
Redefinition Of Turkish Morphology Using Flag Diacritics

Muhammet Şahin Umut Sulubacak Gülşen Eryiğit
Department of Computer Engineering

Istanbul Technical University
Istanbul, 34469, Turkey

{muhammetsahin, sulubacak, gulsen.cebiroglu}@itu.edu.tr

Abstract

This paper primarily discusses how to model
Turkish morphotactics using flag diacritics. We
present a two-level Turkish morphological an-
alyzer based on a lexicon of word lemmata
with over 49321 entries, as well as an auxil-
iary unknown word analyzer. Our main analyzer
demonstrates the use of flag diacritics for Turk-
ish, which is to date not a well-researched ap-
proach for the language. Turkish is an agglu-
tinative language with many exceptions to pho-
netic and morphological rules, and flag diacritics
are useful in handling these exceptions. Our un-
known word analyzer operates without an extra
lexicon, using affix stripping to find word lem-
mata by recursively removing affixes. We use the
described methodology to find all possible lem-
mata which are not in our lexicon.

Keywords: Turkish, Morphology, Flag Diacrit-
ics

1 Introduction

Morphological analyzers are generally rule-
based systems implemented using finite state
transducers. The development of a morphologi-
cal analyzer requires time and effort, and its per-
formance depends on resources such as the lexi-
con and the phonetic modelling. Morphological
analyzers are useful in alleviating lexicon word
deficiencies and data sparseness problems often
encountered in various natural language process-
ing systems.

The two level description of the morphology
of Turkish has been first described by Oflazer
[1]. Since then, Oflazer’s analyzer has evolved
and improved with many extensions in the light
of comments and critiques from the community.
Although there have been many other studies
of morphological analysis in the literature such
as Hankamer [2], Eryiğit [3], Sak et al. [4],
Zemberek [5], and more recently Çöltekin [6],
Oflazer’s work is still considered the state-of-
the-art with its high coverage on most Turk-
ish surface word forms. Furthermore, Oflazer’s

Table 1. An example Turkish predicate nomina-
tive corresponding to an English sentence.

Lexical Form Surface Form English Meaning
gel+mA+Hyor+lAr gelmiyorlar “They are not coming.”

framework is compatible with the universal PoS-
tag scheme [7] and has a significant history of
corpora annotated using its tagset unlike the
other frameworks. Regardless, with the growing
interest in alternative corpus annotation projects
and the high amount of web data to be parsed, we
see that the analyzer still needs to be extended in
order to successfully handle raw data. This pa-
per presents our first effort towards a better mor-
phological analyzer, and offers a redescription of
the contemporary model of Turkish morphology
in accordance with the advancements of the last
twenty years.

2 Methodology

Our initial two level Turkish morphological ana-
lyzer uses flag diacritics, which are an extension
of the Xerox finite state transducer (FST) imple-
mentation [8]. The FST supports feature setting
unification that is able to reduce and speed up
transducers, constrain the co-occurrence of mor-
pheme pairs or the occurrence of single mor-
phemes with certain words. Flag diacritics are
also useful for marking lemmata for idiosyn-
cratic morphological behavior that is feature-
based rather than phonological. Feature set-
ting and unification functions of flag diacritics
are executed at runtime and used to determine
whether a path is possible within a network. A
network containing flag diacritics block many
illegal paths that would otherwise cause over-
generation, especially for a derivationally pro-
ductive language such as Turkish.

Since Turkish is an agglutinative language,
even single words can be often suffixed to cor-
respond to whole sentences in English, as seen
in Table 1. In the given figure, the ‘+’ character
denotes morpheme boundaries. There is a large
variety of such inflectional suffixes, as well as
derivational suffixes that can convert noun stems



Table 2. Case study of an incorrect but morpho-
tactically valid analysis.

pat+lH+cA+Hn
+Noun+A3sg+Pnon+Nom
ˆDB+Adj+WithˆDB+Adj+AsIf
ˆDB+Noun+Zero+A3sg+P2sg+Nom

pat@U.CASE.var@+lH@U.CASE.yok@+cA+n

to verb or adjective stems, or verb stems to noun
or adjective stems.

The main objective of using flag diacritics is
to add a bit of memory to the finite state ma-
chine during the generation and analysis steps at
runtime. Without this, a state transition on the
FST would depend only on the current state and
the input symbol, and there would be no con-
straint on which transition would be made next.
Flag diacritics have also been used in other lan-
guages, such as Indonesian [9], Arabic [10] and
Persian [11].

Our lexicon consists of 49321 word lemmata
arranged under 14 parts of speech, namely Noun,
Verb, Pronoun, Adjective, Technical, Duplica-
tion, Verb, Postposition, Postposition-PCDat,
Question, Determiner, Number, Number-
Ordinal and Interjection. Our non-trivial finite
state automata for nouns, verbs and adjectives
differ from the predecessor models in many
respects, and are illustrated with drawings in this
paper (see the appendical Figures 1, 2, 3 and 4).

An analysis of the word patlıcan (“eggplant”)
is given in Table 1. The given analysis would be
a legal path derived from the root pat (“boom”),
but the path should be blocked through the unifi-
cation of the conflicting flags @U.CASE.var@
and @U.CASE.yok@. Such conflicting flags
are more likely to co-occur in productive deriva-
tions, and this fact moderates overgeneration
during the analysis.

3 Flag Diacritics

The concatenation of certain affixes may not
make sense according to morphotactic idiosyn-
crasies of a language, which may be impossible
or impractical to attain by blocking state tran-
sitions in a finite state machine. The most im-
portant point of using flag diacritics is to dis-
allow such illegal paths, in addition to scaling
down surface form generation and speeding up
the analysis. Since there are idiosyncratic excep-
tions to most morphotactic rules in Turkish, flag
diacritics are very convenient.

Flag diacritics are multi-character symbols
which are appended to lexical analyses of words,
and the co-occurrence of some flags mark the
lexical analysis as being invalid. The types of

Table 3. Unification flag examples.
@U.CASE.ABL@

@U.CASE.DAT@

@U.GEN.SIN@

@U.GEN.PL@

@U.num.sing@

@U.num.plural@

Table 4. Examples of some verbs which allow
the reciprocal suffix.

Root Form English Meaning Reciprocal Form English Meaning
döv “to beat” döv+Hş “to fight”

gül “to laugh” gül+Hş “to laugh together”

böl “to split” böl+Hş “to share”

flag diacritics are Unification, Positive Setting,
Negative Setting, Require Test, Disallow Test,
and Clear Feature. This paper explains only the
Unification, Require Test and Negative Setting
types.

Unification Test: The most commonly used
and simplest flag diacritic is the Unification Test,
with the template @U.feature.value@, as
in the examples in Table 3. In the template, U
stands for Unification and the arguments are re-
placed by arbitrary values.

The most straightforward way of denoting in-
compatible morphemes for U-type flag diacrit-
ics is to add flags to both morphemes with the
same feature, but with different values. For in-
stance, U-type flag diacritics are used especially
for verb morphotactics, because most verb roots
do not take reflexive or reciprocal suffixes, with
some exceptions such as the reciprocal stems
given in Table 4. To block the transition that
would be made with the reciprocal suffix, the
flag @U.Hş.yok@ is appended to the verb root
as shown in Table 5, which conflicts with the
flag @U.Hş.var@ in the reciprocal affix +Hş.
Verbs without the @U.Hş.yok@ flag are al-
lowed to take the reciprocal suffix by default.

Negative Setting: The Negative Setting is
the direct complement of the Unification Test.
While the Unification Test restricts subsequent
features to take a certain value in order to
be valid, the Negative Setting requires them
to take other values. A flag diacritic like
@N.feature.value@ functions by setting
the value of the feature to the complement of the
given parameter.

Table 5. Blocking and allowing the reciprocal
suffix via unification flags.

Legal Paths Illegal Paths
döv+Hş@U.Hş.var@ yol+la@U.Hş.yok@+Hş@U.Hş.var@

gül+Hş@U.Hş.var@ sal+la@U.Hş.yok@+Hş@U.Hş.var@

it+Hş@U.Hş.var@ hava+lan@U.Hş.yok@+Hş@U.Hş.var@



Table 6. Negative setting flag example.
gel@N.Caus.present@ +DHr@U.Caus.present@

“come” +Causative

Table 7. Require flag examples.
+Hr@U.Case.var@

+Ar@U.Case.var@

+mHş@U.Case.var@

+cAsHnA@R.Case@

In the example given in Table 6, the verb stem
gel takes the @N.Caus.present@ flag, which
means that the stem gel can take all verb mor-
photactics except for the suffix +DHr. There-
fore, in a lexicon where all flags exclusively
take Boolean values, the Unification Test and the
Negative Setting are the dual of each other, pro-
viding the same functionality.

Require Test: The Require Test is a require-
ment condition for a specific feature, optionally
with a specific value. If the flag is provided with-
out a value specification, it only requires the fea-
ture to be present among the preceding unifica-
tion flags, ignoring their values. If a value is also
provided, the flag also requires the feature to be
set to the specified value, i.e. the test performed
by the flag @R.feature.value@ succeeds
if and only if there exists a previous feature
@U.feature.value@, and differs from the
Unification Test in that it is not compatible with
the cases where the feature does not previously
occur.

For example, the suffix +cAsHnA (“as
though”) is considered grammatical only if it fol-
lows one of the tense suffixes +mHş, +Hr or +Ar,
and this behavior is modeled with the Require
Test as shown in Table 7. As can be seen from
the example, the Require Test is used not only
for stems, but also for suffix sequences.

Disallow Test: Like the Require Test, the Dis-
allow Test is a requirement condition for a spe-
cific feature, but with a value different from the
optionally given parameter. Just as the Nega-
tive Setting is the complement of the Unification
Test, the Disallow Test is the complement of the
Require Test. As such, when the value parameter
is omitted, the Disallow Test is only compatible
with preceding flags with the given feature and a
neutral value.

The test is used specifically for adjective mor-
photactics, since the adjective FST is frequently
connected to the noun FST with zero input, and
yet, some noun affixes are not convenient for
nouns derived from adjective roots and must
be disallowed. To handle this, the zero in-

Table 8. Disallow flag example.
0@U.Adjective.X@:0@U.Adjective.X@

+lAn@D.Adjective.X@

Table 9. Analyses demonstrating the affixation
order of derivational and inflectional suffixes.

Döv +Hn +mA +yAcAk +yDH +Hm

“beat” +Reflexive +Negative +Future +Past +P1sg

Patla +t +Hl +yAcAk +lAr

“explode” +Causative +Passive +Future +P3pl

put symbol gets the @U.Adjective.X@ uni-
fication flag, whereas the affixes to be disal-
lowed within the noun FST get the disallow flag
@D.Adjective.X@, as shown in Table 8.

4 Adjective Morphotactics

Our finite state machine for adjective word stems
are based on nominal morphotactics. However,
some suffixes are exclusively added to adjec-
tives.

The finite state automaton that models the af-
fixation of adjective stems is shown in Figure 3.
As can be seen in the figure, certain deriva-
tional suffixes or copula markers cause a part-
of-speech shift in the adjective stem and convert
it to a verb or noun stem. Although some adjec-
tive stems can be connected to nominal roots by
zero input and used as noun stems, they are dis-
allowed from taking certain nominal suffixes as
a rule. This behavior is also modeled using the
Disallow flag.

4.1 Verb Morphotactics
Verb stems follow an affixation pattern in
which they optionally take reflexive, recipro-
cal, causative and/or passive derivational suf-
fixes, followed by the optional polarity suffix
and the mandatory tense and person suffixes as
exemplified in Table 9. The tense is denoted
by at least one aorist, progressive, perfect, fu-
ture or narrative tense suffix or an imperative,
necessitative, optative or conditional mood suf-
fix, optionally followed by a second suffix for
compound tenses. Due to this ordinal hierarchy,
verb morphotactics are significantly more com-
plicated than those for the other parts of speech.
Flag diacritics are also often used for verb stems
in addition to adjusting state transitions to imple-
ment some of these ordinal constraints.

Furthermore, there are many irregularities
among verb stems that dictate which derivational
suffixes may be appended to which stems, and
in which combinations. These irregularities may



Table 10. Examples of various derivations of a
single word resulting in shifts in part of speech.

Analysis English Meaning
Oda+DA “in the room” (Noun)

Oda+DA+yken “while [he is] in the room” (Adverb)

Oda+DA+ymHş+CAsHnA “as though [he were] in the room” (Adverb)

Oda+DA+ysA “if [he is] in the room” (Adverb)

Oda+DA+ymHş “[he] was in the room” (Verb)

Oda+DA+yHm “[I] am in the room” (Verb)

Table 11. Examples of grammatically plural
stems without an overt plural suffix.

ahali, “crowd” Noun+A3pl+Pnon+Nom

enkaz, “debris” Noun+A3pl+Pnon+Nom

be handled by grouping similarly behaving verb
stems together and partitioning the lexicon so
that verb stems of certain groups are only al-
lowed to take certain combinations of suffixes.
However, the lexicon partitioning method is too
costly for modeling less common idiosyncrasies,
at which point flag diacritics become a more
practical approach again.

4.2 Nominal Morphotactics
There are two main groups of suffixes that nom-
inal structures may take, both of which are op-
tional. The first part consists of the possessive,
plural and case suffixes, whereas the second part
is for derivational suffixes that possibly convert
the noun stem to an adverb or verb stem, as seen
in the example in Table 10.

Lexicon partitioning is used for noun stems
as well, in order to formalize three exceptional
groups of nouns that take on respectively dative,
plural and possessive meanings as stems, with-
out the need for the dative, plural and possessive
suffixes. Samples from the first two groups are
shown in Tables 11 and 12.

The third group of noun stems is covered by
a specific compound noun formation, which is
made up of two nouns in a possessive relation
fused together. Such compound nouns ortho-
graphically occur as a single word, but retain
their possessive meanings, and are subject to a
different possessive affixation paradigm. Sam-
ples from this group are shown in Table 13.

The fourth group of noun stems is the default
group, with 3rd person plural agreement and in
the nominative case by default. Samples from

Table 12. Examples of grammatically dative
stems without an overt dative suffix.

içeri, “inward” Noun+A3sg+Pnon+Dat

dışarı, “outward” Noun+A3sg+Pnon+Dat

aşağı, “downward” Noun+A3sg+Pnon+Dat

yukarı, “upward” Noun+A3sg+Pnon+Dat

Table 13. Possessive suffix ambiguity caused by
an idiomatic usage.

buzdolabı+Noun+A3sg+Pnon+Nom buzdolabı “refrigerator”

buzdolabı+Noun+A3sg+P3sg+Nom buzdolabı “his refrigerator”

Table 14. Default agreement, possession and
case attributes in Turkish noun stems.

masa Noun+A3sg+Pnon+Nom

sandalye Noun+A3sg+Pnon+Nom

cam Noun+A3sg+Pnon+Nom

this group are shown in Table 14.

4.3 Proper Noun Morphotactics
Proper noun morphotactics are basically the
same as noun morphotactics. However, Turk-
ish requires inflectional suffixes added to proper
noun stems (except for the plural suffix –lAr)
to be separated from the stem by an apostro-
phe character. Derivational affixes (as well as
the plural suffix) are not subject to this rule. To
model this orthographical phenomenon, we in-
clude duplicates of the relevant inflectional suf-
fixes with apostrophes in the surface form in our
lexicon, as shown in Table 15.

4.4 Pronoun Morphotactics
Pronouns, like adjectives and proper nouns, are
a part of the nominal category. However, they
have some differences from the noun-nominal
root in affixation, and their analyses may return
different tags. Furthermore, such differences
also exist between the subdivisions of pronouns,
such as personal (e.g. ben, “I”), reflexive (e.g.
kendi “himself”), reciprocal (e.g. birbiri, “each
other”), demonstrative (e.g. ora, “there”) and
interrogative pronouns (e.g. kim, “who”). The
subtle differences between the different kinds of
pronouns could not be defined via flag diacrit-
ics, therefore they have been modeled on sepa-
rate FSTs for all five kinds of pro-nouns.

5 Analyzers

We have embedded our morphotactic transition
scheme and 37 custom phonological rules into
Xerox FST [8] and implemented a morpho-
logical analyzer for Turkish. To complement
the transducer, we have developed a lexicon
which includes flag diacritics. Our lexicon has

Table 15. Apostrophe usage in the affixation of
proper nouns.

İstanbul+’DA İstanbul’da

Ankara+’yH Ankara’yı

Ali+’DAn Ali’den



Table 16. The lexicon modification employed by
the unknown word analyzer.

ˆUnknownNoun noun-root;

masa noun-root;

kitap noun-root;

49321 additional lexemes and assigns morpho-
tactic flags to all relevant words as described in
the previous sections.

Our final analyzer can produce analyses only
for morphologically valid words whose lemmata
are contained in the lexicon. Our tests on the
METU-Sabancı Turkish Treebank [12] show that
our analyzer is able to correctly analyze 99.8%
of all the words in the corpus. Regardless, as
with all such morphological analyzers, our sys-
tem is constrained by the size of our lexicon.
Building up a lexicon that covers all possible
roots and stems in the language is a task that re-
quires years of effort. To circumvent this prob-
lem, we have also implemented a complemen-
tary unknown word analyzer, which uses an af-
fix stripping to find all phonologically possible
stems for a given word.

The unknown word analyzer is essentially an
extension of the main analyzer, which makes use
of wildcard entries that are able to morph into
any phonologically valid Turkish stem, typeset
as seen in Table 16. As such, the analyzer derives
the input word from a lexicon stem if possible, or
backs off to the unknown stem expression if the
lexicon did not contain a valid stem.

6 Conclusion

Building upon previous studies on morpholog-
ical analysis, we have developed a basis for a
more inclusive analyzer and presented our pre-
liminary work. Our analyzer is primarily based
on Oflazer’s two level Turkish morphological an-
alyzer, which is the current state-of-the-art for
Turkish. In comparing our results with Oflazer’s
output on the Turkish Treebank, we see that our
analyzer is on par with Oflazer’s analyzer in
terms of the number of generated possible out-
puts. The analysis deficiencies are, for the most
part, lexicon-based. For future work, we aim to
fine-tune our analyzer in accordance with com-
ments and criticism we have collected during
years of annotation effort.

References

[1] Kemal Oflazer. Two-level description of
turkish morphology. Literary and linguis-
tic computing, 9(2):137–148, 1994.

[2] Jorge Hankamer. Finite state morphol-
ogy and left-to-right morphology. In West
Coast Conference on Formal Linguistics,
Bildiri Kitab, 1986.

[3] Gülşen Eryiğit and Eşref Adalı. An affix
stripping morphological analyzer for turk-
ish. In Proceedings of the IASTED In-
ternational Conference on Artificial Intel-
ligence and Applications, Innsbruck, Aus-
tria, pages 299–304, 2004.

[4] Haşim Sak, Tunga Güngör, and Murat
Saraçlar. Turkish language resources:
Morphological parser, morphological dis-
ambiguator and web corpus. In GoTAL
2008, volume 5221 of LNCS, pages 417–
427. Springer, 2008.

[5] Ahmet Afşın Akın and Mehmet Dündar
Akın. Zemberek, an open source nlp
framework for turkic languages. Structure,
2007.

[6] Çağrı Çöltekin. A freely available mor-
phological analyzer for turkish. In LREC,
2010.

[7] Slav Petrov, Dipanjan Das, and Ryan Mc-
Donald. A universal part-of-speech tagset.
2011.

[8] Kenneth R Beesley and Lauri Karttunen.
Finite-state morphology: Xerox tools and
techniques. CSLI, Stanford, 2003.

[9] Femphy Pisceldo, Rahmad Mahendra, Ruli
Manurung, and I Wayan Arka. A two-level
morphological analyser for the indonesian
language. In Australasian Language Tech-
nology Association Workshop 2008, vol-
ume 6, pages 142–150, 2008.

[10] Mohammed Attia. An ambiguity-
controlled morphological analyzer for
modern standard arabic modelling finite
state networks. In Challenges of Arabic
for NLP/MT Conference, The British
Computer Society, London, UK. Citeseer,
2006.

[11] Karine Megerdoomian. Extending a per-
sian morphological analyzer to blogs. In
Proceedings of the Second Workshop on
Persian Language and Computers, 2006.

[12] Bilge Say, Deniz Zeyrek, Kemal Oflazer,
and Umut Özge. Development of a corpus
and a treebank for present-day written turk-
ish. In Proceedings of the eleventh inter-
national conference of Turkish linguistics,
pages 183–192, 2002.



Figure 1. The finite state transducer for verbs.



Figure 2. The finite state transducer for verbs.

Figure 3. The finite state transducer for adjectives.



Figure 4. The finite state transducer for nouns.


