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Factor

m A factor of a graph G is a spanning subgraph of
G, not necessarily connected.

m G is the sum of factors G, if:
G is the edge-disjoint union of G;’s.
Such a union is called factorization.
m n-factor: A regular factor of degree n.

m If G is the sum of n-factors:
The union of n-factors is called n-factorization.
G is n-factorable.
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] -factor

m WWhen G has a 1-factor, G,,

|V| is even.
The edges of G, are edge disjoint.

m K, ., cannot have a 1-factor, but K, can.

Theorem: The complete graph K, is 1-factorable.
We need to display a partition of the set E of
edges of K, into (2n — 1) 1-factors.
Denote the vertices: v, v,, ..., v,
Definefori=1,2,...,2n-1
The sets E; = {vjvy,} U {vijvis[1=1,2,n -1}
I+1 and | — j are modulo(2n — 1) operations.

n
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1 -factors

m Complete bipartite graphs K, , have no 1-factor if n # m.

Theorem: Every regular bipartite graph K, |, is
1-factorable.

Theorem: If a 2-connected graph has a 1-factor, then it has
at least two different 1-factors.
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1 -factor = perfect matching

. G(V,E) has a perfect matching
(or a 1-factor) if and only if:
O(G-V)<|V’| forallV' CV

®(G - V’): number of components of (G -V’)
containing odd number of vertices.

If vertex set S = {1,2}
IS removed:

4 components with
odd number of
vertices remain.

A graph with
no 1-factor
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2—-factorization

m If a graph is 2-factorable, then each factor is a
union of disjoint cycles.

m If a 2-factor is connected, it is a spanning cycle.

m A 2-factorable graph must have all vertex
degrees even.

m Complete graphs K, are not 2-factorable.
m K, . complete graphs are 2-factorable.
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2-factors

: The graph K,, .4 is the sum of n

spanning cycles. O\O

T
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2-factors

: The complete graph K,,, is the sum of a
1-factor and n — 1 spanning cycles.

m If every component of a regular graph G of
degree 2 is an even-length cycle, then G is also
1-factorable.

It can be represented as the sum of two 1-factors.

. Every bridgeless cubic graph is the sum
of a 1-factor and a 2-factor.

Example: Petersen graph.
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Arboricity

m Any graph G can be expressed as a sum of
spanning forests

Let each factor contain only one egde.

Problem: Determine the minimum number of

edge-disjoint spanning forests into which G can
be decomposed.

m This number is arboricity of G, A(G).
m Example: A(K,) =2, A(K;) =3
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Arboricity

m A formula by Nash-Williams gives the arboricity
of any graph.

. Let G be a non-trivial graph, and let:

e, be the maximum number of edges, in any
subgraph of G having n vertices.

Then,

A(G)zmaxn{ n 1

Example: Fig. 9.8
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Arboricity of complete graphs

The arboricity of the complete graph K_.:

e
AK )=|—
(K,) {J
The arboricity of the complete bipartite graph K, ,::

A(Km,n){ il ]

m+n-1

m The proof of Nash-Williams’ formula does not
gives a specific decomposition method.

m Beineke accopmlished the decomposition for
complete graphs.
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Decomposition of K.

m Forn=2m, K, can be decomposed into m
spanning paths.
Label the vertices: v, v, ..., V,,
Consider the n paths:
B =ViViiViaVioViio Vi g Vi,
m Forn=2m+ 1, the arboricity of K, is n+1.
Take the same paths described.
Add an extra vertex labeled v,,,, to each.
Construct a star, by joining v,,, to other 2n vertices.
Example: Fig.9.9
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Domination-Independence

m Any vertex adjacent to a vertex v, is dominated
by V.
m Any other vertex is independent of v.

m Independent Set: A subset of vertices of a graph
where no two vertices are adjacent.

Maximal independent set: Any vertex not in the set is
dominated by at least one vertex in it.

m Independence number: [(G), Cardinality of the
largest independent set.
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Domination-Independence

m Dominating Set: A subset of vertices of a graph
where every vertex not in the subset is adjacent
to at least one vertex in the subset.

Minimal dominating set: Contains no proper subset
that is also a dominating set.

m Domination number: D(G), Cardinality of the
smallest dominating set.
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Example

m Board games usually
provide illustrations of
domination and
Independence.

m 8x8 chessboard: 64
vertices

An edge (u,v) implies
that similar chess pieces
placed at the squares u
and v challenges one
another.
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8 Queens

m Placing 8 queens on a
chessboard so that:
no queen challenges another.

m Finding a maximal
iIndependent set for the graph
containing the edges (u,v)

u and v: vertices corresponding . . . n

the squares in the same row,
column, or diagonal.

m There are 92 maximal
iIndependent sets

m [(G)=38
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Another queen problem

m \What is the minimum
number of queens

that can be placed on a
standard chessboard

such that each square is
dominated by at least one
queen?

m Finding D(G) for the
graph previously
constructed.
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A typical problem

. An independent set is also a dominating
set if and only if it is maximal. Thus, I(G) = D(G).

Consider the following problem:

m A community wishes to establish the smallest
committee to represent a number of minority
groups.

Any individual may belong to more than one group.
Every group has to be represented.
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A problem

m [he community = A graph
Vertices = individuals
Edges connect two individual in the same group

m Solution:

An independent set:
No group should be represented more than once.

Which is also a dominating set:
Each group must be represented.

m There no efficient algorithms to find I(G) or to
find D(G) for an arbitrary graph G.

Graph Theory and Applications © 2007 A. Yayimli

23



S
Finding Minimal Dominating Sets

m A vertex v, is dominated if:
v; is in the dominating set, or

any of the vertices adjacent to v, is in the dominating
set.

m [hen, we seek a minimal sum of products for the
boolean expression:

n
_ 1 2 d(v;)
A—| |(vi+vi +V 4.4V )
i=1

treating + as logical or, . as logical and.
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Example

A = (a+b+d+e)(a+b+c+d) @) (B
(b+c+d)(a+b+c+d+e)

(a+d+e+f)(e+) ®\Q
=be+de+ce+bf+df +acf “E D

m [he six terms in the expression represent the
minimal dominating sets:

{b.e} {d,e} {c.e} 1b.f} {d,f} {a,c,f}

m Five sets have cardinality of 2.
m D(G)=2
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Finding Maximal Independent Sets

m \We enumerate the complement sets of maximal
iIndependent sets.

m For every edge (u,v), I must contain u or v or
both.

m We must find the smallest sets I€ satisfying this
condition for each edge.

m \We obtain the minimum sum of products:
B=]] (u+v)
(u,v)eE

m Each term represents a set I©, guaranteed to
contain at least one endpoint from each edge.
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Example

B = (a+b)(a+d)(a+e)(b+c)(b+d)(c+d)(d+e)(e+f)
= abce + abdf + acde +acdf +bde

Maximal independent sets: (A) ®

V —{a,b,c,e} = {d,f}
V —{a,b,d,f} = {c,e} ®\O
V —{a,c,d,e} = {b,f} s 2

V —{a,c,d,f} = {b,e}
V —{b,d,e} ={a,c,f} (G) =3
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Clique

m  Clique: Any subgraph of G, which is isomorphic to the
complete graph K..
We can always partition the vertices of a graph into cliques.

m  C(G): number of cliques in a partition which has the
smallest possible number of cliques.

. For any graph G, I(G) = C(G).

The presence or absence of large cliques is significant to
the values of D(G) and [(G).

All of the vertices in a clique are dominated by any one of its
vertices.

m  Determining whether an arbitrary graph contains a

cligue greater than a given size is an NP-complete
problem.
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Ramsey Numbers

m Given any positive integer k and |, there exist a
smallest integer r(k,l), such that:

every graph on r(k,l) vertices contains:
a clique of k vertices, or,
an independent set of | vertices

m r(k,lI) are called Ramsey numbers.
Example: r(3,3) =6

m [he determination of Ramsey numbers is a very
difficult unsolved problem.

m Lower bounds are obtained by constructing
suitable graphs.
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Ramsey numbers

m 5-cycle contains no clique of
size 3, nor an independent set
of 3 vertices.

o (Erdos & Szekeres):
Forany two integersk > 2and | > 2

r(k,) < r(k, | = 1) + r(k =1, 1)

Furthermore if r(k, | — 1) and r(k — 1, |) are both
even, then strict inequality holds.
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Ramsey Numbers known to date

rs|1| 2 | 3 4 5 6 7 8 9 10

11

2 (1] 2

3(1/ 3| 6

411 4| 9 18

51| 5 | 14 | 25'°%° | 43—49

61| 6 | 18 | 35-41 | 58-87 | 102—-165

71| 7 | 23 | 49-61 | 80-143 | 113—298 | 205-540

8 |1| 8 | 28 | 56-84 |101-216| 127—495 [216—1031|282—-1870

91| 9 | 36 |73-115({125-316| 169-780 |233-1713|317-3583 | 5656588

10| 1 | 10 | 40— |92-149(|143-442|179-1171|289-2826| <6090 |580-12677| 798-
43 23556
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Ramsey Graphs

m A (k,I)-Ramsey graph is a graph:
on r(k,l) — 1 vertices
contains neither a clique of k vertices

nor an independent set of | vertices
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(3,4)-Ramsey graph

A (3,5)-Ramsey graph

A (4,4)-Ramsey graph

Graph Theory and Applications © 2007 A. Yayimli 32



JE
Size of a clique in a graph

m s there a limit to the number of edges that a graph may
have, so that:
no subgraph is a clique of size k?

m [uran’s theorem provides an upper bound.
m First, we need to revise another theorem by Erdos.

m Degree-majorized: A graph G is degree-majorized by
another graph H if:

there is a one-to-one correspondence between the vertices of G
and H

the degree of a vertex of H is greater than or equal to the degree
of the corresponding vertex of G.
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Theorem

(Erdos): If G is a simple graph, and does
not contain a clique of size (i + 1), then,
G Is degree-majorized by some complete
I-partite graph P.
Also, if G has the same degree sequence as P,
then, G is isomorphic to P.
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Turan’s Theorem

m T, J-partite graph with n vertices in which the
parts are as equal in size as possible.

. If G Is a simple graph which does not
contain Kj+1 then,

E(G)|<|E(T,,)
Also, only if G is isomorphic to T; ,, then,
E@G)|=|E(T; )
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