GRAPH THEORY and APPLICATIONS

Factorization
Domination
Indepence
Clique

Factorization

Factor

- A factor of a graph G is a spanning subgraph of G, not necessarily connected.
- G is the sum of factors G_i, if:
 - ☐ G is the edge-disjoint union of G_i's.

Such a union is called factorization.

- n-factor: A regular factor of degree n.
- If G is the sum of n-factors:
 - □ The union of n-factors is called n-factorization.
 - ☐ G is n-factorable.

1-factor

- When G has a 1-factor, G₁,
 - □ |V| is even.
 - □ The edges of G₁ are edge disjoint.
- K_{2n+1} cannot have a 1-factor, but K_{2n} can.

Theorem: The complete graph K_{2n} is 1-factorable.

We need to display a partition of the set E of edges of K_{2n} into (2n - 1) 1-factors.

- \square Denote the vertices: $v_1, v_2, ..., v_{2n}$
- □ Define for i = 1, 2, ..., 2n 1The sets $E_i = \{v_i v_{2n}\} \cup \{v_{i-j} v_{i+j} | j = 1, 2, n - 1\}$ i+1 and i-j are modulo(2n-1) operations.

Example

1-factors

Complete bipartite graphs K_{m,n} have no 1-factor if n ≠ m.

Theorem: Every regular bipartite graph $K_{n,n}$ is 1-factorable.

Theorem: If a 2-connected graph has a 1-factor, then it has at least two different 1-factors.

1-factor ≡ perfect matching

Tutte's Theorem: G(V,E) has a perfect matching (or a 1-factor) if and only if:

$$\Phi(G - V') \le |V'|$$
 for all $V' \subset V$

 $\Phi(G-V')$: number of components of (G-V') containing odd number of vertices.

If vertex set S = {1,2} is removed:
4 components with odd number of vertices remain.

2-factorization

- If a graph is 2-factorable, then each factor is a union of disjoint cycles.
- If a 2-factor is connected, it is a spanning cycle.
- A 2-factorable graph must have all vertex degrees even.
- Complete graphs K_{2n} are not 2-factorable.
- K_{2n-1} complete graphs are 2-factorable.

2-factors

Theorem: The graph K_{2n+1} is the sum of n spanning cycles.

2-factors

Theorem: The complete graph K_{2n} is the sum of a 1-factor and n-1 spanning cycles.

- If every component of a regular graph G of degree 2 is an even-length cycle, then G is also 1-factorable.
 - □ It can be represented as the sum of two 1-factors.

Theorem: Every bridgeless cubic graph is the sum of a 1-factor and a 2-factor.

□ Example: Petersen graph.

Arboricity

- Any graph G can be expressed as a sum of spanning forests
 - □ Let each factor contain only one egde.

Problem: Determine the minimum number of edge-disjoint spanning forests into which G can be decomposed.

- This number is arboricity of G, A(G).
- Example: $A(K_4) = 2$, $A(K_5) = 3$

Example

Arboricity

A formula by Nash-Williams gives the arboricity of any graph.

Theorem: Let G be a non-trivial graph, and let:

□ e_n be the maximum number of edges, in any subgraph of G having n vertices.

Then,

$$A(G) = \max_{n} \left\lceil \frac{e_n}{n-1} \right\rceil$$

Example: Fig. 9.8

Arboricity of complete graphs

Corollary:

 \square The arboricity of the complete graph K_n :

$$A(K_n) = \left\lceil \frac{e}{2} \right\rceil$$

 \Box The arboricity of the complete bipartite graph $K_{m,n}$:

$$A(K_{m,n}) = \left\lceil \frac{m \cdot n}{m+n-1} \right\rceil$$

- The proof of Nash-Williams' formula does not gives a specific decomposition method.
- Beineke accopmlished the decomposition for complete graphs.

Decomposition of K_n

- For n = 2m, K_n can be decomposed into m spanning paths.
 - \square Label the vertices: $v_1, v_2, ..., v_{2m}$
 - \square Consider the *n* paths:

$$P_i = v_i v_{i-1} v_{i+1} v_{i-2} v_{i+2} ... v_{i+n-1} v_{i-n}$$

- For n = 2m + 1, the arboricity of K_n is n+1.
 - □ Take the same paths described.
 - \square Add an extra vertex labeled v_{2n+1} to each.
 - \square Construct a star, by joining v_{2n+1} to other 2n vertices.

Example: Fig.9.9

Dominating Set Independence Set

Domination-Independence

- Any vertex adjacent to a vertex v, is dominated by v.
- Any other vertex is independent of v.
- Independent Set: A subset of vertices of a graph where no two vertices are adjacent.
 - Maximal independent set: Any vertex not in the set is dominated by at least one vertex in it.
- Independence number: I(G), Cardinality of the largest independent set.

Domination-Independence

- Dominating Set: A subset of vertices of a graph where every vertex not in the subset is adjacent to at least one vertex in the subset.
 - □ Minimal dominating set: Contains no proper subset that is also a dominating set.
- Domination number: D(G), Cardinality of the smallest dominating set.

Example

- Board games usually provide illustrations of domination and independence.
- 8x8 chessboard: 64 vertices
 - □ An edge (u,v) implies that similar chess pieces placed at the squares u and v challenges one another.

8 Queens

- Placing 8 queens on a chessboard so that:
 - □ no queen challenges another.

- Finding a maximal independent set for the graph
 - □ containing the edges (u,v)
 - u and v: vertices corresponding the squares in the same row, column, or diagonal.

- There are 92 maximal independent sets
- I(G) = 8

Another queen problem

- What is the minimum number of queens
 - that can be placed on a standard chessboard
 - such that each square is dominated by at least one queen?

Finding D(G) for the graph previously constructed.

$$D(G) = 5$$

A typical problem

Theorem: An independent set is also a dominating set if and only if it is maximal. Thus, $I(G) \ge D(G)$.

Consider the following problem:

- A community wishes to establish the smallest committee to represent a number of minority groups.
 - □ Any individual may belong to more than one group.
 - □ Every group has to be represented.

A problem

- The community = A graph
 - □ Vertices = individuals
 - Edges connect two individual in the same group
- Solution:
 - An independent set:
 No group should be represented more than once.
 - Which is also a dominating set: Each group must be represented.
- There no efficient algorithms to find I(G) or to find D(G) for an arbitrary graph G.

Finding Minimal Dominating Sets

- A vertex v_i is dominated if:
 - □ v_i is in the dominating set, or
 - any of the vertices adjacent to v_i is in the dominating set.
- Then, we seek a minimal sum of products for the boolean expression:

$$A = \prod_{i=1}^{n} \left(v_i + v_i^1 + v_i^2 + \dots + v_i^{d(v_i)} \right)$$

 \square treating + as logical or, . as logical and.

M

Example

$$A = (a+b+d+e)(a+b+c+d)$$

$$(b+c+d)(a+b+c+d+e)$$

$$(a+d+e+f)(e+f)$$

$$= be + de + ce + bf + df + acf$$

- The six terms in the expression represent the minimal dominating sets:
 - {b,e} {d,e} {c,e} {b,f} {d,f} {a,c,f}
- Five sets have cardinality of 2.
- D(G) = 2

Finding Maximal Independent Sets

- We enumerate the complement sets of maximal independent sets.
- For every edge (u,v), I^C must contain u or v or both.
- We must find the smallest sets I^C satisfying this condition for each edge.
- We obtain the minimum sum of products:

$$B = \prod_{(u,v)\in E} (u+v)$$

■ Each term represents a set I^C, guaranteed to contain at least one endpoint from each edge.

Example

$$B = (a+b)(a+d)(a+e)(b+c)(b+d)(c+d)(d+e)(e+f)$$

Maximal independent sets:

$$V - \{a,b,c,e\} = \{d,f\}$$

$$V - \{a,b,d,f\} = \{c,e\}$$

$$V - \{a,c,d,e\} = \{b,f\}$$

$$V - \{a,c,d,f\} = \{b,e\}$$

$$V - \{b,d,e\} = \{a,c,f\}$$

$$I(G) = 3$$

Clique

- Clique: Any subgraph of G, which is isomorphic to the complete graph K_i.
 - □ We can always partition the vertices of a graph into cliques.
- C(G): number of cliques in a partition which has the smallest possible number of cliques.

Theorem: For any graph G, $I(G) \le C(G)$.

The presence or absence of large cliques is significant to the values of D(G) and I(G).

- ☐ All of the vertices in a clique are dominated by any one of its vertices.
- Determining whether an arbitrary graph contains a clique greater than a given size is an NP-complete problem.

Ramsey Numbers

- Given any positive integer k and l, there exist a smallest integer r(k,l), such that:
 - every graph on r(k,l) vertices contains:
 - □ a clique of k vertices, or,
 - □ an independent set of I vertices
- r(k,l) are called Ramsey numbers.
 - □ Example: r(3,3) = 6
- The determination of Ramsey numbers is a very difficult unsolved problem.
- Lower bounds are obtained by constructing suitable graphs.

Ramsey numbers

5-cycle contains no clique of size 3, nor an independent set of 3 vertices.

■ Theorem (Erdös & Szekeres):

For any two integers $k \ge 2$ and $l \ge 2$

$$r(k,l) \le r(k, l-1) + r(k-1, l)$$

Furthermore if r(k, l - 1) and r(k - 1, l) are both even, then strict inequality holds.

Ramsey Numbers known to date

r,s	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	2								
3	1	3	6							
4	1	4	9	18						
5	1	5	14	25 ¹⁹⁹⁵	43–49					
6	1	6	18	35–41	58–87	102–165				
7	1	7	23	49–61	80–143	113–298	205–540			
8	1	8	28	56–84	101–216	127–495	216–1031	282–1870		
9	1	9	36	73–115	125–316	169–780	233–1713	317–3583	565–6588	
10	1	10	40– 43	92–149	143–442	179–1171	289–2826	≤ 6090	580–12677	798– 23556

Ramsey Graphs

- A (k,I)-Ramsey graph is a graph:
 - \square on r(k,l) 1 vertices
 - contains neither a clique of k vertices
 - □ nor an independent set of I vertices

A (3,4)-Ramsey graph

A (3,5)-Ramsey graph

A (4,4)-Ramsey graph

Size of a clique in a graph

- Is there a limit to the number of edges that a graph may have, so that:
 - □ no subgraph is a clique of size k?
- Túran's theorem provides an upper bound.
- First, we need to revise another theorem by Erdös.
- Degree-majorized: A graph G is degree-majorized by another graph H if:
 - there is a one-to-one correspondence between the vertices of G and H
 - the degree of a vertex of H is greater than or equal to the degree of the corresponding vertex of G.

Theorem

Theorem (Erdös): If G is a simple graph, and does not contain a clique of size (i + 1), then, G is degree-majorized by some complete i-partite graph P.

Also, if G has the same degree sequence as P, then, G is isomorphic to P.

Túran's Theorem

■ $T_{j,n}$: j-partite graph with n vertices in which the parts are as equal in size as possible.

Theorem: If G is a simple graph which does not contain K_{i+1} then,

$$|E(G)| \le |E(T_{j,n})|$$

Also, only if G is isomorphic to $T_{j,n}$, then,

$$\left| E(G) \right| = \left| E(T_{j,n}) \right|$$