GRAPH THEORY

and APPLICATIONS

Graph Coloring



S
Coloring

m Edge coloring: Coloring the edges of a graph, such that,
no two adjacent edges are similarly colored.

A graph is k-edge-colorable if an edge-coloring using k
colors exists.

Edge-chromatic index (number), y_(G): Minimum number
of colors required for an edge-coloring of G.

m Vertex coloring: Coloring the vertices of a graph, such
that, no two adjacent vertices are similarly colored.

A graph is k-vertex-colorable if a vertex-coloring using k
colors exists.

Vertex-chromatic index (number), v (G): Minimum number
of colors required for a vertex-coloring of G.
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Edge coloring

m An obvious lower bound: Maximum degree A of
any vertex.

Edges meeting at any vertex must be differently
colored.

. If G is a bipartite graph, then,
v.(G) = A.

. If G is a complete graph with n vertices,

then: o
A 1fn1is even

Y (G) =
(6) {A+1 if n is odd
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Vizing’s theorem

. For any simple graph G:
Asy (G)<A+1

m For an arbitrary graph, the question of whether or not
v.(G) = A, is NP-complete.
m A result applying to graphs without loops, due to Vizing:
Asy (G)sA+M
M (multiplicity): maximum number of edges joining any two
vertices.

For any M, there exists a multi-graph such that
v (G)=A+M
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Vertex coloring

m Vizing's theorem provides tight bounds on vy (G)
for arbitrary graphs.

m Unfortunately, for v (G), no theorem exists
which gives such tight bounds based on simple
criteria.

m [here is no known polynomial-time algorithm to
determine vy (G).

m For an arbitrary graph, the question of whether
or not a graph contains a vertex coloring using
less then k colors is NP-complete.
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S
Vertex coloring

m An obvious bound:
: Any graph G is (A + 1)-vertex colorable.

m The bound provided by the theorem can be far
greater than the actual value of vy (G).

G may have a vertex arbitrarily large degree.
Ex: W,

(Brooks): If G is not a complete graph, is
connected, and has A = 3, then G is A-vertex-

colorable.
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Simple heuristic

m Given that the problem of finding v (G) does not
have a polynomial time solution, it is necessary
to think in terms of heuristics, and maybe
approximation methods.

m Consider:
for i =1 to n do N.,[J]] = true
while N;[J] do jJ =3 + 1; | ifaneighborofiis
for all v € A(1) do colored in |
N,[J] = true;
endfor - - : :
- _ A(i): Adjacency list of |
c() = i (- Adjacency
endfor

C(i): Color of i
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Simple heuristic
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The algorithm has O(n?)-complexity.

The behaviour of this algorithm is highly sensitive to the
order in which the vertices are colored.

There are no known polynomial-time algorithms for
which the performance ratio is bound by a constant.

The best performance ratio (due to Johnson):

O(n / log(n)).

Garey & Johnson have shown that, if an approximation
algorithm existed with a performance ratio of two or less,

then it would be possible to find an optimal coloring in
polynomial time.



JE
An application

m Scheduling classes in an educational institution.
Acceptable teaching hours.
Many classes cannot be scheduled at the same time.

m Design the timetable, so that:

scheduled lectures are compressed into the shortest
possible time.

m Solution:
Lectures: Vertices of the graph

Edges: connecting the vertices (lectures) which
cannot be scheduled at the same time.

Color the vertices: Number of colors is the smallest
time span within which the lectures can be scheduled.
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Critical graphs

m A graph G is critical if y (H) < v (G) for every
proper subgraph H of G.

m A k-critical graph is one
that is k-chromatic
and critical.

m Every k-chromatic
graph has a k-critical
subgraph.

A 4-critical graph
(Grotzsch graph, 1958)
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Critical graphs

: If G is k-critical, then & = k — 1.
(O0: minimum vertex degree)

. Every k-chromatic graph has at least k
vertices of degree at least k — 1.
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Hajos’ conjecture

m A subdivision of a graph G is a graph that can be

obtained from G. by a sequence of edge
subdivisions.

m A necessary condition for a graph to be k-
chromatic, when k > 3: |

If G is k-chromatic, then

G contains a subdivision
of K,.

A sub-
division
of K,
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Hajos’ conjecture

m Dirac settled the case k = 4:

- |If G is 4-chromatic, then G contains a
subdivision of K,.

m Hajos’ conjecture has not been settled in
general case.

m |t is known to be a very difficult problem.
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Chromatic polynomial

m Introduced by Birkhoff.
m P, (G): number of ways of vertex coloring the
graph G with k colors.
A polynomial in k.
Referred to as chromatic polynomial of G.
m For the following graph:

Color the vertex of degree 3 first in k different ways,

Remaining vertices can each be colored in (k-1)
ways.

m For any tree T with n vertices:
P(T) =k.(k-1)"!
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Chromatic polynomial

m Coloring the vertices of the graph on right:
Choice of k colors for the first vertex Oﬁ
k — 1 for the second
k — 2 for the third
m In general, for complete graphs:
P (K, =k!/(k—n)!
m For the graph @, with n vertices and no edges:
Pk(cbn) = k"
m For k <y, (G), chromatic polynomial equals O.
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Derivation of chromatic polynomial

m |t is not easy to derive P, (G) for an arbitrary
graph.

m The following theorem provides a systematic
derivation:

. Let u and v be adjacent vertices in

graph G. Then,
P(G) = P (G = (u,v)) = P(G o (u,v))
G — (u,v) is derived by deleting edge (u,v)
G o (u,v) is obtained by contracting the edge (u,v)
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Derivation of chromatic polynomial

m Repeated application of the recursion formula
will express P,(G) as a linear combination of
chromatic polynomials of graphs with no edges.

m The formula of the theorem may also be applied
In the form:

P (G) = P (G + (u,v)) + P, ((G + (u,v)) o (u,v))
m |In the second form, recursive evaluations of the

formula leads to a linear combination of
chromatic polynomials of complete graphs.
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Derivation

m If G has a large number of edges, then second
form will derive P,(G) more quickly.

m \Whenever more than one edges arise between
two vertices, only one edge is retained.

m vy (G) is the smallest value of k for which
P.(G) >0.

m |t is unlikely that P, (G) can be found in
polynomial time.

This would imply that an efficient determination of
v, (G) existed.
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Clique and coloring

m In any vertex-coloring of a graph, the vertices in
a cligue must be assigned different colors.

m A graph with a large clique, has a high chromatic
number.

m This leads us to believe that, all graphs with
large chromatic number have large cliques.

m Dirac: Is there a graph with no triangles but
arbitrarily high chromatic number?

m A recursive construction for such graphs was
first described by B. Descartes (1954).
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Mycielski’s construction

. For any positive integer k, there exists a k-
chromatic graph containing no triangle.

m Fork=1andk =2, K, and K, have the required
property.

m Suppose that we have already constructed a triangle-
free graph G, with chromatic number

K> 2
m Let the vertices of G, be v, v,, ..., Vv

m Form a new graph G,,, from G;:
Add n+1 new vertices u,, U,, ..., U, v
for 1 <=i<=n, join u, to the neighbors of v, and to v.

nl
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Mycielski’s construction
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Mycielski’s construction

m This construction yields, for all k >= 2, a triangle-
free k-chromatic graph on 3*2%2 — 1 vertices.
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Relation to independent sets

m A k-coloring of G where (V,, V,, ..., V) is the
partition, is canonical if:
V, is a maximal independent set of G

V, is a maximal independent set of G -V,
V; is a maximal independent set of G — (V, UV,)

and so on.

m If G is k-colorable, then there is a canonical k-
coloring of G.
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Face coloring

. Four colors are sufficient to
color the regions of a planar map, so that

bordering regions are differently colored.
(Region: face of a graph embedded in the plane.)

m [his theorem was
one of the best
kKnown unsolved
problems, until
1976.
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Face coloring

m For maps of genus g = 1, Heawood has shown
that the following number of colors are sufficient:

{7+\/(1+489)—|

2

m Proof of this formula does not carry over for
g=_0.

m The fact that is also necessary was proved by
Ringel and Youngs (1968) with two exceptions:

the sphere (and plane), and
the Klein bottle.
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Four color theorem

m \When the four-color theorem was proved
in 1976, the Klein bottle was left as the
only exception.

=1 For Klein bottle, the Heawood formula gives
seven, but the correct bound is six.

~1 The proof of four color conjecture dates back to
1840.
m The first mathematician to propose the
four-color conjecture for the plane
was Moebius.

m Many mathematician contributed to
the current proof.
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Proof

m Proof of four color theorem made massive use of
computer time.
Period of trials and errors

Insight gained from the results and performances of
computer programs.

m \Would not have been achieved without the
computer.

m A critic said: “A good mathematical proof is like a
poem - this is a telephone directory!”

m Efforts still continue to achieve shorter, easier
proofs.
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