
AN AFFIX STRIPPING
MORPHOLOGICAL ANALYZER FOR TURKISH

Gülşen Eryiğit and Eşref Adalı

Dep. of Computer Engineering, Istanbul Technical University
34469 Ayazağa, Istanbul, Turkey

Abstract

This paper presents the design and the implementation of
a morphological analyzer for Turkish. A new
methodology is proposed for doing the analysis of
Turkish words with an affix stripping approach and
without using any lexicon. The rule-based and
agglutinative structure of the language allows Turkish to
be modeled with finite state machines (FSMs). In contrast
to the previous works, in this study, FSMs are formed by
using the morphotactic rules in reverse order. This paper
describes the steps of this new methodology including the
classification of the suffixes, the generation of the FSMs
for each suffix class and their unification into a main
machine to cooperate in the analysis.

Key Words
Natural Language Processing, Morphology, Affix
Stripping, Turkish

1. Introduction

Morphological analysis, which deals with the subparts of
the words, is one of the fundamental areas in natural
language processing. Several different methods have been
developed and implemented to make this analysis more
efficient and effective. When these methods are
investigated, it is seen that most of the studies were
originated from an agglutinative language such as
Hankamer’s Keçi [1] for Turkish, PC_Kimmo [2] for
Finnish, Ample [3] for Quechua. At the first glance, it
seems possible to store all the word inflectional forms in a
lexicon and do the language processing without any
morphological analysis. This approach can be suitable for
the languages, which are morphologically simple, but it is
untenable to apply for agglutinative ones [4] where a
word can take hundreds of different forms after the
concatenation of affixes.

Ex: Some of the different forms of the noun “eye” in
Turkish are listed below:
 Göz Eye
 Göz-lem Observation

Göz-lem-ci Observer
Göz- lem-ci-lik The job of the observer
Göz-lem-le-dik-ler-im The ones that I observed

The work done in this field so far can be grouped into two
classes: root driven and affix stripping. In the first
approach, the stem of the word is found initially and then
the affixes are determined. In the second approach, the
determination of the affixes takes place first in contrast to
the first one. After the removal of the affixes, the
remaining part of the word can be assumed to be the stem
or a lexicon can be used to approve this assumption.

Most popular morphological analyzers such as
PC_Kimmo [2] and Ample [3] use the root driven
approach and confirm the method’s success with their
customized versions for different languages. Root driven
methods are also widely used in the studies done for
Turkish [1] [5] [6]. However, for other agglutinative
languages, some affix stripping methods [7] [8] have been
developed and successful results were achieved.

In the root driven approach, the stem of the word should
be firstly found in a lexicon before starting the
morphological analysis. The major drawback of this
approach is the cost of the searching process required to
find the stem. In the work done by Solak and Oflazer [5],
the word itself and its subparts, which have been obtained
by removing the letters one by one from the end of this
word, are looked up in a lexicon to find all the possible
stems. The real stem is discovered after the morphological
analysis made by using these possible stems. Even though
there are different search methods improving the
performance like letter tree encoding [2] in PC_Kimmo,
the examining of each subpart is obviously a very time
consuming process especially for the languages where the
words can appear in very long forms. On the other hand,
in the affix stripping approach, the searching process is
relatively fast as the search is only done for affixes.

Turkish has a special place within the natural languages
not only being a fully concatenative language but also
having the suffixes as the only affix type [9]. In this
language, words are formed from a stem and suffixes
concatenated to this stem. This suffix concatenation can
result in relatively long words, which are frequently
equivalent to a whole sentence in English. Additionally,
the morphotactic constraints are strictly defined. This
allows Turkish to be modeled with FSMs [6] easily.
Another feature of the language is that, someone who

411-072 299

debbie

knows Turkish can easily analyze a word even if he/she
does not know its stem. The phonological rules of
Turkish are significant factors that influence this feature.

Ex: (any word)lerim (any word)-ler-im
“ler” plural suffix, “im” 1st singular person possessive.

When one sees this word, he understands that there is
something called (any word), there are multiple of them
and they belong to the speaker. If a Turkish speaker can
make this analysis without knowing the meaning of the
stem, a method can be formed to make the same analysis
without using a lexicon.

With the aforementioned features and the rule-based
structure of the Turkish language, in this study, an affix
stripping morphological analyzer is developed for
Turkish. Subsequent sections describe the details of the
method, the generated FSMs and the collaboration of
them. In the final section, some conclusions and
suggestions for future work are given.

2. Suffix Classification

Turkish, which is an agglutinative language, has a very
rich morphological structure. The Turkish words often
contain some semantic information after the multiple
affixations of suffixes. In some cases, this suffix
concatenation helps to diminish the ambiguities and to
understand the stem more quickly.

Ex: The word “kale” means castle and the word “kalem”
means pencil in Turkish. When the word “kalem” is
analyzed, there exist two possible solutions:

kalem N(kalem) pencil
kale-m N(kale) + 1PS-POSS(m) my castle

To decide which one of these two analyses is true, one
should see the usage of the word in the sentence. But
when the word “kalemler” is analyzed, there is only one
valid solution:

kalem-ler N(kalem) + PLUR(ler) pencils
kale-m-ler N(kale) + 1PS-POSS(m) + PLUR(ler)

Here, the suffix concatenation rules help to find the right
stem: the analysis cannot be “kale-m-ler” because in
Turkish, a plural suffix cannot follow a possessive one.

The only affix type in Turkish is the suffixes. Therefore
when an affix stripping method is used, the analysis is
made by removing the suffixes from the end of the word.
For Turkish, this method can also be called a right to left
analysis. When the example given in the introduction
“(anyword)ler-im” is analyzed, firstly the possessive
suffix “-im” is removed, then the stem “(anyword)” is
reached by removing the plural suffix “-ler” from the
remaining part “(anyword)ler”. In the above example
“kalemler”, no other stripping will be made after the
removal of the suffix “-ler” and the stem “kalem” will be
reached because the concatenation rules do not permit the

suffix “-m” to precede the suffix “-ler”. As it is not
possible to reach the stem “kale” with this method, there
will be no further processing for this stem. On the other
hand, in the root driven approach, since the first step is to
find the possible stems of the word from a lexicon, the
analysis will be made for both “kale” and “kalem”. The
right stem will be decided at the end of the process.

With the purpose of composing an affix stripping analyzer
for Turkish, the suffixes are firstly classified and then
stored in a database. Table-1 shows the generated suffix
sets.

Table-1: Suffix Classes
Class # Class Type

1
2
3
4
5

Nominal verb suffixes
Derivational suffixes
Noun suffixes
Tense & person verb suffixes
Verb suffixes

Inflectional
Derivational
Inflectional
Inflectional
Inflectional

A suffix in Turkish can have multiple allomorphs in order
to provide sound harmony in the word to which it is
affixed. For example, the first singular person possessive
suffix with generic representation –(U)m has five
allomorphs: -m, -ım, -im, -um, -üm. The abbreviations
used to show suffixes in a generic way are shown below:

U: ı,i,u,ü C: c,ç A: a,e D: d,t I : ı,I
(): the letter between parentheses can be omitted

While the suffixes are put in the database, an item and
arrangement method is implemented: all the allomorphs
of the suffixes are generated and put in the database. With
this approach the time, which is consumed by applying
phonological rules in order to form the allomorphs of the
affixes at runtime is reduced. Table-2 shows the number
of suffixes in each class and the number of allomorphs put
in different database tables.

Table-2: Number of Suffixes & Allomorphs
Class # # Suffixes # Allomorphs

1 15 73
2 10 40
3 19 89
4 29 133
5 44 184

Total 117 519

3. FSM Generation

After the classification of the suffixes, the next step is to
design FSMs that make a right to left analysis on the
word. There are four stages to create these FSMs:
• Creating a left to right FSM
• Labeling the suffixes
• Inverting the left to right FSM and obtaining a non
deterministic finite state automaton (NFA)
• Converting NFA to a deterministic finite automaton
(DFA) and constructing the right to left FSM

300

In the remaining part of this section, suffix sets and right
to left FSMs are given for each suffix class. The above
four stages are explained in detail on the “Nominal verb
suffixes” class since its FSMs and NFA to DFA
conversion operations are simpler than the other
inflectional classes.

3.1 Nominal Verb Suffixes

1st Stage: Creating a left to right FSM
The suffixes are affixed to the stem according to definite
ordering rules. At this stage, these rules are aggregated
into a FSM [6] for current suffix class. This FSM is
suitable for a root driven approach and serves in a left to
right analysis.

Nom_Verb1
Nom_Verb2

Nom_Verb3

-(y)DU, -(y)sA -(y)mUş

-(y)Um, -sUn, ε
-yUz, sUnUz

lAr

-DUr

-m, -n, ε
-k, -nUz, -lAr

Nom_Verb2
kişi

-Um, -sUn,ε
-Uz, -sUnUz, -lAr

-DUr, ε -cAsInA

-lAr, ε

-(y)ken

End
0

End
0 End

0

End
0End

0

End
02

3

1

5

4

Figure-1: Nominal Verb Suffixes left to right FSM

In Figure-1, a numerical value is assigned to each state. In
the following stages, the states will be expressed with
these numbers: Ending states 0, Initial state 1 etc… The
character “ε” shows the empty transitions between the
states. When the analysis of the word “güzel-miş-sin”
(you were beautiful) is made by using this FSM, firstly
the stem “güzel” (beautiful) is found, then the first suffix
“-miş” (-(y)mUş) makes a transition from the input state 1
to state 3, after that the suffix “-sin” (-sUn) carries the
machine to state 4. The ending state is reached by the
empty transition between state 4 and 0.

2nd Stage: Labeling the suffixes
In this stage, each suffix’ generic representation in the
current suffix class is given a number. The suffixes’
allomorphs are then stored in the database with these
numbers, their suffix classes and names. Table-3 shows
the numbers and generic representations of the nominal
verb suffixes. For example the two allomorphs (-lar, -ler)
of the suffix –lAr will both have the same suffix number
“5” in the database.

3rd Stage: Inverting the left to right FSM
This step is the first milestone to convert the left to right
FSM to a right to left FSM. Figure-2 shows the obtained
NFA after the reversion of the FSM in Figure-1. In this
figure, the states are given inside circles and expressed
with state numbers given in the 1st Stage. The inputs
shown over the transitions are the suffix numbers given in

Table-3. The initial state is shown with a ‘>’ sign beside
and the ending state with a double circle around.

Table-3: Nominal Verb Suffixes
1 –(y)Um 6 –m 11 –cAsInA
2 –sUn 7 –n 12 –(y)DU
3 –(y)Uz 8 –k 13 –(y)sA
4 –sUnUz 9 –nUz 14 –(y)mUş
5 –lAr 10 –DUr 15 –(y)ken

ε, 6,7,8,9,5

ε,10,11

ε,1,2,3,4,5,15

ε,5 10

14

ε,1,2,3,4,5

12,13

0

2

3

4

1

5

Figure-2: Nominal Verb Suffixes right to left NFA

4th Stage: Converting NFA to DFA
Multiple transitions for a single input and empty
transitions make NFA hard to implement with computer
programs. Therefore, the NFA in Figure-2 should be
converted to a DFA in which there will be at most one
transition for a single input and no ε-transition. An
algorithm called “subset construction” [10] is used to
make this operation. In this algorithm, each new DFA
state corresponds to a set of NFA states. The idea is that
all the states, which are connected by an ε-transition and
reachable by a single input on the current state will be
combined into a single DFA state.

Table-4: Nominal Verb Suffixes NFA to DFA Operations
D = {2}
“12, 13” : T={1} → F

A = {0, 1, 2, 3, 4, 5}
“1, 2, 3, 4” : T={1, 3} → B
“5” : T={1, 2 ,3 ,5} → C
“6, 7, 8, 9” : T={2} → D
“10” : T={1, 4} → {1, 3, 4}→ E
“11” : T={4} →{3, 4} → H
“12, 13, 14, 15” : T={1} → F

E = {1, 3, 4}
“1, 2, 3, 4, 5” : T={3} → G
“14” : T={1} → F

B = {1, 3}
“14” : T={1} → F

G = {3}
“14” : T={1} → F

C = {1, 2 ,3 ,5}
“10, 12, 13, 14” : T={1} → F

H = {3, 4}
“1, 2, 3, 4, 5” : T={3} → G
“14” : T={1} → F

In the example shown in Table-4, the DFA starting state
A has as its first element the starting state 0 of the NFA.
As all other states are reachable from state 0 by ε-
transitions, the state A includes these also:
A={0,1,2,3,4,5}. The numbers between quotes express
the inputs, in other words the suffix numbers. The new
DFA state is computed by finding the set of states having
transitions on the inputs “1,2,3,4” from the members of A.
Among the states 0,1,2,3,4,5 of A, only 0 and 4 have such
transitions to 1 and 3. So the new state B is created from 1

301

and 3. If there were any states connected to these ones by
an ε-transition, they would be included in the B set.

DFA states came out at the end of the operations in Table-
4: A = {0, 1, 2, 3, 4, 5}, B = {1, 3}, C = {1, 2 ,3 ,5}, D =
{2}, E = {1, 3, 4}, F = {1}, G = {3}, H = {3, 4.} They
are combined to construct the ultimate FSM in Figure-3.
The initial state of the NFA in Figure-2 is 0 and the
ending state is 1. The new FSM’s initial and ending states
are determined according to these ones. The sets
including 0 becomes the initial state and including 1
becomes the ending state.

A

B

1,2
,3,

4

C5

F

12,13,14,15

D

6,7,8,9

E

10

14

G

1,2,3,4,5

10,12,13,14

14

14
12,13

H

11

1,2,3,4,5

14

Figure-3: Nominal Verb Suffixes right to left FSM

3.2 Derivational Suffixes

In Turkish, there are hundreds of derivational suffixes,
which change the meaning and in some cases the class of
the word to which they are affixed. While the rules about
the word types to which they can be affixed are defined
in Turkish grammar books, the required morphotactic
rules (ordering of morphemes) are not stated. The definite
rule is that the derivational suffixes should be affixed to
the word before the inflectional ones. This situation make
hard to design a FSM for this class. Therefore, only the
2nd stage “Labeling the suffixes” is applied for some
selected derivational suffixes (Table-5).

Table-5: Derivational Suffixes
1 –lUk 6 –lAn
2 –CU 7 –CA
3 –CUk 8 –lU
4 –lAş 9 –sUz
5 –lA

3.3 Noun Suffixes
While doing the analysis of a word with the generated
FSMs, the last state reached after the removal of the
possible suffixes is controlled to be an ending state. If it is
not the case, the last visited ending state is assumed to be
the stopping point of the analysis. When the word
“etkilerden” (from the effects) is analyzed by using the
noun suffixes in Table-6 and FSM in Figure-4, the correct

decomposition of the word is the following: etki-ler-den
stem(etki) +suffix#1(-lAr) + suffix#15(-DAn). The last
syllable “-ki” of the stem can also be considered as a
possible suffix (suffix#18). This consideration will lead
the analysis to reach a false stem “et” (meat). The
following shows the visited states during the analysis:

A DLG15 1 18

As D is not an ending state, L being the last visited ending
state is accepted as the stopping point and the correct stem
“etki” (effect) is obtained.

Table-6: Noun Suffixes
1 –lAr 11 –(y)A
2 –(U)m 12 –nA
3 –(U)mUz 13 –DA
4 –(U)n 14 –nDA
5 –(U)nUz 15 –DAn
6 –(s)U 16 –nDAn
7 –lArI 17 –(y)lA
8 –(y)U 18 –ki
9 –nU 19 –(n)cA
10 –(n)Un

A

K

L

E

C

G

F

D

B

H

8, 11, 13

9, 16

18

10, 17

12
, 1

4
15

2, 3, 4, 5, 6

7

1

2 ,
3,

4 ,
 5

1

67

13

10
14

18

2,
 3

, 4
, 5

, 6

 7 1

18

6

7

18

1

2,
3,

4,
5

1

18

M

19

2, 3
, 4

, 5
, 6

7

1

Figure-4: Noun Suffixes right to left FSM

3.4 Tense & Person Verb suffixes

There are two different types of ending states in the FSM
(Figure-5) of this suffix class. This differentiation will be
used in the unification of the FSMs.

Table-7: Tense & Person Verb Suffixes
1 –(y)Um 11 –mAktA 21 –(y)UnUz
2 –sUn 12 –mAlI 22 –(y)Un
3 –(y)Uz 13 –m 23 –sUnlAr
4 –sUnUz 14 –n 24 –DUr
5 –lAr 15 –k 25 –(y)DU
6 –mUş 16 –nUz 26 –(y)sA
7 –(y)AcAk 17 –DU 27 –(y)mUş
8 –(U)r 18 –sA 28 –cAsInA
9 –Ar 19 –lIm 29 –(y)ken
10 –(U)yor 20 –(y)A

302

B

C

D

F

G

H

K

L

I
M

N

6,7,8,9,10,11,12

17,18,20

17
,1

8

20

O

25,26,27

6,7,8,9,10,11,12

17,18,20

27

6,7,8,9,10,11,12

P

6,7,8,9,10,11,12

5

6,7,8,9,10,11,12

6,7,8,9,10,11,12,17,18,20

5

56,7,8,9,10,11,12

1,2
,3,

4,5

25,26

27

6,
7,

8,
9,

10
,1

1,
12

,2
0

27

6,
7,

8,
9,

10
,1

1,
12

,2
0

27

6,
7,

8,
9,

10
,1

1,
12

A

3
2

1,4

13,14,15,16

5

28

29

25,26,27

24

6,7,8,9,10,11,12,

17,18,20,21,22,23

19

Q

6,7,8,9,10,11,12

Figure-5: Tense & Person Suffixes right to left FSM

The states A, C, G, L, O and Q are the ending states of
Figure-5. L, O, Q are acceptable endings for only the
negative verbs and A, C, G are acceptable endings for
only positive verbs. This control is done by the FSM of
the following class “Verb Suffixes” in Figure-6. Table-7
shows the “Tense & Person Verb” suffixes in their
generic representations.

3.5 Verb Suffixes

Verb suffixes’ FSM in Figure-6 is the most complex one
having multiple entry states and the highest number of
affixes (Table-8). When the FSMs are unified to work
together, this class receives entries from different classes,
which causes the FSM to have multiple starting states:
A and R normal entry
P entry from the noun FSM
C entry from tense&person verb FSM for positive verbs
O entry from tense&person verb FSM for negative verbs
Q entry from nominal verb FSM

Table-8: Verb Suffixes
1 –m 16 –(y)Akoy 31 –mAzlIk
2 –zsIn 17 –mAk 32 –mA
3 –z 18 –(y)UcU 33 –(y)Uş
4 –yIz 19 –(y)Up 34 –Dan
5 –zsInIz 20 –(y)AlI 35 –DA
6 –zlAr 21 –DUkçA 36 –(y)lA
7 –mA 22 –(y)ArAk 37 –(y)A
8 –(y)AmA 23 –(y)UncA 38 –mAksIzIn
9 –(y)Adur 24 –Dan 39 –mAdAn
10 –(y)Uver 25 –yA 40 –(U)n
11 –(y)Agel 26 –(y)An 41 –(U)ş
12 –(y)Agör 27 –(y)AcAk 42 –(U)l
13 –(y)Abil 28 –(y)AsI 43 –Dur
14 –(y)Ayaz 29 –DUk 44 -(U)t
15 –(y)Akal 30 –mUş

A GB1 6

okuyamazmışım okuyamazmış okuyamaz

Tense&Person Suffix' FSM

C

okuyamaz

Verb Suffix' FSM

3 X

A OB1 27

okuyamazmışım okuyamazmış okuyamaz

Tense&Person Suffix' FSM

O

okuyamaz

Verb Suffix' FSM

3 B G8

okuyama oku

The analysis of the word “okuyamazmışım” (it is said that
I am not able to read) is given above. In this example the
last two suffixes “-mış” and “-ım” are analyzed with the
FSM of the previous suffix class “tense & person verb
suffixes” in Figure-5. In this FSM the suffix#1 (Table-7)
“ım” make a transition from the state A to the state B. The
suffix “mış” can be either suffix#6 –mUş or suffix#27
–(y)mUş of the Table-7. This will make a transition from
the state B to either the state G or the state O. As stated
earlier, the state O of the tense&verb suffix’ FSM can be
an ending state only for the negative verbs whereas G for
positive ones. After analysis is finished with the FSM in
Figure-5, the stem “okuyamaz” is reached and then
analyzed with the verb suffix’ FSM in Figure-6. The
second analysis with stem “oku” is the correct one and
will have a higher success probability having a shorter
stem than the first one.

K L

MN

44

40,41

43

43 44

40,41

J

42

40
,4

1

43

44

G
40

41

4442

43

H7

40

41

42

43

44

I

8

40

41

42

43

44

F

9,10,11,12,13,14,15,16

40

42

43

44

41

C

9,
10

,1
1,

12

13

7,8,14,15,16

40

42

41 43

44

D

22

E

23

B 7,8

A

1,2,3,4,5,6

19,20,21,22,23

25

24

38,
39

P
26,27,28,29,30,31,32,33

18

Q

O

3

R 34,35,36,37
17

3

Figure-6: Verb Suffixes right to left FSM

4. Unification of the FSMs

Turkish words can be classified into two main categories
being nominal and verbal words. The words can change
their categories after the concatenation of suffixes from
different classes: nouns can turn into verbs and verbs vice
versa. For this reason, the discrete FSMs formed in the
previous sections should be joined into a main FSM to

303

cooperate in the analysis of a single word. In the main
FSM shown in Figure-7, each discrete FSM firstly
analyzes the intact word and then the outputs coming
from the FSMs previously run.

Verb Suff.
FSM

Tense&Pe
rson Suff.

FSM

Nominal
Verb Suff.

FSM

Derivation
al Suff.

FSM

Noun
Suff.
FSM

Figure-7: Main FSM

Ex: The following is the output taken after the analysis of
the word “çağırmadıklarımızdanmışsınız” (You were the
one of whom we did not call) with this main FSM. The
classes of the suffixes are written at the end of each line.
“Çağır-ma-dık-lar-ımız-dan-mış-sınız”
Çağır verb stem
-mA negative suffix Verb Suffix
-dUk adjective verb suffix Verb Suffix
-lAr plural suffix Noun Suffix
-(U)mUz 1st plural possessive suffix Noun Suffix
-DAn case suffix Noun Suffix
-(y)mUş past tense Nominal Verb Suffix
-sUnUz 2nd plural person suffix Nominal Verb Suffix

At the end of the analysis, the first suffix removed from
the end of the word determines the category of that word:
nominal or verbal. The above example is a verb since its
last suffix is a nominal verb suffix. This information is
kept for being used in the syntactic analysis but it does
not comprise the details about the nominal category such
as noun, adjective or pronoun. In some cases, the affixes
concatenated to the stem cause some deformation on it.
The most widely seen of these cases happen when the
suffixes starting with a vowel are affixed to a stem ending
with the letter “p,ç,t,k” and an –(I)yor suffix is affixed to
a stem ending with vowels “a” or “e”. In the first case the
letters are transformed to the letters “b,c,d,g” and in the
second case the vowels turn into “ı” or “i”. Some
exception cases like these ones are handled within the
software and the required changes are done over the stems
reached at the end.

5. Conclusion & Future Work

In this paper, an affix stripping morphological analyzer is
developed for Turkish by using the rule-based structure of
the language. The software developed can be reached
from the address http://www.cs.itu.edu.tr/~gulsen/nlp/

nlp.html. This software aims to reach the stem of a word
without using any lexicon while making the
morphological analysis. To reach this aim, all the suffixes
are grouped into five classes and stored in a database with
their suffix classes and names. For each of the suffix
class, a FSM describing the concatenation rules of the
suffixes in reverse order is designed. A global FSM is
formed to make the previously designed FSM’s
collaborate with each other. At the end of the analysis
with the global FSM, the word is partitioned into its stem
and suffixes. When one wants to add a new suffix to this
analyzer, he should insert it to the related suffix class and
update the related FSMs.

For Turkish documents, an information retrieval system
needs essentially a stemming algorithm because in
Turkish sentences, words are usually concatenated lots of
suffixes. Especially in the web-based systems concerning
the performance criteria, it is undesirable to use a lexicon
to find the word stem. Originating from the method
developed in this study, a Turkish stemming algorithm
can be easily developed and this algorithm can be used in
information retrieval systems for Turkish documents.

References

[1] J. Hankamer, Finite state morphology and left to right
phonology, Proceedings of the Fifth West Coast
Conference on Formal Linguistics, Stanford, CA, 1986,
29-34.
[2] E. Antworth, PC-KIMMO: A two-level processor for
morphological analysis (Dallas, TX: Summer Institute of
Linguistics, 1990).
[3] D.J. Weber, H.A. Black & S.R. McConnel, AMPLE:
a tool for exploring morphology, (Dallas, TX: Summer
Institute of Linguistics, 1988).
[4] D. Jurafsky & J.H. Martin, Speech and language
processing : an introduction to natural language
processing, computational linguistics, and speech
recognition (Upper Saddle River, N.J. : Prentice Hall,
2000).
[5] A. Solak & K. Oflazer, Design and Implementation
of a Spelling Checker for Turkish, Literary and Linguistic
Computing, 8(3), 1993, 113-130.
[6] K. Oflazer, Two-level Description of Turkish
Morphology, Literary and Linguistic Computing, 9(2),
1994, 137-148.
[7] B. Brodda & F. Karlsson, An experiment with
automatic morphological analysis of Finnish (Stockholm:
Department of General Linguistics University of Helsinki,
1980).
[8] H.J. Kaalep, An Estonian Morphological Analyzer
and the Impact of a Corpus on Its Development,
Computers and the Humanities, 31(2), 1997, 115-133.
[9] R. Sproat, Morphology and computation (Cambridge,
MA: MIT Press, 1992).
[10] A. V. Aho, R. Sethi & J. D. Ullman, Compilers:
principles, techniques, tools (Reading, MA: Addison-
Wesley, 1986).

304

