GRAPH THEORY and APPLICATIONS

Trees

Properties

- Tree: a connected graph with no cycle (acyclic)
- Forest: a graph with no cycle
- Paths are trees.
- Star: A tree consisting of one vertex adjacent to all the others.

Trees as Models

- Trees are used in many applications: analysis of algorithms, compilation of algebraic expressions, theoretical models of computation, etc.
 - □ Search trees
 - □ Abstract models: sort techniques like heapsort.

Number of Edges

Theorem: In every tree T = (V, E),

|V| = |E| + 1

Proof: by induction on number of edges.

□ If |E| = 0 then the tree consists of a single isolated vertex.

Assume that the theorem is true for trees of at most k edges.

Number of Edges

Consider a tree T, where |E| = k + 1

The edge (y,z) is removed: Two subtrees T_1 and T_2 . $|V| = |V_1| + |V_2|$ and $|E| = |E_1| + |E_2| + 1$. Since $0 \le |E_1| \le k$ and $0 \le |E_2| \le k$,

$$|V_1| = |E_1| + 1$$
 and $|V_2| = |E_2| + 1$.

Consequently,

$$|V| = |V_1| + |V_2| = |E_1| + 1 + |E_2| + 1 = |E_1| + |E_2| + 1 + 1 = |E| + 1$$

Definition of Tree

- **Theorem**: The following statements are equivalent for a loop-free undirected graph G = (V, E):
 - A. G is a tree.
 - B. G is connected, but the removal of any edge from G disconnects G into two subgraphs that are trees.
 - C. G contains no cycle, and |V| = |E| + 1.
 - D. G is connected, and |V| = |E| + 1.
 - E. G contains no cycle, and if a, b ∈ V with
 (a, b) ∉ E, then the graph obtained by adding
 (a, b) to G has precisely one cycle.

Proof

■ A ⇒ B

 \Box If G is a tree, then G is connected.

- □ Let e = (a,b) be any edge of G. Then, *if* G-e is connected, there are at least two paths in G from a to b.
- \Box From two such paths we can form a cycle.
- □ But G has no cycle.
- Hence, G-e is disconnected and the vertices in G-e can be partitioned into two subsets:
 - Vertex a and those vertices that can be reached from a.
 - Vertex b and those vertices that can be reached from b.
- □ These two connected components are trees, because a loop or cycle in either component would also be in G.

Proof (cont.)

■ B ⇒ C

- □ If G contains a cycle then let e = (a,b) be an edge of the cycle.
- But then, G-e is connected, contradicting the hypothesis in part B.
- □ So, G contains no cycle.
- Since G is a loop-free connected graph, we know that G is a tree.
- □ Then, |V| = |E| + 1.

Proof (cont.)

■ C ⇒ D

 \Box Assume G is not connected.

 \Box Let G₁, G₂, ..., G_r be components of G.

- □ For $1 \le i \le r$, select a vertex $v_i \in G_i$ and add the r-1 edges (v_1, v_2) , (v_2, v_3) , ..., (v_{r-1}, v_r) to G to form G'.
- □ G' is a tree.

- □ From C, |V| = |E| + 1, so |E| = |E'| and r-1 = 0
- \Box With r = 1, it follows that G is connected.
- To complete the proof: $\Box D \Rightarrow E \land E \Rightarrow A$

More Definitions on Graphs

- Distance: If G has a (u,v) path, then the distance from u to v, d(u,v) is the least length of a (u,v) path.
- Eccentricity $\varepsilon(u)$ of a vertex u is max_{v εV} d(u,v).
- The radius of a graph G is $\min_{u \in V} \varepsilon(u)$

Each vertex is labeled with its eccentricity. Radius: 2 Diameter: 4 (maximum eccentricity)

Center of a Tree

- Center: The subgraph induced by the vertices of minimum eccentricity.
- Theorem: The center of a tree is a vertex or an edge (two adjacent vertices).

Graph Theory and Applications © 2007 A. Yayimli

Branch

- A branch at a node u of a tree is a maximal subtree containing u as an endnode.
 - □ The number of branches at u is the degree of u.
 - The weight at a node u is the maximum number of edges in any branch at u.

Centroid of a Tree

- A node v is a centroid, if v has minimum weight.
- The centroid of a tree consist of all centroid nodes.
- Theorem: The centroid of a tree is a vertex or an edge (two adjacent vertices).

Graph Theory and Applications © 2007 A. Yayimli

Center ≠ Centroid

Smallest trees with one and two central and centroid nodes:

Wiener Index

- In a communication network, large diameter is acceptable if most pairs can communicate via shortest paths.
 - □ We study the <u>average distance</u>.
 - \Box Average: Sum divided by n(n-1)/2. (all pairs)

 \Box It is equivalent to study:

$$D(G) = \sum_{u,v \in V} d_G(u,v)$$

□ This sum is called the Wiener Index of G.

Directed Tree

- Edges of a tree may be directed.
- If <u,v> is a directed edge, then:
 - \Box u is the parent of v,
 - \Box v is the child of u.
- A vertex v is the root of a directed tree, if there are paths from v to every other vertex in the tree.

Rooted Tree

- Definition: A rooted tree is a tree in which we identify a vertex v as root (indegree: 0).
- Level of a vertex: Vertices at distance i from the root lie at level i+1.
- The height of the rooted tree is its maximum level.

Ordered Trees

- Ordered tree: A directed tree in which the set of children of each vertex is ordered.
- Binary Tree: An ordered tree in which no vertex has more than two children:

 \Box Left child and right child.

- Complete binary tree: Every vertex has either two children or none.
- Balanced complete binary tree: Every endpoint (leaf) has the same level.

Complete Trees

Theorem:

- A complete balanced binary tree of height h has 2^h – 1 vertices.
- □ A complete balanced N-ary tree of height h has

$$\frac{N^h - 1}{N - 1} \quad \text{vertices.}$$

Cut Edge

A cut edge of G is an edge e such that G – e is disconnected.

This graph has 3 cut edges.

Theorem: A connected graph is a tree if and only if every edge is a cut edge.

Edge Cut

- For subsets S and S' of V,
 - \Box [S,S'] is the set of edges with one end in S, the other in S'.
- Edge cut: A subset of E of the form [S,S'], where
 - \Box S is a nonempty proper subset of V,

 \Box S' = V – S.

- Bond: A minimal nonempty edge cut of G.
- If G is connected, then a bond B is a minimal subset of E such that G – B is disconnected.

Graph Theory and Applications © 2007 A. Yayimli

Cut Vertex

• A vertex v is a cut vertex if:

- \square E can be partitioned into two nonempty subsets E_1 and $E_2,$
- \Box G[E₁] and G[E₂] have just the vertex v in common.

Spanning Tree

A spanning tree of a connected undirected graph G is a subgraph which is a tree and which contains all the vertices of G.

□ The construction of a communication network

□ A road map or railway system

Minimum-weighted Spanning Tree

- **Problem:** Given the cost of directly connecting any two nodes, problem is to find a network:
 - □ at minimum cost
 - □ and providing route between every two nodes
- Solution: The solution is the minimum-weighted spanning tree of the associated weighted graph.
- Minimum-weighted spanning tree can be found by an efficient algorithm.

Steiner Tree

- A generalization of the minimum-weighted spanning tree problem:
 - □ Given a proper subset V' of the vertices of a graph
 - find a minimum-weighted tree which spans the vertices of V'.
- Such a tree is called Steiner Tree.
- No efficient algorithm is known for Steiner tree problem.

Enumeration of Trees

- With one or two vertices, only one tree can be formed.
- With three vertices there is one isomorphism class. The adjacency matrix is determined by which vertex is the center.

 \Box So, there are 3 trees with 3 vertices.

Enumeration of Trees

- With 4 vertices:
 - □ There are 4 stars and 12 paths
 - \Box This yields to 16 trees.

- With 5 vertices, a careful study yields 125 trees.
- With n vertices, there are nⁿ⁻² trees: this is Cayley's Formula.

Spanning Trees in a Graph

- The complete graph with n vertices has all the edges that can be used in forming trees with n vertices.
- The number of spanning trees in a <u>complete</u> <u>graph</u> with n vertices is nⁿ⁻².
- Can we find a method to compute the number of spanning trees in any graph?

Contraction

- Definition: In a graph G, contraction of edge e with end points u and v is
 - □ the replacement of u and v with a single vertex
 - the incident edges of this vertex are the edges other than e that were incident to u and v.
- The resulting graph G e has one less edge than G.

Graph Theory and Applications © 2007 A. Yayimli

Recursive Solution

Proposition: Let τ(G) denote the number of spanning trees of a graph G. If e ∈ E is not a loop, then:

$$\tau(G) = \tau(G - e) + \tau(G \cdot e)$$

Example:

Recursive Solution

- This may lead to a recursive algorithm.
- We cannot apply the recurrence when e is a loop.
 - □ The loops do not affect the number of spanning trees.

□ Hence, we can delete loops as they arise.

If we try to compute by deleting and contracting every edge, the amount of computation grows exponentially with the size of the graph.

Matrix Tree Computation

- Form a matrix:
 - Put the vertex degrees on the diagonal
 - \Box The remaining elements are 0.
- Substract the adjacency matrix from it.

Example:

Matrix for the Kite

Matrix Tree Computation

- Delete a row and a column of the resulting matrix.
- Take the determinant.

■ det: - 4 + 0 + 0 - 0 - 2 - 2 = - 8

Matrix Tree Theorem

- Given a loopless graph G:
 - \Box Vertex set: $v_1, v_2, ..., v_n$
 - □ Let a_{ij} be the number of edges with endpoints v_i and v_j .
 - Let Q be the matrix in which entry (i,j) is:
 - -a_{ij} when i≠j
 - d(v_i) when i=j.

If Q* is obtained by deleting rows s and column t of Q, then:

$$\tau(G) = (-1)^{s+t} det(Q^*)$$

The Connector Problem

- A railway network connecting a number of towns is to be set up.
- Given:
 - the cost c_{ij} of constructing a direct line between towns i and j
- Design:
 - \Box a network minimizing the total cost of construction.

Representing the connector problem

- Town = vertex
- direct line = edge
- Represent the map of possible lines as a graph.
- The problem becomes:
 - In a weighted (c_{ij}) graph, find a spanning subgraph of minimum weight.
 - As costs are positive numbers, this is equivalent to finding a minimum spanning tree.

Minimum Spanning Tree: Kruskal's Algorithm

- Edges: e₁, e₂, ..., e_n
- Weights: w(e_i)

```
Choose a link e_1 such that w(e_1) is minimum.

count = 0

<u>repeat</u>

<u>if</u> edges e_1, e_2, ..., e_i have been chosen <u>then</u>

choose an edge e_{i+1} from E - \{e_1, e_2, ..., e_i\} so that:

G[\{e_1, e_2, ..., e_{i+1}\}] contains no cycle

w(e_{i+1}) is minimum.

<u>endif</u>

count = count + 1

<u>until</u> the tree has n-1 edges (count == n-1).
```

Example

Kruskal's Algorithm

Theorem: Any spanning tree constructed by Kruskal's algorithm is an optimal (minimum) tree.

What about the complexity?

- The edges can be sorted in increasing order of weights. This takes O(e loge) time.
- At each step one edge is added to the tree, the algorithm ends when no more edges can be added.
 - □ Although the tree will contain n 1 edges for an n node graph, we may need to examine e edges.
 - □ Hence, the number of steps necessary to construct the tree is e.

Complexity of Kruskal's Algorithm

- At each step we check that the new edge doesn't create a cycle.
 - The vertices are labeled so that at any stage, two vertices belong to the same component if they have the same label.
 - \Box Initially, v₁ belongs to component 1, and so on.
 - Once e_i is added to the tree, the vertices at the ends are relabeled with the smaller of their two labels.
 - So, we can check whether a new edge creates a cycle, by checking the labels of its endpoints.
 - \Box Relabeling may take O(n) comparisons.
- Therefore, the algorithm is O(e.n + eloge) = O(e.n)

The Directed Minimum Spanning Tree Problem

Problem Statement

- Consider a directed graph, G(V,A).
- Associated with each arc (i,j) is a cost c(i,j).
- Let |V|=n and |A|=m.
- The problem is to find:
- A rooted directed spanning tree, G(V,S) where:
 - S is a subset of A such that the sum of c(i,j) for all (i,j) in S is minimized.
 - □ **The rooted directed spanning tree:** A graph which connects, without any cycle, all nodes with n-1 arcs.
 - Each node, except the root, has one and only one incoming arc.

Chu-Liu/Edmonds Algorithm

- Discard the arcs entering the root if any.
- For each node other than the root
 - select the entering arc with the smallest cost
- If no cycle formed, G(V,S) is a MST. Otherwise, continue.

For each cycle formed:

- $\hfill\square$ contract the nodes in the cycle into a pseudo-node k
- modify the cost of each arc which enters a node j in the cycle from some node i outside the cycle according to the following equation:

c(i,k) = c(i,j)-(c(x(j),j) - min(c(in-cycle edges)))

where c(x(j),j) is the cost of the arc in the cycle which enters j.

- For each pseudo-node:
 - \Box select the entering arc with the smallest modified cost
 - Replace the arc in S (to same real node) by the new selected arc.
- Go to step 3.

Graph Theory and Applications © 2007 A. Yayimli

Tree Application: Branch-and-Bound Method

Knapsack problem:

- A container
- Several items, each associated with:
 - □ a size, and
 - □ a value.
- Which items should we choose to pack in the container, so that:
 - The total value is maximized
 - □ The total size do not exceed container's size.

Tree Application: Branch-and-Bound Method

- To find the optimal solution, we need to examine all possible combinations.
- Difficult problem
- Suppose we have 5 items:

ltem	Α	В	С	D	Е
Weight	3	8	6	4	2
Value	2	12	9	3	5

Container size = 9

Tree Application

- Find a packing of:
 - □ Largest possible total value.
 - Total weight should not exceed 9.
- List all possible packings: 32 possibility
 - Choose the one with maximum value.
 - Not practical for large problem size.
- A more efficient procedure: Branch-and-bound method:
 - Search through a tree of possible solutions.

Solution: First Step

List the items in decreasing order of value per unit weight:

Order	1	2	3	4	5
Item	Е	В	С	D	А
Weight	2	8	6	4	3
Value	5	12	9	3	2
Value per unit	2.5	1.5	1.5	0.75	0.67

Solution

- Denote each possible packing by a solution vector (x₁, x₂, x₃, x₄, x₅)
- x_i = 1, if item i is packed
- $x_i = 0$, otherwise
- (0,0,1,1,0) includes items 3 and 4 (C and D).
- Feasible solution: A solution which satisfies the weight constraint.

 \Box (0,0,1,1,0) is infeasible. Weight = 10

Branching out

From vector (0,1,0,0,0) we can branch out:

- New solutions have 1 more item.
- We may change only the positions to the right of the last 1.
- The branch-and-bound starts with a null solution

- Store: v = 12, solution = (0,1,0,0,0)
- (0,0,0,0,1) is marked with a square: We cannot continue the branching from this vertex.

Example

- Delete the marked vertex.
- Continue the branching from the solution with the highest value.

- All three new solutions are infeasible.
- Continue from (0,0,1,0,0)

- Cut the marked branches.
- Continue from vertex: (1,0,0,0,0)

Home study:

- Finish the branch-and-bound example.
- Research
 - Prim's Algorithm