GRAPH THEORY

and APPLICATIONS

Networks an Flows



= B
Network

m Network: A finite connected digraph in which:
one vertex x, with d*(x) > 0 is called the source.
one vertex y, with d-(y) > 0 is called the sink.

m A flow for the network N, associates:
a non-negative integer f(u,v),
with each edge (u,v) of N, such that,

for all vertices v, other than x and y:

2 fw)=2 f(v.u) >‘<%

m Conservation of flow at each vertex.
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" B
Capacity

m A network is a model for the flow of material
leaving a single departure point, and arriving at
a single destination.

m |n practise, there is an upper bound on the
possible flow along any edge.

m For each edge (u,v):
c(u,v). capacity of the edge (a non-negative integer)
m Henced, for each edge (u,v):

0< f(u,v)<c(u,v)
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"
Cut

m A cut of N=(V,E) is a cut-set of the underlying
graph.
Denoted by (P, P) where xe P,y P
PNP=g PUP=V

m The capacity of a cut (P, P):
Denoted by K (P, P)
Sum of the capacities of those edges

m incident from vertices in P, and
= incident to vertices in P.

K(P,P)= Z c(u,v)

ueP.,veP
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=
Value of a flow

m The value of the flow F(N) for a network is the
net flow leaving the source x:

F(N)=2 f(x,v)= f(v,x)

. For an arbitrary cut of the network N,
the value of the flow is given by:

F(N)= 2, fuv)- 2 f(uv)

ueP,veP ueP,veP

= (flow from P to P) — (flow from P to P)
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= B
Value of a flow

. The value of the flow for any network
cannot exceed the capacity of any cut:

F(N) <min(K (P, P))

Example:
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"
A path in a network
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The corollary provides an upper bound for the maximum
flow in a network.

We focus on finding a flow of maximum value in any
given network.

Path: A sequence of distinct vertices
0= (v vy, ..., v;) from the source x to the sink y, where,
Vo = X,
v, =Yy, and
Q is a path in the underlying graph of N.
For any two consecutive vertices v, and v, , of O, either
(vuvi) € Eor(v,v) € E.
(v,v,,,) is called a forward-edge.
(v..,v;) IS called a reverse-edge.



"
Augmenting path

m Augmenting path: For a given flow F(N), a path
Q of N such that for each (v,v.,) € O:

if (v,,v;,,) is a forward-edge, then:
A = C(Viavm) _f(viavm) >0
if (v,,v;,,) Is a reverse-edge, then:
Ai = f(vmavi) >0
m |[f Q is an augmenting path then we define A as
follows:
A=minA >0
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" S
Augmenting the flow

m Each (v,v,;,,) of O, for which A.= A is called a
bottleneck-edge relative to F(N) and Q.

m For a given network and flow F(N):

If the augmenting path O exists, then we can
construct a new flow F’(N).

The value of F'(N) is equal to the value of F(N) plus A.
m If (v,v,,) is a forward-edge then:
v )< fv,v,,)+A
m If (v,v.,) IS areverse-edge then:

Ssv) < f(v,,v)—A
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" S
Augmenting the flow

m The addition of A along an augmenting path
preserves the conservation of flow requirement,
at each vertex except x and y.

m The net flow from x is increased by the addition
of A to the flow along (x,v,).

Q=(x,1,2,3,y)

Forward-edges: (x,1) and (3,y)
Reverse-edges: (1,2) and (2,3)
Bottleneck edges: All except (3,y)
A=1

Assign:
f(x,1) =2 f(1,2)=0
f(2,3)=0 f(3,y) =2
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" S
Maximum-flow problem

m The idea of augmenting path forms a basis for
an algorithm: Ford-Fulkerson
m Start from an initial flow Fy(N)
Could be a zero flow

m Construct a sequence of flows F,(N), F5(N), ...

F..1(N) is constructed from F,(N) by finding an
augmenting path.

m [ermination is guaranteed, because:
F..1(N) is greater than F,(N), and bounded.

m |[f no augmenting path exists then F,(N) is
maximum. (proof: Gibbons, p.100)
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= B
Max-flow min-cut theorem

m The outlined algorithm shows that it is always
possible to attain a flow value F(N) equal to:

min(K (P, P))

Theorem: (Max-flow min-cut by Ford and Fulkerson)
For a given network the maximum possible value
of the flow is equal to the minimum capacity of all
cuts.
max F(N) = min(K (P, P))
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" B
How to find an augmenting path?

m Assume: each augmentation increases the flow
from x to y by one unit.
Number of augmentations: K(P,P)
No relation to network size.

Select alternatively:
P1=(x,1,2,y) P2=(x,2,1,y)

= Each augmentation enhances the
flow by 1 unit.

= Overall 2a augmentations will be
required.
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" B
How to find an augmenting path?

m An algorithm of Edmonds & Karp.
m Polynomially dependent upon network size only.

m Given N=(V,E) with a flow, construct an
associated network NF=(V, E’):
N and NF have the same vertex set.

For any two vertices u and v, (u,v) is an edge of NF if
and only if, either:

(u,v)e £ and c(u,v)— f(u,v)>0

or
(v,u)e £ and f(v,u) >0
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" S
Determining augmenting path

m Finding an augmentation path
= Finding a directed path from x to y in NF

m PF: a directed path in NF

m To determine PF:

Each vertex v is labeled L(v):

Minimum distance from x to v.

L(v) = 0 if there is no path

If a path exists from x to y, choose the minimum-
length path.

Trace the path backwards from y to x.
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"
Finding edge-connectivity

m p(u,v): Number of edge disjoint paths between
uandv.
m C(u,v): Smallest cardinality of those cutsets
which partition the graph, so that:
u is in one component
v is in the other component.

A variation of Menger’s theorem: Let G be an
undirected graph with u,v € V, then:

Ce(U,V) = Pg(U,V)
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=
Proof

m From G construct a network N:
N contains the same vertex setas G
For each edge (u,v) of G, N contains (u,v) and (v,u).
For each edge e of N, assign a capacity c(e) = 1.

m Thus, any flow in N is either O or 1.

m F: Maximum value of a flow from a source to a
sink.
m Show that: F = p(x,y).

P.(X,y) edge-disjoint paths from xtoy in G
= po(X,y) edge-disjoint paths from x to y in N.

Each such path can transport 1 unit of flow.
Thus, F > p.(x,y)
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=
Proof

For a maximum flow in N, we can assume that:
m for each edge (u,v), not both of f(u,v) and f(v,u) are 1.
n If they were, we could replace each flow by 0.

Then, flow F consists of unit flows corresponding to
edge-disjoint paths in G.
Thus, F < p.(x,y).
m Max-flow min-cut theorem
= F = the capacity of a minimum cut-set.

m Every path from x to y uses at least one edge of
the cut.

m This cut would disconnect G, so, cut-set has
cardinality F.
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After the
augmentation:
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After the augmentation:

Max flow = 2
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"
Edge-connectivity

m From the definition of edge-connectivity k'(G),
and c.(u,v):
K'(G) =minc,(u,v)

u,velV

m We can find k'(G), by solving the maximum flow

problem for a series of networks, derived from
G, as in the proof.
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" B
Edge-connectivity algorithm

Input G and construct G’ ;
Specify u;

K' = |E|
for all v in V-{u} do
find F between (u,v) for G’ ;
if F < K’ then K’' = F;
endfor
output K’ ;

m [he overall algorithm requires a polynomial-time
complexity.
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" B
Why O(n) maximizations?

m Do we need O(n?) maximizations?
for n(n-1) node pairs
m No. O(n) maximizations will suffice.

If (P, P’) is a cut-set of minimum cardinality, with

ue Pandv € P,

then k' = c,(u,v)

So, k' can be found by solving max-flow problem for a
particular vertex, say u as the source.

The remaining vertices are taken as sink in turn.
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"
Finding vertex-connectivity

m p,(u,v): Number of vertex-disjoint paths between
uandv.

m C (u,v): Smallest cardinality of those vertex-cuts
which partition the graph, so that:
u is in one component
v is in the other component.

Theorem: Let G be an undirected graph with
X,y € V, and (x,y) € E then:

Cy(u,v) = py(u,v)
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"
Road to a proof

m Given G, construct a digraph G’ as follows:

For every vertex v of G, create
= two vertices v, and v’
= an edge (v',v’) called internal edge.

For every edge (u,v) of G, create two edges:
= (U",V)and (v',u)
called external edges.
m Define a network N, consisting of digraph G,
source is X
sinkis y’
capacity of internal edges = 1
capacity of external edges = infinite
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"
Example

m [he value of maximum flow in N is:
F =c,/(u,v)=p,(u,v)
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"
Vertex-connectivity

m The algorithm is based on finding vertex-
connectivity of pair of vertices in the graph G'.

m \We need to solve the max-flow problem for:

v, as the source and v,, v, ...,v, as the sinks in turn
Vv, as the source and v;, ...,v, as the sinks in turn

V.1 as the source and vy,,, ...,v,, as the sinks in turn
K: vertex-connectivity found so far.
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"
Vertex-connectivity algorithm

Input G and construct G’ ;
K =n;
i=20;

while K = i do
i = 1i+1;
for j = i+l to n do
if (v;,vy)€E then
find F for (v;,vy) in G';
if F < K then
K = F;
endfor
endwhile

output K;
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= B
Minimum-cost flows

m Most fundamental network flow problem.

m Determine:

a least cost shipment of a commodity through a
network

to satisfy demands at certain nodes
from available supplies at other nodes.

m Few example applications:
Distribution of a product
Flight scheduling
Job scheduling with flexible deadlines
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= B
Minimum-cost flows

m Special cases of minimum-cost flows:

Shortest-path problems

m Arc costs, but no arc capacities

Maximum-flow problem
m Arc capacities, just simple, equal arc costs
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"
Notation

m G =(N,A) a directed network
c; - cost of arc (i,j)
u; : capacity of arc (i)
b(i): supply(+) or demand(-) of node |
m Problem definition:
Minimize: z(x)= ). c¢,x, x; - flow variables
. (ir))e4
subject to:

> x,— > x,=b(i) VieN

Ji(i,j)ed Ji(j,i)ed

O<x,<u, V(,jled
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"
Assumptions

m All data are integral.
cost, supply/demand, capacity

m [he network is directed.
m The supplies/demands at nodes satisfy:

> b(i)=0

m All costs are nonnegative.
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=
Residual network

m G(x): Residual network corresponding to flow x.

m Replace each arc (i,j) by two arcs:

(i,)) with cost ¢;;, residual capacity r;, = u,; — x;
(J,I) with cost —c,, residual capacity r; = x;
G(x) consists only of arcs with positive residual
capacity.
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" S
Cycle-canceling algorithm

m A simple approach.
m Maintains a feasible solution.

m At every iteration, attempts to improve its
objective value.

m First establishes a feasible flow x, by solving
maximum flow problem.
m [hen, iteratively:
finds negative cost directed cycles, and
augment flows along these cycles.

m [erminates when the residual network contains
no negative cycle.
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" S
Cycle-canceling algorithm

Find a feasible flow x in the network;

while G(x) contains a negative cycle do
Use an algorithm to find a negative cycle W;
D = min{rﬁ: (1,3)e W};
Augment D units of flow in the cycle W;
Update G(x) ;

endwhile
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A network with a feasible flow.
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The residual network.
D=2
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=
Successive Shortest Path

m Maintains optimality of the solution at each step.

m [he intermediate solutions
maintain the capacity constraint, but
violates the mass balance constraint.

m At each step, the algorithm:
selects a node s with excess supply

selects a node t with unfulfilled demand

sends flow from s to t along a shortest path in the
residual network.

m [erminates, when node balance constraints are
achieved.
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Pseudoflow
m For any pseudoflow x, we define the imbalance of a
node i:
e(i)=b(i)+ Y x,— > x, VieN

Ji(Jj.i)ed Jiui,j)ed
If e(i) > 0, refer e(i) as the excess of i

If e(i) < O, refer -e(i) as the deficit of i
If e(i) = 0, node i is balanced.

m E: Set of excess nodes
m D: Set of deficit nodes

m Notice:
Y e(i)=> b(i)=0 and ) e(i)=-) e(i)
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"
Notations

m If the network contains an excess node, it must
also contain a deficit node.

m Residual network is defined the same way.

m Node potentials &, are used to maintain non-
negative arc lengths.

m Reduced cost:
c; =c, —n()+7())
m d(i,)): distance of nodes i and j.
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» S
Successive shortest path algorithm

for all edges do x(i,j) = O0;

for all nodes gg

n(i) = 0;
e(i) = b(i);
endfor

initialize the sets:
E={i| e(i) > 0} and D = {i | e(i) < 0}
while E # 0 do
select nodes k € E and 1 € D;
determine shortest paths from k to all nodes using reduced
costs;

Let P = shortest (k,1l)-path;
for all i do n(i) = (i) - d(i);

for all (i,]J) do update reduced costs;
D = min{e(k), -e(1l), min{rﬁ: (1,3)e P}};
Augment D units of flow along P;

Update x,G(x) ,E,D, and reduced costs;

endwhile
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(0,2) @ (0,5)

e(3)=0
(3)=-2
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" A
Chinese postman problem in digraphs

m If the digraph is connected and balanced, then
the solution is a directed Euler circuit.

m If the graph is not Eulerian we need another
method to solve the problem.

m Not all connected digraphs contain a solution.

. A digraph has a Chinese postman’s tour
Iff it is strongly connected.
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" S
Chinese postman in digraphs

m A postman’s circuit for non-eulerian digraph
Involves repeated edges.

m Number of times that the edge (u,v) is repeated:
r(u,v)

m G": the digraph obtained by adding r(u,v) copies
of each edge.

m A postman’s circuit in G corresponds an Euler
circuit in G”.

m Repeated edges must form paths between

vertices whose in-degree is not equal to their
out-degree.
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" S
Chinese postman in digraphs

m For any such path:
d(u)—d*(u) =D(u) >0
d-(v) —d*(v)=D(v) <0

If D(u) > 0, then D(u) paths of repeated edges must
start from u.

If D(v) <0, then -D(v) paths must end at v.

m [he problem reduces to:

Choosing a set of paths such that G” is
balanced.
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" S
Solution using flows

m Each vertex u, for which D(u) > 0,
can be thought as a source.

m Each vertex v, for which D(v) <0,
can be thought as a sink.

m A path from u to v can be thought as:
A unit flow

with a cost equal to the sum of the edge-weights.

m We wish to send:
D(u) units of flow from u
-D(v) units of flow to v
At minimum cost.
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=
Solution

m Single source X:
An edge from X to a source u
capacity = +D(u)
cost=0
m Single sink Y
An edge fromasinkvtoY
capacity = -D(v)
cost=0
m All other edges have capacity = infinity
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" S
Algorithm

Construct network G’ ;

Find a maximum flow at minimum cost in G’ ;
Construct G”;

Find an Eulerian circuit of G”;

m Eulerian circuit of G” is a minimum-weight
postman’s circuit of G.
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Maximum flow at minimum
cost is:

2 units along (X,3,4,5,Y)
1 unit along (X,4,5,1,Y)
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An Eulerian circuit of G” and a
minimum cost postman’s circuit
of G:
(1,2,3,4,5,2,4,5,3,4,5,1,3,4,5,1)
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