GRAPH THEORY and APPLICATIONS

Graph Coloring

Coloring

- Edge coloring: Coloring the edges of a graph, such that, no two adjacent edges are similarly colored.
 - □ A graph is k-edge-colorable if an edge-coloring using k colors exists.
 - \square Edge-chromatic index (number), $ψ_e(G)$: Minimum number of colors required for an edge-coloring of G.
- Vertex coloring: Coloring the vertices of a graph, such that, no two adjacent vertices are similarly colored.
 - □ A graph is k-vertex-colorable if a vertex-coloring using k colors exists.
 - □ Vertex-chromatic index (number), $\psi_v(G)$: Minimum number of colors required for a vertex-coloring of G.

Edge coloring

- An obvious lower bound: Maximum degree Δ of any vertex.
 - Edges meeting at any vertex must be differently colored.

Theorem: If G is a bipartite graph, then, $\psi_e(G) = \Delta$.

Theorem: If G is a complete graph with n vertices, then:

$$\Psi_e(G) = \begin{cases} \Delta & \text{if n is even} \\ \Delta + 1 & \text{if n is odd} \end{cases}$$

M

Vizing's theorem

Theorem: For any simple graph G:

$$\Delta \le \psi_e(G) \le \Delta + 1$$

- For an arbitrary graph, the question of whether or not $\psi_e(G) = \Delta$, is NP-complete.
- A result applying to graphs without loops, due to Vizing:

$$\Delta \le \psi_e(G) \le \Delta + M$$

- ☐ M (multiplicity): maximum number of edges joining any two vertices.
- □ For any M, there exists a multi-graph such that $\psi_e(G) = \Delta + M$

Vertex coloring

- Vizing's theorem provides tight bounds on $\psi_e(G)$ for arbitrary graphs.
- Unfortunately, for $\psi_{\nu}(G)$, no theorem exists which gives such tight bounds based on simple criteria.
- There is no known polynomial-time algorithm to determine ψ_v(G).
- For an arbitrary graph, the question of whether or not a graph contains a vertex coloring using less then k colors is NP-complete.

Vertex coloring

An obvious bound:

Theorem: Any graph G is $(\Delta + 1)$ -vertex colorable.

- The bound provided by the theorem can be far greater than the actual value of ψ_ν(G).
 - □ G may have a vertex arbitrarily large degree.
 - □ Ex: W₇

Theorem (Brooks): If G is not a complete graph, is connected, and has $\Delta \ge 3$, then G is Δ -vertex-colorable.

ÞΑ

Simple heuristic

- Given that the problem of finding $\psi_v(G)$ does not have a polynomial time solution, it is necessary to think in terms of heuristics, and maybe approximation methods.
- Consider:

```
for i = 1 to n do
    while N<sub>i</sub>[j] do j = j + 1;
    for all v ∈ A(i) do
        N<sub>v</sub>[j] = true;
    endfor
    C(i) = j;
endfor
```

```
N<sub>i</sub>[j] = true
if a neighbor of i is
colored in j
```

A(i): Adjacency list of i

C(i): Color of i

Simple heuristic

- The algorithm has O(n²)-complexity.
- The behaviour of this algorithm is highly sensitive to the order in which the vertices are colored.
- There are no known polynomial-time algorithms for which the performance ratio is bound by a constant.
- The best performance ratio (due to Johnson): O(n / log(n)).
- Garey & Johnson have shown that, if an approximation algorithm existed with a performance ratio of two or less, then it would be possible to find an optimal coloring in polynomial time.

An application

- Scheduling classes in an educational institution.
 - □ Acceptable teaching hours.
 - Many classes cannot be scheduled at the same time.
- Design the timetable, so that:
 - scheduled lectures are compressed into the shortest possible time.

Solution:

- □ Lectures: Vertices of the graph
- Edges: connecting the vertices (lectures) which cannot be scheduled at the same time.
- □ Color the vertices: Number of colors is the smallest time span within which the lectures can be scheduled.

ŊΑ

Critical graphs

- A graph G is critical if $\psi_v(H) < \psi_v(G)$ for every proper subgraph H of G.
- A k-critical graph is one that is k-chromatic and critical.
- Every k-chromatic graph has a k-critical subgraph.

A 4-critical graph (Grötzsch graph, 1958)

Critical graphs

Theorem: If G is k-critical, then $\delta \ge k - 1$.

(δ: minimum vertex degree)

Corollary: Every k-chromatic graph has at least k vertices of degree at least k – 1.

Hajos' conjecture

A subdivision of a graph G is a graph that can be obtained from G. by a sequence of edge subdivisions.

A necessary condition for a graph to be k-

chromatic, when $k \geq 3$:

Hajos' conjecture:

If G is k-chromatic, then G contains a subdivision of K_k.

Hajos' conjecture

■ Dirac settled the case k = 4:

Theorem: If G is 4-chromatic, then G contains a subdivision of K₄.

- Hajos' conjecture has not been settled in general case.
- It is known to be a very difficult problem.

ħΑ

Chromatic polynomial

- Introduced by Birkhoff.
- P_k(G): number of ways of vertex coloring the graph G with k colors.
 - □ A polynomial in k.
 - Referred to as chromatic polynomial of G.
- For the following graph:
 - □ Color the vertex of degree 3 first in k different ways,
 - □ Remaining vertices can each be colored in (k-1) ways.
- For any tree T with n vertices:

$$P_k(T_n) = k \cdot (k-1)^{n-1}$$

Chromatic polynomial

- Coloring the vertices of the graph on right:
 - Choice of k colors for the first vertex
 - \square k 1 for the second
 - \square k 2 for the third

In general, for complete graphs:

$$P_k(K_n) = k! / (k-n)!$$

■ For the graph Φ_n with n vertices and no edges:

$$P_k(\mathbf{\Phi}_n) = k^n$$

■ For $k < \psi_v(G)$, chromatic polynomial equals 0.

be.

Derivation of chromatic polynomial

- It is not easy to derive P_k(G) for an arbitrary graph.
- The following theorem provides a systematic derivation:

Theorem: Let u and v be adjacent vertices in graph G. Then,

$$P_k(G) = P_k(G - (u,v)) - P_k(G \circ (u,v))$$

- \Box G (u,v) is derived by deleting edge (u,v)
- □ G (u,v) is obtained by contracting the edge (u,v)

Derivation of chromatic polynomial

- Repeated application of the recursion formula will express P_k(G) as a linear combination of chromatic polynomials of graphs with no edges.
- The formula of the theorem may also be applied in the form:

$$P_k(G) = P_k(G + (u,v)) + P_k((G + (u,v)) \circ (u,v))$$

In the second form, recursive evaluations of the formula leads to a linear combination of chromatic polynomials of complete graphs.

Derivation

- If G has a large number of edges, then second form will derive P_k(G) more quickly.
- Whenever more than one edges arise between two vertices, only one edge is retained.
- $\psi_v(G)$ is the smallest value of k for which $P_k(G) > 0$.
- It is unlikely that P_k(G) can be found in polynomial time.
 - \square This would imply that an efficient determination of $\psi_v(G)$ existed.

Clique and coloring

- In any vertex-coloring of a graph, the vertices in a clique must be assigned different colors.
- A graph with a large clique, has a high chromatic number.
- This leads us to believe that, all graphs with large chromatic number have large cliques.
- Dirac: Is there a graph with no triangles but arbitrarily high chromatic number?
- A recursive construction for such graphs was first described by B. Descartes (1954).

M

Mycielski's construction

Theorem: For any positive integer k, there exists a k-chromatic graph containing no triangle.

- For k = 1 and k = 2, K₁ and K₂ have the required property.
- Suppose that we have already constructed a triangle-free graph G_k, with chromatic number k ≥ 2
- Let the vertices of G_k be $v_1, v_2, ..., v_n$.
- Form a new graph G_{k+1} from G_k :
 - \square Add n+1 new vertices $u_1, u_2, ..., u_n, v$
 - \square for 1 <= i <= n, join u_i to the neighbors of v_i and to v.

М

Mycielski's construction

M

Mycielski's construction

■ This construction yields, for all k >= 2, a triangle-free k-chromatic graph on 3*2^{k-2} – 1 vertices.

Relation to independent sets

- A k-coloring of G where $(V_1, V_2, ..., V_k)$ is the partition, is canonical if:
 - □ V₁ is a maximal independent set of G
 - \square V₂ is a maximal independent set of G V₁
 - \square V₃ is a maximal independent set of G (V₁ \cup V₂)
 - and so on.
- If G is k-colorable, then there is a canonical kcoloring of G.

Face coloring

Four color theorem: Four colors are sufficient to color the regions of a planar map, so that bordering regions are differently colored.

(Region: face of a graph embedded in the plane.)

This theorem was one of the best known unsolved problems, until 1976.

Face coloring

■ For maps of genus $g \ge 1$, Heawood has shown that the following number of colors are sufficient:

$$\left\lceil \frac{7 + \sqrt{(1+48g)}}{2} \right\rceil$$

- Proof of this formula does not carry over for g = 0.
- The fact that is also necessary was proved by Ringel and Youngs (1968) with two exceptions:
 - □ the sphere (and plane), and
 - □ the Klein bottle.

Four color theorem

- When the four-color theorem was proved in 1976, the Klein bottle was left as the only exception.
 - □ For Klein bottle, the Heawood formula gives seven, but the correct bound is six.
 - □ The proof of four color conjecture dates back to 1840.
- The first mathematician to propose the four-color conjecture for the plane was Moebius.
- Many mathematician contributed to the current proof.

Proof

- Proof of four color theorem made massive use of computer time.
 - Period of trials and errors
 - Insight gained from the results and performances of computer programs.
- Would not have been achieved without the computer.
- A critic said: "A good mathematical proof is like a poem - this is a telephone directory!"
- Efforts still continue to achieve shorter, easier proofs.