Two degree of freedom systems

*Equations of motion for forced vibration
*Free vibration analysis of an undamped system
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» Systems that require two independent coordinates to describe their
motion are called two degree of freedom systemes.

Number of
degrees of freedom = Number of masses x number of possible types
of the system In the system of motion of each mass
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There are two equations for a two degree of freedom system, one for each
mass (precisely one for each degree of freedom).

They are generally in the form of coupled differential equations-that is,
each equation involves all the coordinates.

If a harmonic solution is assumed for each coordinate,the equations of

motion lead to a frequency equation that gives two natural frequencies of
the system.
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If we give suitable initial excitation, the system vibrates at one of these
natural frequencies. During free vibration at one of the natural
frequencies, the amplitudes of the two degrees of freedom (coordinates)
are related in a specified manner and the configuration is called a normal
mode, principle mode, or natural mode of vibration.

Thus a two degree of freedom system has two normal modes of vibration
corresponding to two natural frequencies.

If we give an arbitrary initial excitation to the system, the resulting free
vibration will be a superposition of the two normal modes of vibration.
However, if the system vibrates under the action of an external harmonic
force, the resulting forced harmonic vibration takes place at the frequency
of the applied force.
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 Asis evident from the systems shown in the figures, the configuration of a
system can be specified by a set of independent coordinates such as
length, angle or some other physical parameters. Any such set of
coordinates is called generalized coordinates.

* Although the equations of motion of a two degree of freedom system are
generally coupled so that each equation involves all coordinates, it is
always possible to find a particular set of coordinates such that each
equation of motion contains only one coordinate. The equations of motion
are then uncoupled and can be solved independently of each other. Such
a set of coordinates, which leads to an uncoupled system of equations, is
called principle copordinates.




Equations of motion for forced
vibration

* Consider a viscously damped two degree of freedom spring-mass system
shown in the figure.

e The motion of the system is completely described by the coordinates xu(t)
and xz(t), which define the positions of the masses mi1 and mz at any time t
from the respective equilibrium positions.
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Equations of motion for forced
vibration

The external forces F1 and F2 act on the masses m1 and mz, respectively.
The free body diagrams of the masses are shown in the figure.

The application of Newton’s second law of motion to each of the masses
gives the equation of motion:
mli"l ~+ (Cl + Cg) .1'71 - Cgi‘z + (.ICI + ki) X1 — kgxg = Fl
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Equations of motion for forced

vibration

It can be seen that the first equation contains terms involving x2, whereas
the second equation contains terms involving x1. Hence, they represent a
system of two coupled second-order differential equations. We can
therefore expect that the motion of the m: will influence the motion of

m2, and vica versa.

myX; + (ey + Co) X; — CaXg + (ky + ko) x1 — koxy = Fy

MaXn — CoXy + (Co + €3) Xp — kaxy + (ko + k3) x5 = Fsy
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Equations of motion for forced

vibration

* The equations can be written in matrix form as:

[m] 2(1) + [c] %(0) + [k 3(0) = F)
where [m], [c] and |K| are mass, damping and stitthess matrices,
respectively and x(t) and F(t) are called the displacement and force
vectors, respectively.which are given by:
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Equations of motion for forced
vibration

It can be seen that the matrices [m], [c] and [k] are all 2x2 matrices whose
elements are the known masses, damping coefficienst, and stiffness of the
system, respectively.

Further, these matrices can be seen to be symmetric, so that:

mlT = [m], [c]? = [c], [k]T = [Kk]

Free vibration analysis of an undamped system

For the free vibration analysis of the system shown in the figure, we set
F1(t)=F2(t)=0. Further, if the damping is disregarded, ci=c2=c3=0, and the

equations of motion reduce to:
p—bx‘(!) xy(£)
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mais(t) — kox1(2) + (ky + k3)xa(2) = 0



Free vibration analysis of an
undamped system

* We are interested in knowing whether m: and m:2 can oscillate
harmonically with the same frequency and phase angle but with different
amplitudes. Assuming that it is possible to have harmonic motion of m:
and m: at the same frequency ® and the same phase angle ¢, we take the
solutions to the equations

maxi(e) + (kg + kg)x() — koxo() = 0O
MmaXa(t) — koxi(2) + (kg + k3)xy(2) = 0O
x:(8) = X; cos(wt + ¢)

x.(t) = X, cos(wr + ¢)

as:

where X1 and Xz are constants that denote the maximum amplitudes of
x1(t) and x2(t) and ¢ is the phase angle.Substituting the above two
solutions into the first two equations, we have:



Free vibration analysis of an
undamped system

{{ -—fnicuz -+ (kl + kz)} Xl - kzXz]CUS(fdf + (;5)
[__kEXl + [ —QOz -+ (kz -+ kg)} XZ]COS(MI + ¢)

Since the above equations must be satisfied for all values of time t, the
terms between brackets must be zero. This yields, |
{_mlfﬂz + (kl + kz)} Xl — kzXz = 0

_kg.Xl -+ {'_’mzﬂ}z -+ (kz + ka}} Xz = 0

P P P N e P P a2 m oo mes s omdet s o 2w

which represents two simultaneous homogeneous algebraic equations in
the unknowns X1 and Xa. It can be seen that the above equation can be
satisfied by the trivial soution X1=X2=0, which implies that there is no
vibration. For a nontrivial solution of X1 and X2, the determinant of
coefficients of X1 and X2 must be zero.



Free vibration analysis of an
undamped system

: { -—mlmz -+ (kl -+ kg)} "“kg _
det [ _‘kz {mzfﬂz + (kz + ka)} =0

(mm,)o* —{(k, +k, )m, + (k, + k;)m }o® +{(k +k,)(k, +k;) —k’}=0

The above equation is called the frequency or characteristic equation
because solution of this equation yields the frequencies of the
characteristic values of the system. The roots of the above equation are
given by:

2 9 l{(kl + kp)my + (ky + ks)m1}

&) 5 =
L 2 2 m1m2

- ‘l'l:{{kl + ffg)mg + (kg T kg)ml}z

2 1, Mg

- 4 {(k1 + ky)(ky + ky) — k%}]lfz

mmsy



Free vibration analysis of an
undamped system

* This shows that it is possible for the system to have a nontrivial harmonic
solution of the form x,(2) = X, cos(wt + &)

x.(t) = X, cos(wt + o)

when w=m1 and ®w=m:2 given by:
l]wcl + dp)my + (ke + ks)ml}

2 Mg

o}, f =

_ 1[{{k1 + kpdmy + (kp + ks)ml}z

2 1My Mg

— 4{(IC1 + ky)(ky + k) — k%}]ug

mnia

We shall denote the values of X1 and X2 corresponding to ®: as X$" and X§"

and those corresponding to w2 as X{ and X57..



Free vibration analysis of an
undamped system

e Further. since |
{—mlmz + (kl -+ kz)} Xl - kng = 0

—ngl + {_mzﬂ)g + (a‘r\'.'z + kg)} Xz = (

the above eguation is homogeneous, only the ratios r; = (x$9x Yy and
r2: {X52/XP} can be found. For &? = ? and w? = w3 the equations

{_mlmz + (kl + kz)} Xl - k?_XQ =
_kg.Xl + {—*mzwz -+ (k’g -+ kg}} XZ = ()

give: X —med + (ky k) ky
1= X - ko —mowi + (ky + k3)
XY mmed + (kg + k) ks
72T xe T ks —mpw? + (ky + ki)

* Notice that the two ratios are identical.



Free vibration analysis of an
undamped system

The normal modes of vibration corresponding to w? and w3 can be
expressed, respectively, as:

. x{ x (v 2y x@® _ ng)}
X = {X(ll) RS X = X roX
The vectors XM and X, which denote the normal modes of vibration are

known as the modal vectors of the system. The free vibration solution or

the motion in time can be expressed using
x1(t) = X, cos(wt + &)

x.(t) = X5 cos(wt + ¢)

V@) = MO0 _ [ X5 cos(ant + ¢1)
*#$P) riX{D cos(wit + ¢y)

(2) X(2) ( ; + ¢ )
Sy = 4 XL O 1 cosl@ 274 = gecond mode
x5 {xgg)(t) rgXﬁz) cos(awqt + ¢y)

Q)
w

} = first mode

where the constants X", X{?, ¢;, and ¢, are determined by the initial
conditions.



Free vibration analysis of an
undamped system

Initial conditions:

Each of the two equations of motion,
myXy + (e + ) X — caXy + (kg + ko) x;p = koxo = Fy

sz'c'z - C?_j:l + (Cz + C3) 3.52 - kle + (k2 + kB) Xy = FZ

involves second order time derivatives; hence we need to specify two
initial conditions for each mass.

The system can be made to vibrate in its ith normal mode (i=1,2) by
subjecting it to the specific initial conditions.
x:(t =0) = X{¥ = some constant, X(t=0) =0,
(= 0) = X, H(r=0)=0
However, for any other general initial conditions, both modes will be
excited. The resulting motion, which is given by the general solution of the

equations myE(8) + (ky + kg)xy (1) — kaxa(£) = 0O
moXa(t) — kox1(1) + (ky + k3)xp(t) = 0

can be obtained by a linear superposition of two normal modes.



Free vibration analysis of an
undamped system

Initial conditions: %(t) = 6,%, (t) + ¢, %, (t)

where ¢, and c, are constants.

Since x$2(9) and x{?(z) already involve the unknown constants X§" and X{*

we can choose ci=c2=1 with no loss of generality. Thus, the components of the
vector X(t) can be expressed as:

(0 = x0@ + 2P0 = X cos(wyt + ¢1) + X1 cos(war + ¢3)
() = 50 + x5
= rlX{l” cos(wyt + ¢y) + rEX{f} cos( wot + @q)

where the unknown X‘ln, X(lz}, @1, and @, can be determined from the initial
conditions

x,(r = 0) = x,(0), X (t 0) = %,(0),
x(t = 0) = x5(0), Xa(t = 0) = X(0)

I



Free vibration analysis of an
undamped system

(D) = 3P0 + 20 = X1V cos(wyr + ¢) + X3 cos(war + 5)
x(8) = x50 + x57(0)

= rIXE” cos(wit + ¢y) + rgX(f} cos({ wyt + @) (5.15)
Thus if the initial conditions are given by
x,(z = 0) = x,(0), X (t = 0) = x,(0),
x,(t = 0) = x,(0), Xq(r = 0) = x(0) (5.16)

the constants X$7, X, #,, and ¢, can be found by solving the following equations
(obtained by substituting Eqgs. 5.16 into Eqgs. 5.15):

2

x,(0) = XiP cos ¢y + X$P cos ¢,

. (0) = — o X D si — o X® s
%(0) = — X}’ sin ¢; — @,X)7 sin ¢,
x2(0) = rIXEU cos ¢ + X cos ¢,

i(0) = — X sin ¢y — wr, X1V sin ¢y (5.17)



Free vibration analysis of an
undamped system

Equations (5.17) can be regarded as four algebraic  equations in the unknownsg |
X cos ¢y, XP cos ¢y, X{P sin ¢, and X® sin ¢,. The solution of Egs. (5.17)
can be expressed as .

X cos ¢, = {rle(ﬂ) - JC2(O)}’ X® cos ¢, = { ~r1x1(0) + xz(O}}

Y — I'y Fa — I

X sin ¢, = { —r3%1(0) + %5(0) ] X® sin ¢, = {rlxl(fn - iz(oj}

wy (ry — ry) wy(ry = ry)

from which we obtain the desired solution
X = [(X{7 cos ¢ }? + {X{7 sin ¢,]2]"

. . 1/2
= ;[ (rax:(0) — xp(0))2 + {7200 1 -"zfm}z]

(rg — rp)

X$ = [{XP cos ¢,}7 + {X{® sin ¢,}71'72

i

= —I“I: { —rx;(0) + xg(O)]z +
(?'2 - ?1) -

{r3.(0) — #(0) }2] "

w3



Free vibration analysis of an
undamped system

from which we obtain the desired solution
X = [{X{V cos ¢1)7 + (X{" sin ¢,)7]'/2

~rp%,(0) + xg(o.)}i] .

wi

1
(rp = 1)

X = [{X{? cos $5}* + {X{ sin ¢, }71'2

il

[ (7221(0) — x,(0))2 +

= — [{—nxlcm + xy(0))7 + LB

(rg — 1)

B _):‘:E(U) }2] 1/2

®3

¢ = tan~! {X'i” sin_¢, ﬁ» = tan-! { —19%1(0) + X%,(0) }
X%i} COS (;51..« wl[rle({}) —_ xz({})}

X sin g, r#(0) ~ %,(0)
_ _1 1 2 -1 141 2
ﬁbz = lan {XEEJ cOS qsz tan { L't.]:{ - rlxl(U} + x?(o)] }
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Example: Find the natural frequencies and
mode shapes of a spring mass system , which ki =&
is constrained to move in the vertical
direction.
nm=m
Solution: The equations of motion are given l |
by: H‘Lfl + kal - kxz =0
¢
mi, — kxy + 2kx; = 0 =10 ky = nk
By assuming harmonic solution as:
x(f) = X;cos(wt + @);i =1,2 My = m
the frequency equation can be obtained by: |
(—mw? + 2k) (—k) _ x,(0)
(—k) (—mw? + 26)| = ° : ky=k

m2w* — dkme? + 3k* = 0
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(—mw? + 2k) (—k) 0
(—k) (—mw? + 2k)

m2w* — 4kme® + 3k = 0

 The solution to the above equation gives the natural frequencies:

1/2
) [ M~ (16Em? - 12mzk2]”2} _ [k
" 2 o
K\D dkm + [16k*m? — 12m2k2 7172 2 . [3k
U. = 2m? BRE
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XS mmel + (k) ka
1= X ko —mawt + (ky + k3)

o X  mmwi + (ky T k) ko
T2 = X‘iz) N kz - ‘““?7’12&}% -+ (kg + kg)

the amplitude ratios are given by:
x50 —-mwi + 2k _ k _
17 %M T k T —mao? + 2k
3 X®  -med + 2k k

e

2= X T 2 “mak + 2k
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X5V cos(wyt + 1)
XY cos(w it + )

5 x(1) X cos(wyt + #2)
X®(r) = 2) = 2)
x5 (1) X7 cos(wat + ¢s)

 The natural modes are given by

. First mode = X(r) =

Second mode = X3)(r) =

dSS-S

'CS

} = first mode

O'Q

} = second mode
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e The natural modes are ' First mode = #D(5)
given by:

Second mode = X¥3)(r)

(b) Second mode

(a) First mode
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* |t can be seen that when the system vibrates in its first mode, the
amplitudes of the two masses remain the same. This implies that the
length of the middle spring remains constant. Thus the motions of the
mass 1 and mass 2 are in phase.

~ First mode = X)) =
)

(a) First mode Second mode = X¥(r) =
. I + I}bz)
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e When the system vibrates in its second mode, the equations below show
that the displacements of the two masses have the same magnitude with
opposite signs. Thus the motions of the mass 1 and mass 2 are out of
phase. In this case, the midpoint of the middle spring remains stationary
for all time. Such a point is called a node.

D) =

. - 3k
X cos (\/:+f + t?f'z)
(b) Second mode n

22(r) =




D
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(0p)
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* Using equations

I
It

(0 = xP@ + P = X{

x5(1)

_ First mode = X(1) =

o0Q
(0p)

<<
(0p)

dcos(w it + ¢,) + XEE) cos(wof + ;)

2
X0 + 20 = r X1 cos(wir + ¢1) + rX$? cos(wyt + ¢y)

fXﬁl) cos (\/%t + qbi)
hXS” cos (\/%r + qﬁl)}

( X§2>cos(\/%—z+ ¢2) ]

Second mode = X®(r) = { -
| - X§? cos ( 224 ¢2)
~ m

the motion (general solution) of the system can be expressed as:

x, () = XV cos (\/n%f + qf:l) + X{*) cos ('\EI + ¢ag)
x.(f) = X{1 cos (\/gr + cﬁi) — X{*) cos (\/%r + l;b-l)
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* The equation of motion of a general two degree of freedom system under
external forces can be written as:

— -4
niyy M2 X1 5 Ci1 Ci2 {xl}
myy Moo | | Xp | €12 Ca2 | [ X2

+ _kn klzj{-ﬁ} _ {F1}
| k2 ko2 [ X2 F

e We shall consider the external forces to be harmonic:
Fit) = Fpe', j=1,2

where o is the forcing frequency. We can write the steady state solution

as: . .
x_,{t) = Xjf_?:mr, J = 1, 2

where X1 and Xz are, in general, complex quantities that depend on ® and
the system parameters. Substituting the above two equations into the first
one:
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* We obtain: (—w?myy + iwcyy + k) (—@?myy + iwey; + kig) X
(—w?myy + iwcyy + kig) (= oty + iwegyy + kop) X,

= {FW} . (
Fap |
* If we define a term called ‘mechanical impedance’ Zrs(l1w) as:

Z.(iw) = —&*m,, + iwc, + kg, r,s = 1,2

and write the first equation as: [Z(iw)]1X = Fy

where . Zulio) Zilio)
[Z(iw)] = [z;;(im) zzz(f“’)}

v — Xl ?‘ = {F]D}
x= {Xz} > o

= Impedance matrix
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The equation [Z(fm)}f = ?‘D

can be solved to obtain: X = [Z@Giw)] © F

Where the inverse of the impedance matrix is given by:

R 1 Zoyp(iw) —Z(iw)
G N AT Z%ztzm)[—zuﬁiw) Zn(f“’}}
Therefore, the solutions are:

Za(lw)F g = Zia(fw)Fao
Zy(iw)Zy(iw) — Zi,(iw)

_Ziz(i&l)Flg + le(f(d)Fz_o
Z1(iw)Zyp(iw) — Zi(iw)

By substituting these into the below equation, the solutions can be
obtained. x() = X, j=1,2

Xi(iw) =

Xy(io) =




Multi-degree of freedom systems

*Modeling of continuous systems as multidegree of freedom systems
*Eigenvalue problem
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As stated before, most engineering systems are continuous and
have an infinite number of degrees of freedom. The vibration
analysis of continuous systems requires the solution of partial
differential equations, which is quite difficult.

In fact, analytical solutions do not exist for many partial differential
equations. The analysis of a multidegree of freedom system on the
other hand, requires the solution of a set of ordinary differential
equations, which is relatively simple. Hence, for simplicity of
analysis, continuous systems are often approximated as
multidegree of freedom systems.

For a system having n degrees of freedom, there are n associated
natural frequencies, each associated with its own mode shape.
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Different methods can be used to approximate a continuous system as a
multidegree of freedom system. A simple method involves replacing the
distributed mass or inertia of the system by a finite number of lumped masses or
rigid bodies.

The lumped masses are assumed to be connected by massless elastic and damping
members.

Linear coordinates are used to describe the motion of the lumped masses. Such
models are called lumped parameter of lumped mass or discrete mass systems.

The minimum number of coordinates necessary to describe the motion of the
lumped masses and rigid bodies defines the number of degrees of freedom of the
system. Naturally, the larger the number of lumped masses used in the model, the
higher the accuracy of the resulting analysis.
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Some problems automatically
indicate the type of lumped
parameter model to be used.

For example, the three storey
building shown in the figure
automatically suggests using a
three lumped mass model as
indicated in the figure.

In this model, the inertia of the
system is assumed to be
concentrated as three point
masses located at the floor
levels, and the elasticities of the
columns are replaced by the
springs.
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Another popular method of approximating a continuous system as a
multidegree of freedom system involves replacing the geometry of the
system by a large number of small elements.

By assuming a simple solution within each element, the principles of
compatibility and equilibrium are used to find an approximate solution to
the original system. This method is known as the finite element method.
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Using Newton’s second law to derive
equations of motion

The following procedure can be adopted to derive the equations of motion of
a multidegree of freedom system using Newton’s second law of motion.

Set up suitable coordinates to describe the positions of the various point
masses and rigid bodies in the system. Assume suitable positive directions
for the displacements, velocities and accelerations of the masses and rigid
bodies.

Determine the static equilibrium configuration of the system and measure

the displacements of the masses and rigid bodies from their respective static
equilibrium positions.

Draw the free body diagram of each mass or rigid body in the system.
Indicate the spring, damping and external forces acting on each mass or rigid

body when positive displacement or velocity are given to that mass or rigid
body.



Using Newton’s second law to derive
equations of motion

4. Apply Newton’s second law of motion to each mass or rigid body shown by
the free body diagram as:

m¥; = > Fj; (for mass m;)
J
Example: Derive the equations of motion of the spring-mass-damper system
shown in the figure.

Fi(r) Fy(1) F{r) Fn) Fa(6)
ky =———b k, —— ) —e— —— e, — | —

AAAA AT T AT AT A
§3:W — p e BN w1 o NN o B e IS S0 o B

nmy ms m; m; L

c c C; ¢ :

' Xy : X L L b yx,
Pomt1+—b Pomtz+—' Pﬂmt:+—b +—> Point ;+—-b Pmntn+—>
;—# +x;, + -.ti,.f‘.'

Fi(1)

k(i = X)) = m Kiv1(Xivy — x3)
I

ﬂf(i'i = Xjo)) +————p preees Cip 1 (X1 — X;)




Using Newton’s second law to derive
equations of motion

Draw free-body diagrams of masses and apply Newton’s second law of
motion. The coordinates describing the positions of the masses, Xi(t), are
measured from their respective static equilibrium positions, as indicated
in the figure. The application of the Newton’s second law of motion to

Mass Mi gives:  mi; = —k; (x; — x;-1) + Koy (X417 — %) — ¢; (& — %)
+ Civy (Xjuq — X)) + Fy i = 2,3, ..., n—1
or mi¥; = ¢y (€6 + Civy) Xp — Ciwy X — ki x4
+ (ky + ki )Xy = kjgy x50, = F; 0 1i=2,3, ..., n—1

The equations of motion of the masses mi1 and m2 can be derived from the
above equations by setting I=1 along with x.=0 and i=n along with xn+1=0,

respectively. b g
7] ir
|::Fs(f)

ki =~ xiq) +— m. * kivi(Xiay — X))
'-'-?f(i'i— i‘f-l} e ' ' - i+1(ii+1 - j—'i}
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The equations of motion in matrix form in the above example can be
expressed as: 3 R -
P [m] x + [elx + [k] X = F

where [m], [c], and [k] are called the mass, damping, and stiffness matrices,
respectively, and are given by

'm, 0 0 0 0

0 m2 0 O O

0 0 ms 0 0

[m] =
0 0 0 0 m,
-(cl-!-cg) —Cy 0 - 0 ]

= Ca (e + ¢3) —c5 - 0
0 —C3 (6‘3 + 04) - 0

[c]=

0 ' 0 0 - —¢, (cp + Chay)
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-Uﬁ + k) — ko 0 0 0 7
_kz (kg =+ k3) ""kg Lo {] 0
0 ‘_kg {kg + J[C4) c+ 0 0 0
[k] =
0 0 0 e _ku {kn + -‘I‘::H-l}_
and X, _’,i:, jt;, and F are the displacement, velocity, acceleration, and force vectors,
given by
(X, () (3%,())
xo(1) Xo(1)
3 = 3 ) T = 3 \
[ %a() [ £a()
[ #()) ((Fy(t)
Xa(2) Fa(t)
E = 4 ’ ’1 ﬁ = )

5,00 | 0
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 For an undamped system, the equations of motion reduce to:
m] 3 + K] =F

 The differential equations of the spring-mass system considered in the
example, can be seen to be coupled. Each equation involves more than
one coordinate. This means that the equations can not be solved
individually one at a time; they can only be solved simultaneously.

* In addition, the system can be seen to be statically coupled since
stiffnesses are coupled- that is the stiffness matrix has at least one
nonzero off-diagonal term. On the other hand, if the mass matrix has at
least one off-diagonal term nonzero, the system is said to be dynamically
coupled. Further, if both the stiffness and the mass matrices have nonzero
off-diagonal terms, the system is said to be coupled both statically and
dynamically.
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The equations of motion for a freely vibrating undamped system can be

obtained by omitting the damping matrix and applied load vector from:
mx+cx+kx=0

in which 0 is a zero vector. The problem of vibration analysis consists of
determining the conditions under which the equilibrium condition expressed
by the above equation will be satisfied.

By analogy with the behavour of SDOF systems, it will be assumed that the
free-vibration motion is simple harmonic (the first equation below), which

ﬂﬂﬂﬂﬂ 'F'F IJ f‘ A N

IIICly IJC CAPICDDCd fUI a IIIUILI dCSICC o1 ireeadom DYDLCIII aDd.
x(t) = xsin(awt + 0)
X = —w’Xsin(at + 0) = —w°x
In the above expressions, X represents the shape of the system (which does

not change with time; only the amplitude varies) and O is a phase angle. The
third equation above represents the accelerations in the free vibration.
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Substituting
x(t) = xsin(awt + 0)
X = —w’Xxsin(at + 6) = —w*x
in the equation s ekt kx = 0
we obtain: — o’ mxsin(ot + 0) + kxsin(ot +0) = 0
which (since the sine term is arbitrary and may be omitted) may be written:

[k—a)zm]ﬁ =0
The above equation is one way of expressing what is called an eigenvalue
or characteristic value problem. The quantities®’ are the eigenvalues or
characteristic values indicating the square of the free-vibration
frequencies, while the corresponding displacement vectors X express the

corresponding shapes of the vibrating system- known as the eigenvectors
or mode shapes.
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It can be shown by Cramer’s rule that the solution of this set of
simultaneous equations is of the form:
.0
k—o’m|
Hence a nontrivial solution is possible only when the denominator
determinant vanishes. In other words, finite amplitude free vibrations are

possible only when Hk_a)zmH ~0

° Tha abhAvn m ua +|r\n ic rallad +hoa 'F eqgquency egt irtinn nf+thon VS ctnrm
111 AVJUVCT alivliil 1o Lalicu LIiIC 11 \.1 CIlIu y qUGLIUII Ul LIIT LTI II
Expanding the determinant will give an algebraic equation of he Nth

degree in the frequency parameter o’ for a system having N degrees of

freedom.
e The N roots of this equation (wfw§w§w§,) represent the frequencies of

the N modes of vibration which are possible in the system.
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e The mode having the lowest frequency is called the first mode, the next
higher frequency is the second mode, etc.

* The vector made up of the entire set of modal frequencies, arranged in
sequence, will be called the frequency vector o.

Normalization: o

It was noted earlier that the vibration mode amplitudes obtained from the

eigenproblem solution are arbitrary; any amplitude will satisfy the basic
frequency equation
Hk—a)zmH =0

and only the resulting shapes are uniquely defined.
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In the analysis process described above, the amplitude of one degree of
freedom (the first actually) has been set to unity, and the other
displacements have been determined relative to this reference value. This
is called normalizing the mode shapes with respect to the specified
reference coordinate.

Other normalizing procedures also are frequently used; e.g., in many
computer programs, the shapes are normalized relative to the maximum
displacement value in each mode rather than with respect to any
particular coordinate. Thus, the maximum value in each modal vector is
unity, which provides convenient numbers for use in subsequent
calculations.
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The normalizing procedure most often used in computer programs for
structural vibration analysis, however, involves adjusting each modal
amplitude to the amplitude @, which satisfies the condition
$mg, =1

This can be accomplished by computing the scalar factor

i vimv_=M,
where V_ represents an arbitrarily determined modal amplitude, and then
computing the normalized mode shapes as follows:

~

¢n _ {’HM;UZ
By simple substitution, it is easy to show that this givs the desired result. A
consequence of this type of normalizing together with the modal
orthogonality relationships relative to the mass matrix is that

®,me, =|
where ¢ is the complete set of N normalized mode shapes and I is an NxN

identity matrix. The mode shapes normalized in this fashion are said to be
orthonormal relative to the mass matrix.
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e A model of a four-story three-bay frame can be evaluated to

determine the mode shapes. This 2 D model is from a typical
building from the Marmara region in Turkey.

Generally, the first mode of vibration is the one of primary
interest. The first mode usually has the largest contribution to
the structure's motion. The period of this mode is the longest
and the natural frequency is the lowest.

Please click on the movie to start!
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Example:

Determine the eigenvalues and eigenvectors of a vibrating system for which

Given: Mass and stiffness matrices.

Find: Eigenvalues and eigenvectors.
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Solution: The eigenvalue equation [[k] — A[m]] X = 0 can be written in the form

(1 —A) -2 1 X, 0
—2 22 -—A) =2 X, b =40
1 -2 (1= || X, 0

where A = «?. The characteristic equation gives

k] = Alml| = A% (A — 4) =
{8

1".120,./\2:0,1{3:4

Eigenvector for A; = 4: Using A3 = 4, Eq. (E.1) gives
~3X - 2XP + XP =0
22X - 4XP -2XP =0
X -2 X3 - 3 =0
If X1 is set equal to 1, Egs. (E.3) give the eigenvector X0,

1
¥OY = { —1
1
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Solution:

When the characteristic equation possesses repeated roots, the
corresponding mode shapes are not unique.

Eigenvector for Ay = Ay = 0: The value A; = 0 or A, = 0O indicates that the system is
degenerate (see Section 6.12). Using A; = 0 in Eq. (E.1), we obtain

X0 - 2x0 + XD =0
—2 XV +4x5 -2x0 =0
XV - 2xD 4+ x{P =0 (E.5)



Solution:

I

Evammnl
CXdmpie

All these equations are of the form o
XV = 2 xfV - x{V
Thus the eigenvector corresponding to A; = A, = 0 can be written

2 X5 - Xx§9
X0 = X0
b ¢S

If we choose X5V = 1 and X§ = 1. we obtain

If we select XtV = 1 and X§9 = —1, Eq. (E.6) gives

3
X0 =4 1
-1
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Rigid

An unrestrained system is one that has no restraints or supports and that
can move as a rigid body. It is not uncommon to see in practice systems
that are not attached to any stationary frame.

Such systems are capable of moving as rigid bodies, which can be
considered as modes of oscillation with zero frequency.

A semidefinite system such as this, has a singular stiffness matrix. In
systems that are not properly restrained, rigid-body displacements can
take place without the application of any force. Thus, denoting a possible
rigid-body displacement by ur, we have

f =Ku, =0

For a nonzero ur, the above equation can be satisfied provided only that K
is singular. In this case, the below equation can only be satisfied when

®=0. [K — a)ZM]ur =0
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Rigid

 The rigid body displacements are those displacement modes that the
element must be able to undergo as a rigid body without stresses being
developed in it.

* Rigid body displacement shapes are also referred to as rigid body modes.

e A system can, of course, have more than one rigid body mode. In the most
general case, up to six rigid body modes are possible. For example, a
spacecraft or an aeroplane in flight has all six possible rigid-body modes,
three translations and three rotations, one along each of the three axis.

-
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Rigid body modes of a plane stress element
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 The natural modes corresponding to different natural frequencies can be
shown to satisfy the following orthogonality conditions. When o, # o, :

T T

#Kkp, =0  glmg, =0
 Proof: The nth natural frequency and mode satisfy

2

k¢n — a)nm¢n

[ RO T I JR IAT
Lre dopove €cqudLiornt by (//r
#, k¢, = o, 4, mg,

Similarly the rth natural frequency and mode shape satisfy

k¢, = o/mg,
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Premultiplying k¢, =a)r2mg15r by ¢J gives:

4, k¢, = o ¢ym¢,

The transpose of the matrix on the left side of ¢ k¢ = @’d' md, will
equal the transpose of the matrix on the right side of the equation:

¢, K, = w6, mg,

Subtracting the first equation from the second equation:

(@} —o? Jpimg, =0

The equation ¢Jm¢r =0 istrue when o, = », which for systems with
positive natural frequencies implies that o, # o,



Modal equations for undamped
systems

e The equations of motion for a linear MDOF system without damping is:

mXx+kx=p (t
* The simultaneous solution of these coupled equations of motion that we
have illustrated before for a 2 dof system subjected to harmonic
excitation is not efficient for systems with more DOF, nor is it feasible for
systems excited by other types of forces. Consequently, it is advantegous
to transform these equations to modal coordinates.

* The displacement vector x of a MDOF system can be expanded in terms
of modal contributions. Thus, the dynamic response of a system can be
expressed as:

x(t) = Zczﬁrqr(t) = ¢q(t)



Modal equations for undamped
systems

N
e Using the equation x(t) = Zqﬁrqr(t) =@q(t), the coupled equations in xj(t)
given below =1
mX+kx=p (t

can be transformed to a set of uncoupled equations with modal
coordinates qgn(t) as the unknowns. Substituting the first equation into the

second:
Zm¢rdr(t )+ Zk¢rqr(t )=p ()

Premultiplying each termin this equation by ¢ gives:

> M)+ D dkgam)=¢lp )



Modal equations for undamped
systems

* Because of the orthogonality relations ¢ kg =0 g mg =0, all
terms in each of the summations vanish except the r=n term, reducing the

equation to:

(#Tme, Ja, () +(gTke, ) =gl )

or
M4, (1) + K, q,(t) = F,(t)
M,=¢mé, K,=¢ké P )=¢pQt)

e The above equation may be interpreted as the equation governing the
response gn(t) of the SDOF system with mass Mh, stiffness Kn, and exciting

force Pn(t).
* Therefore Mnis called the generalized mass for the nth natural mode, Kx

the generalized stiffness for the nth mode, and Px(t) the generalized force
for the nth mode. These parameters only depend on the nth mode.

where
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When damping is included, the equations of motion for a MDOF system
are:

mX+cxX+kx=p (t)

Using the transformation
x(t) = Z¢q (t) = 9q(t)

where ¢r are the natural modes of the system without damping, these
equations can be written in terms of the modal coordinates. Unlike the
case of undamped systems, these modal equations may be coupled
through the damping terms. However, for certain forms of damping that
are reasonable idealizations for many structures, the equations become
uncoupled, just as for undamped systems. Substituting the second
equation into the first, we obtain:

Zm¢r'q'r(t)+Zc¢rqr(t)+2k¢rqr(t)=p t)
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 Premultiplying each term in this equation by ¢nTgives:
S T S T S T T
D 4meG.(t)+D dcaa )+ dkaat)=dp (
r=1 r=1 r=1

which can be rewritten as:

M, g, (t )+Zcmqr(t )+ K,a,(t)=P,(t)

where

Cnr - ¢r-1rc¢r

The above N equations can be written in matrix form as:
Mq+Cq+Kq=P()

Here Cis a nondiagonal matrix of coefficients Cr.

«o
S



Modal equations for damped systems

The modal equations will be uncoupled if the system has classical
damping. For such systems Cnr=0 if n#r and Cn can be expressed as:

Cn — Zé/n M na)n
For such systems:

M.§,+C.qg,+K.g, =P,(t)
Dividing by Mn:

L]

i, +2,0,0, + wlq, =
qn é/n nqn nqn M

n

where £ is the damping ratio for the nth mode.



