GRAPH THEORY and APPLICATIONS

Connectivity

Connectivity

- Consider the following graphs:

A

B

C

D

- A is a tree. Deleting any edge disconnects it.
- B cannot be disconnected by deleting single edge, but can be disconnected by deleting one vertex.
- C does not have any cut edge or cut vertex.
- D is still more connected than C .
- Intuitively each graph is more strongly connected than the previous one.

Vertex Cut

- Vertex cut: A subset V' of V such that $\mathrm{G}-\mathrm{V}$ ' is disconnected.
- k-vertex cut: A vertex cut of k elements.
\square A complete graph has no vertex cut.
- The connectivity $\kappa(G)$ is:
\square If G has at least one pair of non-adjacent vertices, minimum k for which G has a k-vertex cut.
\square Otherwise, $\kappa(\mathrm{G})=v-1$
- $\kappa(\mathrm{G})=0$ if G is disconnected.
- G is k -connected if $\kappa(\mathrm{G}) \geq \mathrm{k}$.
\square All connected graphs with v>1 are 1-connected.

Edge Cut

- Edge cut: A subset of E of the form $[S, \bar{S}]$ where S is a nonempty, proper subset of V.
- k-edge cut: An edge cut of k elements.
- The edge-connectivity $\kappa^{\prime}(G)$ is:
\square If G has at least one pair of vertices, minimum k for which G has a k-edge cut.
- $\kappa^{\prime}(G)=0$ if G is disconnected or $v=1$.
- G is k-edge-connected if $\kappa^{\prime}(G) \geq k$.
\square All connected graphs with $v>1$ are
1-edge-connected.

Connectivity

Theorem: $\boldsymbol{\kappa} \leq \boldsymbol{\kappa}^{\prime} \leq \boldsymbol{\delta}$

- The inequalities are often strict.

$$
\begin{aligned}
& K=2 \\
& K^{\prime}=3 \\
& \delta=4
\end{aligned}
$$

Connectivity pair

- Separating a graph by removing a mixed set of vertices and edges.
Connectivity pair:
- An ordered pair (a, b) of nonnegative integers, such that there is:
\square a set of a vertices, and
\square a set of b edges
whose removal disconnects the graph.
- There is no:
\square set of $a-1$ vertices and b edges, or
\square set of a vertices and b-1 edges
with this property.

Connectivity pair

- The two ordered pairs ($\kappa, 0$) and ($0, \kappa^{\prime}$) are connectivity pairs.
- The connectivity pair generalizes both vertex and edge connectivity.
- For each value of $\mathrm{a}, 0 \leq \mathrm{a} \leq \mathrm{k}$ there is a unique connectivity pair ($\mathrm{a}, \mathrm{b}_{\mathrm{a}}$).
$\square G$ has exactly $\kappa+1$ connectivity pairs.

Connectivity function

- The connectivity pairs of a graph G determine a function f,
\square from the set of $\{1,2, \ldots, \kappa\}$
\square into the nonnegative integers such that $f(\kappa)=0$.
- The connectivity function is strictly decreasing.

Theorem: Every decreasing function f from $\{1,2, \ldots, k\}$ into the nonnegative integers, such that $f(\kappa)=0$, is the connectivity function of some graph.

Blocks

- Block: A connected graph that has no cut vertex.
\square A block with $v \geq 3$ is 2-connected.
- Block of a graph: A subgraph that is:
\square a block
\square maximal with respect to this property.
- Every graph is the union of its blocks.

Characterization of 3-connected graphs

The wheel: For $n \geq 4, W_{n}$ is defined to be the graph: $K_{1}+C_{n-1}$

Tutte's Theorem: A graph G is 3-connected iff G is a wheel, or can be obtained from a wheel by a sequence of operations of type:
\square The addition of a new edge.
\square Replacing a vertex v of degree at least 4 , by two adjacent vertices v_{1} and v_{2} such that:

- each vertex formerly joined to v is connected to exactly one of v_{1} and v_{2}.
- Degrees of v_{1} and v_{2} are at least 3.

Example

Menger's Theorem

- In 1927 Menger showed that: the connectivity of a graph is related to the number of disjoint paths joining distinct vertices in the graph.

Menger's Theorem: The minimum number of vertices separating two nonadjacent vertices s and t is the maximum number of disjoint s-t paths.

Whitney's Theorem (1932): A graph G is n-connected iff every pair of vertices of G are connected by at least n internally-disjoint (vertex-disjoint) paths.

Illustration

Variations of Menger's Theorem

- A analogous theorem to Menger's in which the pair of vertices are separated by a set of edges was discovered much later.

Theorem: For any two vertices of a graph, the maximum number of edge-disjoint paths connecting them, is equal to the minimum number of edges which disconnect them.

- Similarly, we can form the edge-form of Whitney's result:

Theorem: A graph G is n-edge-connected iff every pair of vertices of G are connected by at least n edge-disjoint paths.

Variations of Menger's Theorem - 2

Theorem:

For any two disjoint nonempty sets of vertices V_{1} and V_{2}, the maximum number of disjoint paths connecting them, is equal to the minimum number of vertices which separate V_{1} and V_{2}.
\square No vertex of V_{1} is adjacent to any vertex of V_{2}.

- All of the variations have corresponding digraph forms.
\square directed, undirected
\square specific vertices, general vertices, two sets of vertices
\square vertex-disjoint, edge-disjoint
A total of $2 \times 3 \times 2=12$ theorems!

Circuits

- A cotree of a graph G w.r.t. a spanning tree $T\left(V, E^{\prime}\right)$: The set of edges $E-E^{\prime}$.
\square If G has n vertices, then any cotree has $|E|-(n-1)$ edges.
- Any edge of a cotree is called a chord.

Ring-sum Operation

- Ring-sum $\mathrm{G}_{1} \oplus \mathrm{G}_{2}$ of two graphs $\mathrm{G}_{1}\left(\mathrm{~V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}\left(\mathrm{~V}_{2}, \mathrm{E}_{2}\right)$, is the graph:

$$
G_{1} \oplus G_{2}=\left(\left(V_{1} \cup V_{2}\right),\left(\left(E_{1} \cup E_{2}\right)-\left(E_{1} \cap E_{2}\right)\right)\right)
$$

■ Edges of a ring-sum consist of edges:
\square which are either in G_{1} or G_{2}, but
\square which are not in both graphs.

- Ring-sum is both commutative and associative.

Fundamental Circuits

- The addition of a chord to a spanning tree creates precisely one circuit.
- The collection of these circuits w.r.t. a particular spanning tree is a set of fundamental circuits.
- Any arbitrary circuit of the graph may be expressed as a linear combination of the fundamental circuits using the operation ringsum.
The fundamental circuits form a basis for the circuit space.

Fundamental Circuits Example

The fundamental set of circuits:

Some circuits of G expressed with fundamental circuits

Fundamental Circuit Theorems

Theorem: A set of fundamental circuits, w.r.t. some spanning tree of a graph G, forms a basis for the circuit space of G.

Corollary: The circuit space for a graph with $|E|$ edges and n vertices has dimension $(|E|-n+1)$.

Finding fundamental circuits

- Fundamental circuit set (FCS) can be found in polynomial-time.

```
Find a spanning tree T of G;
Find the corresponding cotree CT;
FCS = {};
for all }\mp@subsup{e}{i}{}=(\mp@subsup{v}{i}{},\mp@subsup{v}{i}{\prime})\inCT do
    find the path from }\mp@subsup{v}{i}{}\mathrm{ to }\mp@subsup{v}{i}{\prime}\mathrm{ ' in T;
    denote the path by }\mp@subsup{P}{i}{}\mathrm{ ;
    Ci}=\mp@subsup{P}{i}{}\cup{\mp@subsup{e}{i}{}
    FCS = FCS \cup C i
endfor
```


Fundamental Cut-sets

- A cut-set of a connected graph, is a set of edges whose removal would disconnect the graph.
- No proper subset of a cut-set will cause disconnection.
- A cut-set is denoted by the partition of vertices that it induces:
$\square[\mathrm{P}, \overline{\mathrm{P}}]$, where
- P is the subset of vertices in one component,
- $\bar{P}=V-P$

Fundamental Cut-sets

- Let T be a spanning tree of a connected graph.
- Any edge of T defines a partition of vertices of G :
\square The removal of this edge disconnects T
- Then:
\square There is a corresponding cut-set of G producing the same partition.
- This partition contains:
\square One edge of T, and
\square A number of chords of T .
- Such a cut-set is called a fundamental cut-set.

Example

- The set of fundamental cut-sets w.r.t. to T:

$$
\begin{aligned}
& \square \mathrm{C}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{8}\right\} \\
& \square \mathrm{C}_{2}=\left\{\mathrm{e}_{4}, \mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{7}\right\} \\
& \square \mathrm{C}_{3}=\left\{\mathrm{e}_{6}, \mathrm{e}_{7}, \mathrm{e}_{8}\right\} \\
& \square \mathrm{C}_{4}=\left\{\mathrm{e}_{3}, \mathrm{e}_{5}, \mathrm{e}_{8}\right\}
\end{aligned}
$$

Fundamental Cut-set Theorems

Theorem: The fundamental cut-set w.r.t. some spanning tree of a graph G, forms a basis for the cut-sets of the graph.

Corollary: The cut-set space for a graph with n vertices has dimension $n-1$.

Example

- Fundamental cut-sets:
$\square \mathrm{C}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{8}\right\}$
$\square \mathrm{C}_{2}=\left\{\mathrm{e}_{4}, \mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{7}\right\}$
$\square C_{3}=\left\{\mathrm{e}_{6}, \mathrm{e}_{7}, \mathrm{e}_{8}\right\}$
$\square \mathrm{C}_{4}=\left\{\mathrm{e}_{3}, \mathrm{e}_{5}, \mathrm{e}_{8}\right\}$
- Some other cut-sets:

1. $\left\{\mathrm{e}_{3}, \mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{7}\right\}=\mathrm{C}_{3} \oplus \mathrm{C}_{4}$
2. $\left\{\mathrm{e}_{1}, \mathrm{e}_{4}, \mathrm{e}_{6}\right\}=\mathrm{C}_{1} \oplus \mathrm{C}_{2} \oplus \mathrm{C}_{3}$
3. $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}=\mathrm{C}_{1} \oplus \mathrm{C}_{4}$

Application: Constructing a Reliable Network

- Graph: representing a communication network
- Connectivity (or edge-connectivity): Smallest number of communication stations (or communication links) whose breakdown would jeopardize the communication.
- Higher the connectivity
\Rightarrow the more reliable the network.

Application

- How do we create a reliable network, given the edge weights and nodes of the network?
\square Similar to connector problem
- Minimum spanning tree connects all nodes, and has minimum weight.
\square But, a tree is not very reliable!
- Generalization:

Determine a minimum-weight k-connected spanning subgraph of a graph G.
$\square G$ can be a complete graph or not.
$\square \mathrm{k}=1$: minimum spanning tree problem.

Application

- For values of $k>1$, the problem is unsolved, and known to be difficult.
- However, the problem has a simple solution if:
$\square \mathrm{G}$ is a complete graph,
\square Each edge of G is assigned unit weight
Observation: For a complete graph of n vertices with unit edge weights, a minimum-weight k connected spanning subgraph is:
\square a k-connected graph on n vertices with as few edges as possible.

Application

$f(m, n)$: the least number of edges that an $m-$ connected graph on n vertices can have ($m<n$).

$$
f(m, n) \geq\{m n / 2\}
$$

- We will construct m-connected graphs $H_{m, n}$
- The structure of $H_{m, n}$ depends on the parities of m and n .

Case 1

- m is even.
- Let $m=2 r$.
- Then, $H_{2 r, n}$ is constructed as follows:
\square Vertices are numbered:
$0,1,2, \ldots, n-1$
\square Two vertices i, and j are joined if:

$$
i-r \leq j \leq i+r
$$

(addition in modulo)

$H_{4,8}$

Case 2

- m is odd, n is even.
- Let $m=2 r+1$.
- Then, $H_{2 r+1, n}$ is constructed as follows:
\square Draw $H_{2 r, n}$
\square Add edges joining vertex i to vertex $i+n / 2$ for:

$$
1 \leq i \leq n / 2
$$

$\mathrm{H}_{5,8}$

Case 3

- m is odd, n is odd.
- Let $m=2 r+1$.
- Then, $H_{2 r+1, n}$ is constructed as follows:
\square Draw $H_{2 r, n}$
\square Add edges joining:
- 0 to $n-1 / 2$
- 0 to $n+1 / 2$
- vertex i to
vertex $i+(n+1) / 2$

$$
\text { for } 1 \leq i \leq(n-1) / 2
$$

$\boldsymbol{H}_{5,9}$

Resources:

■ Edge, vertex-connectivity: Bondy\&Murty: Ch. 3

- Menger's Theorem: Harary: Ch. 5
- Fundamental circuits and cut-sets: Gibbons: Sec.2.2

GRAPH THEORY and APPLICATIONS

Partitions

Degree Sequence

- The degrees $d_{1}, d_{2}, \ldots, d_{v}$ of the points of a graph form a sequence of nonnegative integers.
\square The sum of degree sequence is $2 e$.
- Partition of a positive integer n : A list of unordered sequence of positive integers whose sum is n.
\square Example: $\mathrm{n}=4$

$$
4,3+1,2+2,2+1+1,1+1+1+1
$$

- The degrees of a graph with no isolated vertices determine such a partition of $2 e$.
\square To have a general definition for all graphs, we use an extended definition: instead of positive use nonnegative.

Partition of a graph

- The partition of a graph: Partition of $2 e$ as the sum of the degrees of the points.
- Only two of the five partitions of 4 belong to a simple graph.

- A partition $\sum d_{i}$ of n into v parts is graphical if there is a graph G whose points have degrees d_{i}.

Two questions

- How can one tell whether a given partition is graphical?
- How can one construct a graph for a given graphical partition?
- An answer to the first question: by Erdös and Gallai (1960)
- Another answer to both:
by Havel (1955) and by Hakimi (1962)
(independently)

Havel and Hakimi's solution

Theorem: A partition $\Pi=\left(d_{1}, d_{2}, \ldots, d_{v}\right)$ of an even number into v parts with:

$$
v-1 \geq d_{1} \geq d_{2} \geq \ldots \geq d_{v}
$$

is graphical if and only if the modified partition

$$
\Pi^{\prime}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d 1+1}-1, d_{d 1+2}, \ldots d_{v}\right)
$$

is graphical.

Proof

- If Π^{\prime} is graphical, then so is Π.
\square From a graph with partition Π ' we can construct a graph with partition Π, by adding a new vertex adjacent to vertices of degrees:

$$
d_{2}-1, d_{3}-1, \ldots, d_{d 1+1}-1
$$

- Let G be a graph with partition Π.
\square If a vertex of degree d_{1} is adjacent to vertices of degrees d_{i} for $i=2$ to $d_{1}+1$,
\square then, the removal of this vertex results in a graph with partition Π^{\prime}.

Proof - 2

- Suppose that G has no such vertex.
- Assume v_{1} is a vertex of degree d_{1} for which:
\square the sum of the degrees of the adjacent vertices is maximum.
- Then:
\square there are vertices v_{i} and v_{j} with $d_{i}>d_{j}$
$\square v_{1} v_{j}$ is an edge,
\square but $v_{1} v_{i}$ is not.
- Therefore some vertex v_{k} is adjacent to v_{i} but not to v_{j}.
- Remove $v_{1} v_{j}$ and $v_{k} v_{i}$. Add $v_{1} v_{i}$ and $v_{k} v_{i}$. Repeat!

Constructing the graph

- The theorem gives an effective algorithm for constructing a graph with a given partition.
Corollary (Algorithm): A given partition $\Pi=\left(d_{1}, d_{2}, \ldots, d_{v}\right)$ with:

$$
v-1 \geq d_{1} \geq d_{2} \geq \ldots \geq d_{v}
$$

is graphical, if and only if the following procedure results in a partition with every term zero.
\square Determine the modified partition Π ' as in the theorem.
\square Reorder the terms of Π ' so that they are non-increasing, and call it partition Π_{1}.
\square Go to step 1 and continue as long as non-negative terms are obtained.

Example

- $\Pi=(5,5,3,3,2,2,2)$
- П' $=(4,2,2,1,1,2)$
- $\Pi_{1}=(4,2,2,2,1,1)$
- $\Pi_{1}=(1,1,1,0,1)$
- $\Pi_{2}=(1,1,1,1,0)$

The theorem of Erdös and Gallai

Theorem: Let $\Pi=\left(d_{1}, d_{2}, \ldots, d_{v}\right)$ be a partition of $2 e$ into $v>1$ parts.

$$
d_{1} \geq d_{2} \geq \ldots \geq d_{v}
$$

Then Π is graphical, if and only if, for each integer

$$
\mathrm{r}, 1 \leq r \leq v-1,
$$

$$
\sum_{i=1}^{r} d_{i} \leq r(r-1)+\sum_{i=r+1}^{v} \min \left(r, d_{i}\right)
$$

For a proof of this theorem, check Harary, p.59-61.

