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Connectivity
Consider the following graphs:

A is a tree. Deleting any edge disconnects it.
B cannot be disconnected by deleting single edge, 
but can be disconnected by deleting one vertex.
C does not have any cut edge or cut vertex.
D is still more connected than C.
Intuitively each graph is more strongly connected than 
the previous one.

A                       B              C           D
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Vertex Cut
Vertex cut: A subset V’ of V such that G – V’ is 
disconnected.
k-vertex cut: A vertex cut of k elements.

A complete graph has no vertex cut.
The connectivity κ(G) is:

If G has at least one pair of non-adjacent vertices, 
minimum k for which G has a k-vertex cut.
Otherwise, κ(G) = v – 1

κ(G)=0 if G is disconnected.
G is k-connected if κ(G) ≥ k.

All connected graphs with v > 1 are 1-connected.
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Edge Cut
Edge cut: A subset of E of the form [S, S] where 
S is a nonempty, proper subset of V.
k-edge cut: An edge cut of k elements.
The edge-connectivity κ'(G) is:

If G has at least one pair of vertices, minimum k for 
which G has a k-edge cut.

κ'(G)=0 if G is disconnected or v = 1.
G is k-edge-connected if κ'(G) ≥ k.

All connected graphs with v > 1 are 
1-edge-connected.
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Connectivity
Theorem: κ ≤ κ' ≤ δ

The inequalities are often strict.

κ = 2
κ' = 3
δ = 4
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Connectivity pair
Separating a graph by removing a mixed set of vertices 
and edges.

Connectivity pair: 
An ordered pair (a,b) of nonnegative integers, such that 
there is:

a set of a vertices, and
a set of b edges

whose removal disconnects the graph.
There is no: 

set of a-1 vertices and b edges, or
set of a vertices and b-1 edges

with this property.



Graph Theory and Applications © 2007 A. Yayimli 7

Connectivity pair
The two ordered pairs (κ,0) and (0,κ') are 
connectivity pairs.
The connectivity pair generalizes both vertex 
and edge connectivity.
For each value of a, 0 ≤ a ≤ κ there is a unique 
connectivity pair (a,ba).

G has exactly κ + 1 connectivity pairs.
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Connectivity function
The connectivity pairs of a graph G determine a 
function f,

from the set of {1, 2, …, κ}
into the nonnegative integers

such that f(κ) = 0. 
The connectivity function is strictly decreasing.

Theorem: Every decreasing function f from 
{1, 2, …, κ} into the nonnegative integers,
such that f(κ) = 0, is the connectivity function of 
some graph.
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Blocks
Block: A connected graph that has no cut vertex.

A block with v ≥ 3 is 2-connected.
Block of a graph: A subgraph that is:

a block
maximal with respect to this property.

Every graph is the union of its blocks.
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Characterization of 3-connected graphs

Tutte’s Theorem: A graph G is 3-connected iff G is a wheel, 
or can be obtained from a wheel by a sequence of 
operations of type:

The addition of a new edge.
Replacing a vertex v of degree at least 4, by two adjacent vertices v1
and v2 such that:

each vertex formerly joined to v is connected to exactly one of v1 and v2.
Degrees of v1 and v2 are at least 3.

W6

The wheel: For n≥4, Wn is 
defined to be the graph: 
K1+Cn-1
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Example

v1       v2v

v1 

v2

=
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Menger’s Theorem
In 1927 Menger showed that:
the connectivity of a graph is related to the number of 
disjoint paths joining distinct vertices in the graph.

Menger’s Theorem: The minimum number of vertices 
separating two nonadjacent vertices s and t is the 
maximum number of disjoint s-t paths.

Whitney’s Theorem (1932): A graph G is n-connected iff 
every pair of vertices of G are connected by at least n 
internally-disjoint (vertex-disjoint) paths.
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Illustration

s

t
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Variations of Menger’s Theorem
A analogous theorem to Menger’s in which the pair of 
vertices are separated by a set of edges was discovered 
much later.

Theorem: For any two vertices of a graph, the maximum 
number of edge-disjoint paths connecting them, is equal 
to the minimum number of edges which disconnect 
them.

Similarly, we can form the edge-form of Whitney’s result:

Theorem: A graph G is n-edge-connected iff every pair of 
vertices of G are connected by at least n edge-disjoint  
paths.
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Variations of Menger’s Theorem - 2
Theorem: 
For any two disjoint nonempty sets of vertices V1 and V2, 
the maximum number of disjoint paths connecting them, is 
equal to the minimum number of vertices which separate V1
and V2.

No vertex of V1 is adjacent to any vertex of V2.

All of the variations have corresponding digraph forms.
directed, undirected
specific vertices, general vertices, two sets of vertices
vertex-disjoint, edge-disjoint

A total of 2x3x2 = 12 theorems!
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Circuits
A cotree of a graph G w.r.t. a spanning tree 
T(V,E'): The set of edges E - E'.

If G has n vertices, then any cotree has
edges.

Any edge of a cotree is called a chord.
( 1)E n− −

2

1             3                5

4

2

1               3             5

4
a spanning 
tree of G

G

2

1             3                5

4
cotree
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Ring-sum Operation
Ring-sum G1 ⊕ G2 of two graphs G1(V1,E1) and 
G2(V2,E2), is the graph:

G1 ⊕ G2 = ( (V1∪V2), ((E1∪E2) - (E1∩E2)) )

Edges of a ring-sum consist of edges:
which are either in G1 or G2, but
which are not in both graphs.

Ring-sum is both commutative and associative.
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Fundamental Circuits
The addition of a chord to a spanning tree 
creates precisely one circuit.
The collection of these circuits w.r.t. a particular 
spanning tree is a set of fundamental circuits.
Any arbitrary circuit of the graph may be 
expressed as a linear combination of the 
fundamental circuits using the operation ring-
sum.
The fundamental circuits form a basis for the 
circuit space.
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2

1             3

Fundamental Circuits Example

The fundamental set of circuits:

2

1             3                5

4

2

1               3             5

4

1             3

4

1             3                5

4

2

1             3                5
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Some circuits of G expressed with 
fundamental circuits

1          3        5
2

1            3

1         3

4 4

2

1         3         5

2

1          3          5 1          3          5

4

⊕

2

1                     5

4

=

2

1          3          5

1         3

4

1          3          5

4

⊕⊕=

2

1         3           5

4
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Fundamental Circuit Theorems

Theorem: A set of fundamental circuits, w.r.t. 
some spanning tree of a graph G, forms a basis 
for the circuit space of G.

Corollary: The circuit space for a graph with |E|
edges and n vertices has dimension (|E|-n+1).
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Finding fundamental circuits
Fundamental circuit set (FCS) can be found in 
polynomial-time.

Find a spanning tree T of G;
Find the corresponding cotree CT;
FCS = {};
for all ei=(vi,vi') ∈ CT do

find the path from vi to vi' in T;
denote the path by Pi;
Ci = Pi ∪ {ei}
FCS = FCS ∪ Ci;

endfor
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Fundamental Cut-sets
A cut-set of a connected graph, is a set of edges 
whose removal would disconnect the graph.
No proper subset of a cut-set will cause 
disconnection.
A cut-set is denoted by the partition of vertices 
that it induces:

[P, P], where 
P is the subset of vertices in one component,
P = V – P 
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Fundamental Cut-sets
Let T be a spanning tree of a connected graph.
Any edge of T defines a partition of vertices of G:

The removal of this edge disconnects T
Then:

There is a corresponding cut-set of G producing the 
same partition.

This partition contains:
One edge of T, and
A number of chords of T.

Such a cut-set is called a fundamental cut-set.
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Example

The set of fundamental cut-sets w.r.t. to T:
C1 = {e1,e2,e5,e8}
C2 = {e4,e2,e5,e7}
C3 = {e6,e7,e8}
C4 = {e3,e5,e8}

e1    e2         e3

e6    e7        e8

e4          e5

e1                 e3

e6

e4

C1
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Fundamental Cut-set Theorems

Theorem: The fundamental cut-set w.r.t. some 
spanning tree of a graph G, forms a basis for the 
cut-sets of the graph.

Corollary: The cut-set space for a graph with n 
vertices has dimension n – 1.
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Example
Fundamental cut-sets:

C1 = {e1,e2,e5,e8}
C2 = {e4,e2,e5,e7}
C3 = {e6,e7,e8}
C4 = {e3,e5,e8}

Some other cut-sets:
1. {e3,e5,e6,e7} = C3 ⊕ C4

2. {e1,e4,e6} = C1 ⊕ C2 ⊕ C3

3. {e1,e2,e3} = C1 ⊕ C4
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Application: Constructing a Reliable 
Network

Graph: representing a communication network

Connectivity (or edge-connectivity):
Smallest number of communication stations (or 
communication links) whose breakdown would 
jeopardize the communication.

Higher the connectivity
⇒ the more reliable the network.
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Application
How do we create a reliable network, given the 
edge weights and nodes of the network? 

Similar to connector problem
Minimum spanning tree connects all nodes, and 
has minimum weight.

But, a tree is not very reliable!
Generalization:
Determine a minimum-weight k-connected 
spanning subgraph of a graph G.

G can be a complete graph or not.
k = 1: minimum spanning tree problem.
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Application
For values of k > 1, the problem is unsolved, and 
known to be difficult.
However, the problem has a simple solution if:

G is a complete graph,
Each edge of G is assigned unit weight

Observation: For a complete graph of n vertices 
with unit edge weights, a minimum-weight k-
connected spanning subgraph is:

a k-connected graph on n vertices with as few edges 
as possible.
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Application
f(m,n): the least number of edges that an m-

connected graph on n vertices can have (m < n).

f(m,n) ≥ {mn/2}

We will construct m-connected graphs Hm,n

The structure of Hm,n depends on the parities of 
m and n.
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Case 1
m is even.
Let m = 2r. 
Then, H2r,n is constructed 
as follows:

Vertices are numbered: 
0, 1, 2, …, n – 1 
Two vertices i, and j are 
joined if:

i – r ≤ j ≤ i + r
(addition in modulo) H4,8

0
7                            1

6                                                2

5                                   3

4
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Case 2
m is odd, n is even.
Let m = 2r + 1. 
Then, H2r+1,n is 
constructed as follows:

Draw H2r,n

Add edges joining vertex i
to vertex i+n / 2 for:

1 ≤ i ≤ n / 2

H5,8

0
7                            1

6                                                2

5                                   3

4
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Case 3
m is odd, n is odd.
Let m = 2r + 1. 
Then, H2r+1,n is 
constructed as follows:

Draw H2r,n

Add edges joining:
0 to n – 1 / 2
0 to n + 1 / 2
vertex i to 
vertex i+(n+1) / 2
for 1 ≤ i ≤ (n – 1) / 2 H5,9

0
8                            1

7                                                2

6                                       3

5          4
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Resources:
Edge, vertex-connectivity: Bondy&Murty: Ch.3
Menger’s Theorem: Harary: Ch.5
Fundamental circuits and cut-sets: Gibbons: 
Sec.2.2
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Degree Sequence
The degrees d1, d2, …, dv of the points of a graph 
form a sequence of nonnegative integers.

The sum of degree sequence is 2e.
Partition of a positive integer n: A list of unordered 
sequence of positive integers whose sum is n.

Example: n = 4
4,   3 + 1,   2 + 2,   2 + 1 + 1,   1 + 1 + 1 + 1

The degrees of a graph with no isolated vertices 
determine such a partition of 2e. 

To have a general definition for all graphs, we use an 
extended definition: instead of positive use nonnegative.
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Partition of a graph
The partition of a graph: Partition of 2e as the 
sum of the degrees of the points.
Only two of the five partitions of 4 belong to a 
simple graph.

2+1+1                          1+1+1+1

A partition         of n into v parts is graphical if 
there is a graph G whose points have degrees 
di.

id∑
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Two questions
How can one tell whether a given partition is 
graphical?
How can one construct a graph for a given 
graphical partition?
An answer to the first question:
by Erdös and Gallai (1960)
Another answer to both:
by Havel (1955) and by Hakimi (1962) 
(independently)
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Havel and Hakimi’s solution
Theorem: A partition Π = (d1, d2, …, dv) of an even 

number into v parts with:

is graphical if and only if the modified partition

is graphical.

1 21 ... vv d d d− ≥ ≥ ≥ ≥

2 3 1 1 1 2( 1, 1,..., 1, ,... )d d vd d d d d+ +′Π = − − −
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Proof
If Π' is graphical, then so is Π.

From a graph with partition Π' we can construct a 
graph with partition Π, by adding a new vertex 
adjacent to vertices of degrees:

Let G be a graph with partition Π. 
If a vertex of degree d1 is adjacent to vertices of 
degrees di for i = 2 to d1+1,
then, the removal of this vertex results in a graph with 
partition Π'.

2 3 1 11, 1,..., 1dd d d +− − −
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Proof - 2
Suppose that G has no such vertex.
Assume v1 is a vertex of degree d1 for which:

the sum of the degrees of the adjacent vertices is 
maximum.

Then:
there are vertices vi and vj with di > dj
v1vj is an edge,
but v1vi is not.

Therefore some vertex vk is adjacent to vi but not 
to vj.
Remove v1vj and vkvi. Add v1vi and vkvi. Repeat!
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Constructing the graph
The theorem gives an effective algorithm for constructing 
a graph with a given partition.

Corollary (Algorithm): A given partition 
Π = (d1, d2, …, dv) with:

is graphical, if and only if the following procedure results 
in a partition with every term zero.

Determine the modified partition Π' as in the theorem.
Reorder the terms of Π' so that they are non-increasing, and call 
it partition Π1.
Go to step 1 and continue as long as non-negative terms are 
obtained.

1 21 ... vv d d d− ≥ ≥ ≥ ≥
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Example
Π = (5,5,3,3,2,2,2)
Π’ = (4,2,2,1,1,2)
Π1 = (4,2,2,2,1,1)
Π’1 = (1,1,1,0,1)
Π2 = (1,1,1,1,0)
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The theorem of Erdös and Gallai
Theorem: Let Π = (d1, d2, …, dv) be a partition of 2e

into v > 1 parts.

Then Π is graphical, if and only if, for each integer 
r,                  ,

For a proof of this theorem, check Harary, p.59-61.

1 2 ... vd d d≥ ≥ ≥

1 1r v≤ ≤ −

1 1
( 1) min( , )

r v

i i
i i r

d r r r d
= = +

≤ − +∑ ∑


