GRAPH THEORY and APPLICATIONS

Connectivity

Connectivity

Consider the following graphs:

- A is a tree. Deleting any edge disconnects it.
- B cannot be disconnected by deleting single edge, but can be disconnected by deleting one vertex.
- C does not have any cut edge or cut vertex.
- D is still more connected than C.
- Intuitively each graph is more strongly connected than the previous one.

Vertex Cut

- Vertex cut: A subset V' of V such that G V' is disconnected.
- k-vertex cut: A vertex cut of k elements.
 - □ A complete graph has no vertex cut.
- The connectivity κ(G) is:
 - If G has at least one pair of non-adjacent vertices, minimum k for which G has a k-vertex cut.
 - \Box Otherwise, $\kappa(G) = v 1$
- $\kappa(G)=0$ if G is disconnected.
- G is k-connected if $\kappa(G) \ge k$.
 - \Box All connected graphs with v > 1 are 1-connected.

Edge Cut

- Edge cut: A subset of E of the form [S, S] where S is a nonempty, proper subset of V.
- k-edge cut: An edge cut of k elements.
- The edge-connectivity κ'(G) is:
 - If G has at least one pair of vertices, minimum k for which G has a k-edge cut.
- $\kappa'(G)=0$ if G is disconnected or v = 1.
- G is k-edge-connected if $\kappa'(G) \ge k$.
 - All connected graphs with v > 1 are 1-edge-connected.

Connectivity

Theorem: $\kappa \leq \kappa' \leq \delta$

The inequalities are often strict.

Connectivity pair

 Separating a graph by removing a mixed set of vertices and edges.

Connectivity pair:

- An ordered pair (a,b) of nonnegative integers, such that there is:
 - \Box a set of a vertices, and
 - □ a set of b edges

whose removal disconnects the graph.

- There is no:
 - □ set of a-1 vertices and b edges, or
 - □ set of a vertices and b-1 edges

with this property.

Connectivity pair

- The two ordered pairs (κ,0) and (0,κ') are connectivity pairs.
- The connectivity pair generalizes both vertex and edge connectivity.
- For each value of a, 0 ≤ a ≤ κ there is a unique connectivity pair (a,b_a).

 \Box G has exactly κ + 1 connectivity pairs.

Connectivity function

The connectivity pairs of a graph G determine a function *f*,

 \Box from the set of {1, 2, ..., κ}

□ into the nonnegative integers

such that $f(\kappa) = 0$.

The connectivity function is strictly decreasing.

Theorem: Every decreasing function *f* from $\{1, 2, ..., \kappa\}$ into the nonnegative integers, such that $f(\kappa) = 0$, is the connectivity function of some graph.

Blocks

■ Block: A connected graph that has no cut vertex. □ A block with $v \ge 3$ is 2-connected.

Block of a graph: A subgraph that is:

□ a block

□ maximal with respect to this property.

Every graph is the union of its blocks.

Graph Theory and Applications © 2007 A. Yayimli

Characterization of 3-connected graphs

The wheel: For n≥4, W_n is defined to be the graph: K_1+C_{n-1}

- Tutte's Theorem: A graph G is 3-connected iff G is a wheel, or can be obtained from a wheel by a sequence of operations of type:
 - \Box The addition of a new edge.
 - □ Replacing a vertex v of degree at least 4, by two adjacent vertices v_1 and v_2 such that:
 - each vertex formerly joined to v is connected to exactly one of v_1 and v_2 .
 - Degrees of v_1 and v_2 are at least 3.

Example

Graph Theory and Applications $\ensuremath{\mathbb{C}}$ 2007 A. Yayimli

Menger's Theorem

In 1927 Menger showed that: the connectivity of a graph is related to the number of disjoint paths joining distinct vertices in the graph.

Menger's Theorem: The minimum number of vertices separating two nonadjacent vertices s and t is the maximum number of disjoint s-t paths.

Whitney's Theorem (1932): A graph G is n-connected iff every pair of vertices of G are connected by at least n internally-disjoint (vertex-disjoint) paths.

Variations of Menger's Theorem

- A analogous theorem to Menger's in which the pair of vertices are separated by a set of edges was discovered much later.
- Theorem: For any two vertices of a graph, the maximum number of edge-disjoint paths connecting them, is equal to the minimum number of edges which disconnect them.
- Similarly, we can form the edge-form of Whitney's result:
- Theorem: A graph G is n-edge-connected iff every pair of vertices of G are connected by at least n edge-disjoint paths.

Variations of Menger's Theorem – 2

Theorem:

For any two disjoint nonempty sets of vertices V_1 and V_2 , the maximum number of disjoint paths connecting them, is equal to the minimum number of vertices which separate V_1 and V_2 .

 \square No vertex of V₁ is adjacent to any vertex of V₂.

All of the variations have corresponding digraph forms.

- □ directed, undirected
- specific vertices, general vertices, two sets of vertices
- vertex-disjoint, edge-disjoint

A total of 2x3x2 = 12 theorems!

Circuits

A cotree of a graph G w.r.t. a spanning tree T(V,E'): The set of edges E - E'.

□ If G has n vertices, then any cotree has |E| - (n-1) edges.

Any edge of a cotree is called a chord.

Graph Theory and Applications © 2007 A. Yayimli

Ring-sum Operation

■ Ring-sum $G_1 \oplus G_2$ of two graphs $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$, is the graph:

 $G_1 \oplus G_2 = ((V_1 \cup V_2), ((E_1 \cup E_2) - (E_1 \cap E_2)))$

Edges of a ring-sum consist of edges:

- \Box which are either in G_1 or G_2 , but
- □ which are not in both graphs.
- Ring-sum is both commutative and associative.

Fundamental Circuits

- The addition of a chord to a spanning tree creates precisely one circuit.
- The collection of these circuits w.r.t. a particular spanning tree is a set of fundamental circuits.
- Any arbitrary circuit of the graph may be expressed as a linear combination of the fundamental circuits using the operation ringsum.

The fundamental circuits form <u>a basis for the</u> <u>circuit space</u>.

Fundamental Circuits Example

The fundamental set of circuits:

Some circuits of G expressed with fundamental circuits

Graph Theory and Applications © 2007 A. Yayimli

Fundamental Circuit Theorems

Theorem: A set of fundamental circuits, w.r.t. some spanning tree of a graph G, forms a basis for the circuit space of G.

Corollary: The circuit space for a graph with |E| edges and n vertices has dimension (|E|-n+1).

Finding fundamental circuits

Fundamental circuit set (FCS) can be found in polynomial-time.

```
Find a spanning tree T of G;

Find the corresponding cotree CT;

FCS = {};

for all e_i = (v_i, v_i') \in CT do

find the path from v_i to v_i' in T;

denote the path by P_i;

C_i = P_i \cup \{e_i\}

FCS = FCS \cup C_i;

endfor
```

Fundamental Cut-sets

- A cut-set of a connected graph, is a set of edges whose removal would disconnect the graph.
- No proper subset of a cut-set will cause disconnection.
- A cut-set is denoted by the partition of vertices that it induces:
 - \Box [P, \overline{P}], where
 - P is the subset of vertices in one component,
 - <u>P</u> = V P

Fundamental Cut-sets

- Let T be a spanning tree of a connected graph.
- Any edge of T defines a partition of vertices of G:
 The removal of this edge disconnects T

Then:

- There is a corresponding cut-set of G producing the same partition.
- This partition contains:
 - \Box One edge of T, and
 - □ A number of chords of T.
- Such a cut-set is called a fundamental cut-set.

Example

The set of fundamental cut-sets w.r.t. to T:

 $\Box C_{1} = \{e_{1}, e_{2}, e_{5}, e_{8}\}$ $\Box C_{2} = \{e_{4}, e_{2}, e_{5}, e_{7}\}$ $\Box C_{3} = \{e_{6}, e_{7}, e_{8}\}$ $\Box C_{4} = \{e_{3}, e_{5}, e_{8}\}$

Graph Theory and Applications © 2007 A. Yayimli

Fundamental Cut-set Theorems

Theorem: The fundamental cut-set w.r.t. some spanning tree of a graph G, forms a basis for the cut-sets of the graph.

Corollary: The cut-set space for a graph with n vertices has dimension n - 1.

Example

- Fundamental cut-sets:
 - \Box C₁ = {e₁,e₂,e₅,e₈}
 - \Box C₂ = {e₄,e₂,e₅,e₇}
 - \Box C₃ = {e₆,e₇,e₈}
 - $\Box \quad C_4 = \{e_3, e_5, e_8\}$
- Some other cut-sets:

1.
$$\{e_3, e_5, e_6, e_7\} = C_3 \oplus C_4$$

- 2. $\{e_1, e_4, e_6\} = C_1 \oplus C_2 \oplus C_3$
- 3. $\{e_1, e_2, e_3\} = C_1 \oplus C_4$

Application: Constructing a Reliable Network

Graph: representing a communication network

Connectivity (or edge-connectivity):

Smallest number of communication stations (*or communication links*) whose breakdown would jeopardize the communication.

- Higher the connectivity
 - \Rightarrow the more reliable the network.

Application

How do we create a reliable network, given the edge weights and nodes of the network?

Similar to connector problem

Minimum spanning tree connects all nodes, and has minimum weight.

□ But, a tree is not very reliable!

Generalization:

Determine a minimum-weight k-connected spanning subgraph of a graph G.

- □ G can be a complete graph or not.
- \Box k = 1: minimum spanning tree problem.

Application

- For values of k > 1, the problem is unsolved, and known to be difficult.
- However, the problem has a simple solution if:
 - □ G is a complete graph,
 - Each edge of G is assigned unit weight
- **Observation**: For a complete graph of n vertices with unit edge weights, a minimum-weight kconnected spanning subgraph is:
 - a k-connected graph on n vertices with as few edges as possible.

Application

f(*m*,*n*): the least number of edges that an m-connected graph on n vertices can have (m < n).

 $f(m,n) \geq \{mn/2\}$

- We will construct m-connected graphs $H_{m,n}$
- The structure of $H_{m,n}$ depends on the parities of m and n.

Case 1

- *m* is even.
- Let m = 2r.
- Then, H_{2r,n} is constructed as follows:
 - □ Vertices are numbered:
 0, 1, 2, ..., n 1
 - Two vertices *i*, and *j* are
 - joined if:

$$i - r \le j \le i + r$$

```
(addition in modulo)
```


*H*_{4,8}

Case 2

- *m* is odd, n is even.
- Let m = 2r + 1.
- Then, H_{2r+1,n} is constructed as follows:
 - \Box Draw $H_{2r,n}$
 - □ Add edges joining vertex *i* to vertex i+n/2 for: $1 \le i \le n/2$

H_{5,8}

Case 3

- *m* is odd, n is odd.
- Let m = 2r + 1.
- Then, H_{2r+1,n} is constructed as follows:
 - \Box Draw $H_{2r,n}$
 - □ Add edges joining:
 - 0 to *n* − 1 / 2
 - 0 to *n* + 1 / 2
 - vertex *i* to vertex i+(n+1)/2for $1 \le i \le (n-1)/2$

H_{5,9}

Resources:

- Edge, vertex-connectivity: Bondy&Murty: Ch.3
- Menger's Theorem: Harary: Ch.5
- Fundamental circuits and cut-sets: Gibbons: Sec.2.2

GRAPH THEORY and APPLICATIONS

Partitions

Degree Sequence

- The degrees d₁, d₂, ..., d_v of the points of a graph form a sequence of nonnegative integers.
 The sum of degree sequence is 2*e*.
- Partition of a positive integer n: A list of unordered sequence of positive integers whose sum is n.

 \Box Example: n = 4

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

- The degrees of a graph with no isolated vertices determine such a partition of 2e.
 - To have a general definition for all graphs, we use an extended definition: instead of positive use nonnegative.

Partition of a graph

- The partition of a graph: Partition of 2e as the sum of the degrees of the points.
- Only two of the five partitions of 4 belong to a simple graph.

• A partition $\sum d_i$ of n into v parts is graphical if there is a graph G whose points have degrees d_i .

Two questions

- How can one tell whether a given partition is graphical?
- How can one construct a graph for a given graphical partition?
- An answer to the first question: by Erdös and Gallai (1960)
- Another answer to both: by Havel (1955) and by Hakimi (1962) (independently)

Havel and Hakimi's solution

Theorem: A partition $\Pi = (d_1, d_2, ..., d_v)$ of an even number into *v* parts with:

$$v-1 \ge d_1 \ge d_2 \ge \ldots \ge d_v$$

is graphical if and only if the modified partition

$$\Pi' = (d_2 - 1, d_3 - 1, \dots, d_{d_{1+1}} - 1, d_{d_{1+2}}, \dots d_v)$$

is graphical.

Proof

• If Π' is graphical, then so is Π .

□ From a graph with partition Π' we can construct a graph with partition Π, by adding a new vertex adjacent to vertices of degrees:

$$d_2 - 1, d_3 - 1, \dots, d_{d_{1+1}} - 1$$

- Let G be a graph with partition Π .
 - □ If a vertex of degree d_1 is adjacent to vertices of degrees d_i for i = 2 to d_1 +1,
 - \Box then, the removal of this vertex results in a graph with partition $\Pi'.$

Proof – 2

- Suppose that G has no such vertex.
- Assume v₁ is a vertex of degree d₁ for which:
 the sum of the degrees of the adjacent vertices is maximum.
- Then:
 - \Box there are vertices v_i and v_j with $d_i > d_j$
 - $\Box v_I v_j$ is an edge,
 - \Box but $v_I v_i$ is not.
- Therefore some vertex v_k is adjacent to v_i but not to v_j.
- Remove $v_i v_j$ and $v_k v_i$. Add $v_i v_i$ and $v_k v_i$. Repeat!

Constructing the graph

- The theorem gives an effective algorithm for constructing a graph with a given partition.
- Corollary (Algorithm): A given partition

 $\Pi = (d_1, d_2, ..., d_v)$ with:

 $v-1 \ge d_1 \ge d_2 \ge \ldots \ge d_v$

is graphical, if and only if the following procedure results in a partition with every term zero.

- $\hfill\square$ Determine the modified partition Π' as in the theorem.
- □ Reorder the terms of Π ' so that they are non-increasing, and call it partition Π_1 .
- Go to step 1 and continue as long as non-negative terms are obtained.

Example

 $\blacksquare \Pi_2 = (1, 1, 1, 1, 0)$

The theorem of Erdös and Gallai

Theorem: Let $\Pi = (d_1, d_2, ..., d_v)$ be a partition of 2einto v > 1 parts. $d_1 \ge d_2 \ge ... \ge d_v$

Then Π is graphical, if and only if, for each integer r, $1 \le r \le v-1$, $\sum_{i=1}^{r} d_i \le r(r-1) + \sum_{i=r+1}^{v} \min(r, d_i)$

□ For a proof of this theorem, check Harary, p.59-61.