
GRAPH THEORY
and APPLICATIONS

Trees

Graph Theory and Applications © 2007 A. Yayimli 2

Properties
Tree: a connected graph with no cycle (acyclic)
Forest: a graph with no cycle
Paths are trees.
Star: A tree consisting of one vertex adjacent to
all the others.

Graph Theory and Applications © 2007 A. Yayimli 3

Trees as Models
Trees are used in many applications:
analysis of algorithms, compilation of
algebraic expressions, theoretical models of
computation, etc.

Search trees
Abstract models: sort techniques like heapsort.

Graph Theory and Applications © 2007 A. Yayimli 4

Number of Edges

Theorem: In every tree T = (V, E),
|V| = |E| + 1

Proof: by induction on number of edges.
If |E| = 0 then the tree consists of a single isolated
vertex.
|V| = 1 = |E| + 1
Assume that the theorem is true for trees of at most k
edges.

Graph Theory and Applications © 2007 A. Yayimli 5

Number of Edges
Consider a tree T, where |E| = k + 1

The edge (y,z) is removed: Two subtrees T1 and T2.
|V| = |V1| + |V2| and |E| = |E1| + |E2| + 1.
Since 0 ≤ |E1| ≤ k and 0 ≤ |E2| ≤ k,

|V1| = |E1| + 1 and |V2| = |E2| + 1.
Consequently,
|V| = |V1| + |V2| = |E1| + 1 + |E2| + 1 = |E1| + |E2| + 1 + 1 = |E| + 1

y

z

Graph Theory and Applications © 2007 A. Yayimli 6

Definition of Tree
Theorem: The following statements are equivalent

for a loop-free undirected graph G = (V, E):
A. G is a tree.
B. G is connected, but the removal of any edge from G

disconnects G into two subgraphs that are trees.
C. G contains no cycle, and |V| = |E| + 1.
D. G is connected, and |V| = |E| + 1.
E. G contains no cycle, and if a, b ∈ V with

(a, b) ∉ E, then the graph obtained by adding
(a, b) to G has precisely one cycle.

Graph Theory and Applications © 2007 A. Yayimli 7

Proof
A ⇒ B

If G is a tree, then G is connected.
Let e = (a,b) be any edge of G. Then, if G-e is connected, there
are at least two paths in G from a to b.
From two such paths we can form a cycle.
But G has no cycle.
Hence, G-e is disconnected and the vertices in G-e can be
partitioned into two subsets:

Vertex a and those vertices that can be reached from a.
Vertex b and those vertices that can be reached from b.

These two connected components are trees, because a loop or
cycle in either component would also be in G.

Graph Theory and Applications © 2007 A. Yayimli 8

Proof (cont.)
B ⇒ C

If G contains a cycle then let e = (a,b) be an edge of
the cycle.
But then, G-e is connected, contradicting the
hypothesis in part B.
So, G contains no cycle.
Since G is a loop-free connected graph, we know that
G is a tree.
Then, |V| = |E| + 1.

Graph Theory and Applications © 2007 A. Yayimli 9

Proof (cont.)
C ⇒ D

Assume G is not connected.
Let G1, G2, …, Gr be components of G.
For 1 ≤ i ≤ r, select a vertex vi ∈ Gi and add the r-1
edges (v1,v2), (v2,v3), …, (vr-1,vr) to G to form G’.
G’ is a tree.
|V| = |E’| + 1
From C, |V| = |E| + 1, so |E| = |E’| and r-1 = 0
With r = 1, it follows that G is connected.

To complete the proof:
D ⇒ E ∧ E ⇒ A

Graph Theory and Applications © 2007 A. Yayimli 10

More Definitions on Graphs
Distance: If G has a (u,v) path, then the distance
from u to v, d(u,v) is the least length of a (u,v)
path.
Eccentricity ɛ(u) of a vertex u is maxvεVd(u,v).
The radius of a graph G is minuεV ɛ(u)

4 4 4 4
2

3 3 4

4

4 3 4 3

Each vertex is labeled
with its eccentricity.
Radius: 2
Diameter: 4 (maximum
eccentricity)

Graph Theory and Applications © 2007 A. Yayimli 11

Center of a Tree
Center: The subgraph induced by the vertices of
minimum eccentricity.

Theorem: The center of a tree is a vertex or an
edge (two adjacent vertices).

5 4 4

5 4 3 3 4 5

5 4 4 5

Graph Theory and Applications © 2007 A. Yayimli 12

Branch
A branch at a node u of a tree is a maximal
subtree containing u as an endnode.

The number of branches at u is the degree of u.
The weight at a node u is the maximum number of
edges in any branch at u.

u

Graph Theory and Applications © 2007 A. Yayimli 13

Centroid of a Tree
A node v is a centroid, if v has minimum weight.
The centroid of a tree consist of all centroid
nodes.

Theorem: The centroid of a tree is a vertex or an
edge (two adjacent vertices).

11

12 6 9 12

Graph Theory and Applications © 2007 A. Yayimli 14

Center ≠ Centroid
Smallest trees with one and two central and
centroid nodes:

1 CENTER 2

1

CENT-
ROID

2

Graph Theory and Applications © 2007 A. Yayimli 15

Wiener Index
In a communication network, large diameter is
acceptable if most pairs can communicate via
shortest paths.

We study the average distance.
Average: Sum divided by n(n-1)/2. (all pairs)
It is equivalent to study:

This sum is called the Wiener Index of G.

,

() (,)G
u v V

D G d u v
∈

= ∑

Graph Theory and Applications © 2007 A. Yayimli 16

Directed Tree
Edges of a tree may be directed.
If <u,v> is a directed edge, then:

u is the parent of v,
v is the child of u.

A vertex v is the root of a directed tree, if there
are paths from v to every other vertex in the tree.

Graph Theory and Applications © 2007 A. Yayimli 17

Rooted Tree
Definition: A rooted tree is a tree in which we
identify a vertex v as root (indegree: 0).
Level of a vertex: Vertices at distance i from the
root lie at level i+1.
The height of the rooted tree is its maximum
level.

root

Graph Theory and Applications © 2007 A. Yayimli 18

Ordered Trees
Ordered tree: A directed tree in which the set of
children of each vertex is ordered.
Binary Tree: An ordered tree in which no vertex
has more than two children:

Left child and right child.
Complete binary tree: Every vertex has either
two children or none.
Balanced complete binary tree: Every endpoint
(leaf) has the same level.

Graph Theory and Applications © 2007 A. Yayimli 19

Complete Trees
Theorem:

A complete balanced binary tree of height h has
2h – 1 vertices.
A complete balanced N-ary tree of height h has

vertices.
1
1

hN
N

−
−

Graph Theory and Applications © 2007 A. Yayimli 20

Cut Edge
A cut edge of G is an edge e such that G – e is
disconnected.

This graph has 3 cut edges.

Theorem: A connected graph is a tree if and only
if every edge is a cut edge.

Graph Theory and Applications © 2007 A. Yayimli 21

Edge Cut
For subsets S and S’ of V,

[S,S’] is the set of edges with one end in S, the other in S’.

Edge cut: A subset of E of the form [S,S’], where
S is a nonempty proper subset of V,
S’ = V – S.

Bond: A minimal nonempty edge cut of G.
If G is connected, then a bond B is a minimal subset of E
such that G – B is disconnected.

an edge cut a bond

Graph Theory and Applications © 2007 A. Yayimli 22

Cut Vertex
A vertex v is a cut vertex if:

E can be partitioned into two nonempty subsets E1
and E2,
G[E1] and G[E2] have just the vertex v in common.

cut vertices

Graph Theory and Applications © 2007 A. Yayimli 23

Spanning Tree
A spanning tree of a connected undirected
graph G is a subgraph which is a tree and which
contains all the vertices of G.

The construction of a communication network
A road map or railway system

Graph Theory and Applications © 2007 A. Yayimli 24

Minimum-weighted Spanning Tree
Problem: Given the cost of directly connecting any

two nodes, problem is to find a network:
at minimum cost
and providing route between every two nodes

Solution: The solution is the minimum-weighted
spanning tree of the associated weighted graph.

Minimum-weighted spanning tree can be found
by an efficient algorithm.

Graph Theory and Applications © 2007 A. Yayimli 25

Steiner Tree
A generalization of the minimum-weighted
spanning tree problem:

Given a proper subset V’ of the vertices of a graph
find a minimum-weighted tree which spans the
vertices of V’.

Such a tree is called Steiner Tree.
No efficient algorithm is known for Steiner tree
problem.

Graph Theory and Applications © 2007 A. Yayimli 26

Enumeration of Trees
With one or two vertices, only one tree can be
formed.
With three vertices there is one isomorphism
class. The adjacency matrix is determined by
which vertex is the center.

So, there are 3 trees with 3 vertices.

Graph Theory and Applications © 2007 A. Yayimli 27

Enumeration of Trees
With 4 vertices:

There are 4 stars and 12 paths
This yields to 16 trees.

With 5 vertices, a careful study yields 125 trees.
With n vertices, there are nn-2 trees:
this is Cayley’s Formula.

a b d

b c d a c

Graph Theory and Applications © 2007 A. Yayimli 28

Spanning Trees in a Graph
The complete graph with n vertices has all the
edges that can be used in forming trees with n
vertices.
The number of spanning trees in a complete
graph with n vertices is nn-2.
Can we find a method to compute the number of
spanning trees in any graph?

Not containing
the diagonal

Containing
the diagonal

Graph Theory and Applications © 2007 A. Yayimli 29

Contraction
Definition: In a graph G, contraction of edge e
with end points u and v is

the replacement of u and v with a single vertex
the incident edges of this vertex are the edges other
than e that were incident to u and v.

The resulting graph G·e has one less edge
than G.

u

e

v
G G·e

Graph Theory and Applications © 2007 A. Yayimli 30

Recursive Solution
Proposition: Let τ(G) denote the number of
spanning trees of a graph G. If e ∈ E is not a
loop, then:

τ(G) = τ(G-e) + τ(G·e)
Example:

+

a b

c d

e

G G – e
4 spanning trees

G·e
4 spanning trees

Graph Theory and Applications © 2007 A. Yayimli 31

Recursive Solution
This may lead to a recursive algorithm.
We cannot apply the recurrence when e is a
loop.

The loops do not affect the number of spanning trees.
Hence, we can delete loops as they arise.

If we try to compute by deleting and contracting
every edge, the amount of computation grows
exponentially with the size of the graph.

Graph Theory and Applications © 2007 A. Yayimli 32

Matrix Tree Computation
Form a matrix:

Put the vertex degrees on the diagonal
The remaining elements are 0.

Substract the adjacency matrix from it.
Example:

2000d
0300c
0030b
0002a
dcba

0110d
1011c
1101b
0110a
dcba

2-1-10d
-13-1-1c
-1-13-1b
0-1-12a
dcba

– =

Matrix for the Kite

Graph Theory and Applications © 2007 A. Yayimli 33

Matrix Tree Computation
Delete a row and a column of the resulting
matrix.
Take the determinant.

det: - 4 + 0 + 0 – 0 – 2 – 2 = - 8

2-1-10d
-13-1-1c
-1-13-1b
0-1-12a
dcba

2-10d
-1-1-1b
0-12a
dca

Graph Theory and Applications © 2007 A. Yayimli 34

Matrix Tree Theorem
Given a loopless graph G:

Vertex set: v1, v2, …, vn

Let aij be the number of edges with endpoints vi and
vj.
Let Q be the matrix in which entry (i,j) is:

-aij when i≠j
d(vi) when i=j.

If Q* is obtained by deleting rows s and column t of Q,
then:

τ(G) = (-1)s+tdet(Q*)

Graph Theory and Applications © 2007 A. Yayimli 35

The Connector Problem
A railway network connecting a number of towns
is to be set up.
Given:

the cost cij of constructing a direct line between towns
i and j

Design:
a network minimizing the total cost of construction.

Graph Theory and Applications © 2007 A. Yayimli 36

Representing the connector problem
Town = vertex
direct line = edge
Represent the map of possible lines as a graph.
The problem becomes:

In a weighted (cij) graph, find a spanning subgraph of
minimum weight.
As costs are positive numbers, this is equivalent to
finding a minimum spanning tree.

Graph Theory and Applications © 2007 A. Yayimli 37

Minimum Spanning Tree: Kruskal’s Algorithm

Edges: e1, e2, …, en

Weights: w(ei)

Choose a link e1 such that w(e1) is minimum.
count = 0
repeat

if edges e1, e2, …, ei have been chosen then
choose an edge ei+1 from E – {e1,e2,…,ei} so that:

G[{e1, e2, …, ei+1}] contains no cycle
w(ei+1) is minimum.

endif
count = count + 1

until the tree has n-1 edges (count == n-1).

Graph Theory and Applications © 2007 A. Yayimli 38

Example

Bei 68 NY

60 51 35 56

Lon

Tok 70 Mex
2

13 61 68 78 57 21

51 36

Par

Graph Theory and Applications © 2007 A. Yayimli 39

Kruskal’s Algorithm
Theorem: Any spanning tree constructed by Kruskal’s
algorithm is an optimal (minimum) tree.

What about the complexity?
The edges can be sorted in increasing order of weights.
This takes O(e loge) time.
At each step one edge is added to the tree, the algorithm
ends when no more edges can be added.

Although the tree will contain n – 1 edges for an n node graph,
we may need to examine e edges.
Hence, the number of steps necessary to construct the tree is e.

Graph Theory and Applications © 2007 A. Yayimli 40

Complexity of Kruskal’s Algorithm
At each step we check that the new edge doesn’t create
a cycle.

The vertices are labeled so that at any stage, two vertices
belong to the same component if they have the same label.
Initially, v1 belongs to component 1, and so on.
Once ei is added to the tree, the vertices at the ends are
relabeled with the smaller of their two labels.
So, we can check whether a new edge creates a cycle, by
checking the labels of its endpoints.
Relabeling may take O(n) comparisons.

Therefore, the algorithm is O(e.n + eloge) = O(e.n)

Graph Theory and Applications © 2007 A. Yayimli 41

The Directed Minimum Spanning Tree Problem
Problem Statement

Consider a directed graph, G(V,A).
Associated with each arc (i,j) is a cost c(i,j).
Let |V|=n and |A|=m.

The problem is to find:
A rooted directed spanning tree, G(V,S) where:

S is a subset of A such that the sum of c(i,j) for all (i,j) in S is
minimized.
The rooted directed spanning tree: A graph which connects,
without any cycle, all nodes with n-1 arcs.
Each node, except the root, has one and only one incoming arc.

Graph Theory and Applications © 2007 A. Yayimli 42

Chu-Liu/Edmonds Algorithm
Discard the arcs entering the root if any.
For each node other than the root

select the entering arc with the smallest cost
If no cycle formed, G(V,S) is a MST.
Otherwise, continue.
For each cycle formed:

contract the nodes in the cycle into a pseudo-node k
modify the cost of each arc which enters a node j in the
cycle from some node i outside the cycle according to the
following equation:

c(i,k) = c(i,j)-(c(x(j),j) - min(c(in-cycle edges))

where c(x(j),j) is the cost of the arc in the cycle which
enters j.

For each pseudo-node:
select the entering arc with the smallest modified cost
Replace the arc in S (to same real node) by the new
selected arc.

Go to step 3.

Graph Theory and Applications © 2007 A. Yayimli 43

Directed MST Example
Root: 1

1 10 5

7 4 6

3

2 9 11

1

2 3

4 5

6

8

1 9 5

7 4 6

3

2 9 8

1

2 3

4 5

6

7

1 9 5

7 4 6

3

2 9 8

1

2 3

4 5

6

7

Graph Theory and Applications © 2007 A. Yayimli 44

Tree Application: Branch-and-Bound Method
Knapsack problem:

A container
Several items, each associated with:

a size, and
a value.

Which items should we choose to pack in the
container, so that:

The total value is maximized
The total size do not exceed container’s size.

Graph Theory and Applications © 2007 A. Yayimli 45

Tree Application: Branch-and-Bound Method
To find the optimal solution, we need to examine
all possible combinations.
Difficult problem
Suppose we have 5 items:

Container size = 9

539122Value

24683Weight

EDCBAItem

Graph Theory and Applications © 2007 A. Yayimli 46

Tree Application
Find a packing of:

Largest possible total value.
Total weight should not exceed 9.

List all possible packings: 32 possibility
Choose the one with maximum value.
Not practical for large problem size.

A more efficient procedure:
Branch-and-bound method:

Search through a tree of possible solutions.

Graph Theory and Applications © 2007 A. Yayimli 47

Solution: First Step
List the items in decreasing order of value per
unit weight:

0.670.751.51.52.5Value per unit

239125Value

34682Weight

ADCBEItem

54321Order

Graph Theory and Applications © 2007 A. Yayimli 48

Solution
Denote each possible packing by a solution
vector (x1, x2, x3, x4, x5)
xi = 1, if item i is packed
xi = 0, otherwise
(0,0,1,1,0) includes items 3 and 4 (C and D).
Feasible solution: A solution which satisfies the
weight constraint.

(0,0,1,1,0) is infeasible. Weight = 10

Graph Theory and Applications © 2007 A. Yayimli 49

Branching out
From vector (0,1,0,0,0) we can branch out:

New solutions have 1 more item.
We may change only the positions to the right of
the last 1.
The branch-and-bound starts with a null solution

(0,1,0,0,0) (0,1,0,1,0)

(0,1,0,0,1)

(0,1,1,0,0)

Graph Theory and Applications © 2007 A. Yayimli 50

Example

Store: v = 12, solution = (0,1,0,0,0)
(0,0,0,0,1) is marked with a square:
We cannot continue the branching from this
vertex.

(0,0,0,0,0) (0,0,1,0,0)

(0,0,0,1,0)

(0,1,0,0,0)

(1,0,0,0,0)

(0,0,0,0,1)

w = 2, v = 5

w = 8, v = 12

w = 6, v = 9

w = 4, v = 3

w = 3, v = 2

Graph Theory and Applications © 2007 A. Yayimli 51

Example
Delete the marked vertex.
Continue the branching from the solution with
the highest value.

(0,0,0,0,0) (0,0,1,0,0)

(0,0,0,1,0)

(0,1,0,0,0)

(1,0,0,0,0) v = 5

v = 9

v = 3

(0,1,0,1,0)

(0,1,0,0,1)

(0,1,1,0,0) w = 14

w = 12

w = 11

All three new solutions are infeasible.
Continue from (0,0,1,0,0)

Graph Theory and Applications © 2007 A. Yayimli 52

Example

Cut the marked branches.
Continue from vertex: (1,0,0,0,0)

(0,0,0,0,0) (0,0,1,0,0)

(0,0,0,1,0)

(1,0,0,0,0) v = 5

v = 3

(0,0,1,1,0)

(0,0,1,0,1)

w = 10

w = 9, v = 11
we cannot branch further

not feasible

Graph Theory and Applications © 2007 A. Yayimli 53

Home study:
Finish the branch-and-bound example.
Research

Prim’s Algorithm

