Leven-
berg–Marquardt, Gauss–Newton and the Sequential Qua-
dratic Programming algorithms as shown in Tables 4 and
5. Secondly, the trust region strategy adopted within the
CLM algorithm acts as a regularization technique. There
are also two reasons for this. First, the radius of the trust
region is updated in each iteration according to the accu-
racy of the approximating model function. This strategy,
reduces oscillations in the design variables and results in
a more robust optimization method. Second, in addition
to the application of a trust region, explicit bound con-
straints are introduced into the optimization procedure
which prevents overshooting and improves stability.

The second most important advantage of the global
optimization method CLM over the local optimization
methods compared is that the CLM does not get stuck in
the local minima. This advantage becomes more pro-
nounced especially when working with noisy data. In this
case, the CLM algorithm always gives superior results than
other local optimization techniques.

It is true that the convergence speed of the CLM method
will be lower than the other algorithms due to the fact that
in global optimization methods such as the CLM method,
a population is used for the initial starting values of a
design variable as opposed to the local optimization meth-
ods where a single initial value is required. However, since
robustness is the major issue to be considered in ill-condi-
tioned FE model updating problems, the convergence
speed may be considered as rather secondary.

8. Remarks for application of the technique on actual

structures

This is an ongoing research and this phase of the
research is a feasibility study for the application of the
Please cite this article in press as: Bakir PG et al., An improved fi
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‘Coupled Local Minimisers’ method in FE model updating.
In the next phase of the study, the method will be applied
on actual structures. Although the above numerical exam-
ples have demonstrated that FE model updating using
‘Coupled Local Minimizers’ has the capability to efficiently
identify, locate and quantify damage in frame type struc-
tures, further issues have to be taken into consideration
in the application of the technique on actual structures.
In a complex structure, if the initial analytical model
neglects some important effects that exist in the real struc-
ture, it would be very difficult to find the real model by
updating parameters of the inadequate analytical model
alone. The following further issues have to be considered
in the application of the algorithm on real structures.

First, in FE model updating of an actual structure, it is
immensely important that a good model of the structure
should be used as reference to reduce the modeling errors
to an acceptable level. Modeling errors occur due to
unavoidable uncertainties that are related to modeling of
material properties, effects of non-structural elements, sup-
port conditions, less accurate element types used in the FE
model such as the use of the Euler–Bernoulli beam ele-
ments instead of the Timoshenko beam elements that
include a parameter to model shear strain. In this study,
shear deformations are also taken into account in all mem-
bers in the FE models in order to more accurately model
the behaviour of actual structures.

Another important parameter to be considered is the
mesh size of the initial FE model. Using a fine mesh leads
to more accurate results. Especially in cases where a high
number of modes are used for the updating problem, a
coarse mesh will lose accuracy as greater spatial resolution
is required to precisely detect the higher and more complex
mode shapes and corresponding frequencies.

Equivalently important is to be able to predict the pos-
sible damage locations for the structure type that will be
updated. If the number of the model parameters that have
to be updated are too large, numerical difficulties will arise
in the updating problem. To avoid these difficulties and to
realistically reduce the number of the updating parameters,
it is vital to predict a good damage scenario in the FE
model updating of actual structures. For instance, in well
confined building type structures designed according to
the weak beam–strong column philosophy, plastic hinges
should be expected in beams adjacent to the columns.
Therefore, the damage scenario applied in this paper for
well confined buildings can be considered as realistic due
to our experiences from past earthquakes. But for struc-
tures with unconfined beam–column joint regions, damage
is also expected to occur in the beam–column joint regions
and different model parameters should be selected for
updating in the initial FE model for that case.

Environmental effects should also be considered in dam-
age identification of real structures. It is clear that there is
an influence of temperature on the eigenfrequencies of a
structure [33]. Nevertheless, this has to be taken into
account in the system identification phase of a damage
nite element model updating method by the ..., Comput Struct
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identification campaign when the eigenfrequencies and
eigenmodes are determined from the measured response
data in the structure. Peeters [34] has proposed a method
for detecting damage in the presence of varying environ-
mental parameters such as temperature.

9. Conclusions

A FE model updating scheme using a new global opti-
mization method called ‘Coupled Local Minimizers’ is
applied on a numerical model of an actual residential
building from Turkey that had been subjected to the
1999 Kocaeli and Duzce earthquakes. In this study, the
CLM algorithm is implemented with a Trust Region New-
ton method. In CLM, the local minimizers are forced to
communicate and exchange information using synchroni-
zation constraints. A damage scenario is applied on the
reinforced concrete frame such that the stiffnesses of the
elements close to the beam–column joints are deliberately
decreased to simulate damage. A complex worst case dam-
age scenario in which adjacent elements have substantially
different stiffness levels is considered. The damage scenario
is based on a nonlinear dynamic time history analysis
where the reductions in stiffness values are determined by
evaluating the performance level of each hinge according
to the ‘Performance Based Design’ philosophy adopted in
ATC 40. The initial FE model is then updated to tune
the initial modal parameters with the modal parameters
from the numerical model in which damage is simulated.
The results of the updating showed that the first three levels
of damage identification as proposed by Rytter; namely,
damage detection, localization and quantification are suc-
cessfully accomplished by the FE model updating algo-
rithm used. The relative eigenfrequency differences and
the MAC values are substantially improved after updating.
The FE model updating algorithm is also tested in the pres-
ence of two noise levels which simulate moderate and sub-
stantial noise in measurements, respectively. In the
presence of moderate noise levels, damage is successfully
detected and located in all elements. With the exception
of one element, all the 23 stiffness reduction factors are pre-
dicted quite accurately. The relative eigenfrequency differ-
ences and the MAC values are considerably improved
after model updating. In the presence of high amount of
noise, damage is detected and located correctly in all the
damaged elements. The extent of damage is over or under-
estimated in two elements alone. The majority of the stiff-
ness reduction factors (22 out of 24) are predicted within
reasonable accuracy. The CLM method is compared with
the Sequential Quadratic Programming, Gauss–Newton
and Levenberg–Marquardt algorithms. It is apparent that
the FE model updating with the CLM method detects,
locates and quantifies damage more accurately than the
other optimization methods. Better MAC values and the
relative eigenfrequency differences are obtained using the
CLM method. The results demonstrate that FE model
updating using Coupled Local Minimizers is promising
Please cite this article in press as: Bakir PG et al., An improved fi
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for the detection of damaged elements in actual multistorey
buildings.
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Appendix A. Modeling approach in nonlinear dynamic

analysis

In this study, a moment-curvature analysis is carried out
for each element where point B is obtained using approxi-
mate component initial effective stiffness values according
to ATC-40 and a recent study on defining plastic hinge
properties in nonlinear analysis [35]. The initial stiffness
value adopted is 0.4 EI for beams as proposed by the
new Turkish Earthquake Design Code [36]. The ultimate
curvature is defined as the curvature corresponding to the
extreme compression fiber reaching the ultimate concrete
compressive strain according to the following relation pro-
posed by Priestley et al. [37]:

ecu ¼ 0:004þ 1:4qsfyhesu

fcc

; ðA:1Þ

where ecu is the ultimate concrete compressive strain, esu is
the steel strain at the maximum tensile stress, qs is the vol-
umetric ratio of confining steel, fyh is the yield strength of
transverse reinforcement, and fcc is the peak confined con-
crete compressive strength. The IO, LS, CP, and C points
in Fig. 5 are assumed be reached at 12.5%, 40%, 55%,
and 63% of the ultimate rotation capacity, respectively in
accordance with the ultimate rotation and moment values
obtained from a moment-curvature analysis as well as
ATC-40. On the beams, the axial forces are assumed to
be zero. Plastic hinge length is used to calculate the rota-
tion values from curvatures. The maximum of the two plas-
tic hinge lengths as given below are considered in the
analysis. The first of these equations is proposed in the
new Turkish Earthquake Resistant Design Code [36]. The
second has been proposed by Priestley [37].

Lp ¼ 0:5H ; ðA:2Þ
Lp ¼ 0:08Lþ 0:022f yedbl P 0:044f yedbl; ðA:3Þ

where Lp is the plastic hinge length, H is the section depth,
L is the critical distance from the critical section of the plas-
tic hinge to the point of contraflexure, and fye and dbl are
the expected yield strength and the diameter of the longitu-
dinal reinforcement, respectively.

Since an existing reinforced concrete building is investi-
gated in this study, shear hinges are also introduced at both
nite element model updating method by the ..., Comput Struct
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ends of beams. The shear strength of each member is com-
puted according to TS500 [38] as shown below:

V r ¼ V c þ V s; ðA:4Þ

V c ¼ 0:182bd
ffiffiffiffi
fc

p
1þ 0:07

N
Ac

� �
; ðA:5Þ

V s ¼
Ashfyhd

s
; ðA:6Þ

where Vc and Vs are the concrete and transverse reinforce-
ment, respectively, b is the section width, d is the effective
depth, fc is the unconfined concrete compressive strength,
N is the axial load on the section, Ash is the area of the
transverse reinforcement, fyh is the yield strength of the
transverse reinforcement and s is the spacing of the trans-
verse reinforcement.
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