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Dynamic diffraction gratings can bemicrofabricated with precision and offer extremely sensitive displacement mea-
surements and light intensity modulation. The effect of pure translation of the moving part of the grating on dif-
fracted order intensities is well known. This study focuses on the parameters that limit the intensity and the contrast
of the interference. The effects of grating duty cycle, mirror reflectivities, sensor tilt and detector size are investigated
using Fourier optics theory and Gaussian beam optics. Analytical findings reveal that fringe visibility becomes <0:3
when the optical path variation exceeds half the wavelength within the grating interferometer. The fringe visibility
can be compensated by monitoring the interfering portion of the diffracted order light only through detector size
reduction in the expense of optical power. Experiments were conducted with a grating interferometer that resulted
in an eightfold increase in fringe visibility with reduced detector size, which is in agreement with theory. Findings
show that diffraction grating readout principle is not limited to translating sensors but also can be used for sensors
with tilt or other deflection modes. © 2011 Optical Society of America
OCIS codes: 050.0050, 070.0070, 230.4685.

Dynamic diffraction gratings can be fabricated using
microfabrication techniques with high precision and
provide subnanometer interferometric displacement
detection capability for microelectromechanical system
(MEMS)-based microsensors and microsensor arrays.
Such gratings have many applications, such as atomic
force microscope [1], thermal imaging devices [2], grat-
ing light valve displays [3], MEMS biomolecular sensors
[4], and Fourier transform spectrometers [3,5], and in tel-
ecommunication applications [3].
One of the most important parameters that determines

the sensitivity and the dynamic range of a grating-based
sensor is the interference fringe visibility. Various sensor
parameters have a high impact on the fringe visibility. In
this Letter, the effects of reference reflector tilt, grating
duty cycle, mirror reflectivities, and the monitor photo-
detector size are studied analytically using Fourier optics
theory and Gaussian beam optics. The effect of tilt of the
moving part on fringe visibility is verified with a grating
interferometer. Tilt error could be caused by surface
stress or the natural vibration modes of the sensor. This
Letter presents practical results and formulas that can be
used by those designing optical systems using dynamic
gratings for any of the applications listed previously.
Figure 1 illustrates dynamic phase gratings where the

reflector is a MEMS device and the bottom reflector is a
fixed grating. Light that is reflected off the grating and the
reflector forms an interference from which displacement
of the sensor could be monitored with a photodetector.
While the sensor in Fig. 1(a) performs a pure translator
motion, the cantilever-type sensor in Fig. 1(b) performs
both translational and rotational motion. Alternately, the
grating can be placed on the moving part and the reflec-
tor can be stationary or moving, and stationary grating
parts can be intertwined, which are essentially the same
for the purpose of this analysis.
Throughout this Letter, the diffraction grating sensor is

modeled as a thin phase grating and scalar diffraction
theory using paraxial approximation (i.e., the grating per-
iod is assumed much larger than the wavelength of light)
and constant scaling factors are ignored. Large deflection

analysis of dynamic gratings, where the far field intensity
cannot be calculated using thin phase grating assumption
was explained in our prior work [6]. The phase profile
(ΦðxÞ) of the sensor in Fig. 1(b) is modeled using a linear
phase profile assuming that the reflector is located on a
small, linearly displaced portion at the tip of a cantilever
and can be expressed as

ΦðxÞ ¼ tðxÞR1 expðj4π=λðgþ xθÞÞ½rectðx=ðΛ − f ÞÞ
� combðx=ΛÞ� þ tðxÞR2½rectðx=f Þ
� combððx −Λ=2Þ=ΛÞ�; ð1Þ

where λ is the wavelength of illuminating source, R1 and
R2 are respectively the reflectivities of the reference
reflector and grating fingers, and tðxÞ is an aperture func-
tion including the laser beam profile. Comb function is an
array of δ (dirac-delta) functions and rect is the rectan-
gular function as defined in [7]. For θ ¼ g=L ¼ 0, Eq. (1)
simplifies to the phase function of the translatory sensor
shown in Fig. 1(a). Using the Fraunhofer approximation,
the far field intensity profile can be calculated by taking
the square of the Fourier transform of Eq. (1):

Fig. 1. Diffraction grating under a MEMS device. (a) Device
having translational motion, (b) device having both transla-
tional and tilt motion. Incoming light and diffracted first-order
lights are illustrated with arrows. Grating is along the x axis, Λ
is the grating period, f is the grating finger width, G is the grat-
ing size, g0 is the initial center gap, g0 is the additional displace-
ment due to tilt, g ¼ g0 þ g0 is the total gap, and θ ¼ g0=L is the
grating tilt angle, where L is the distance from the middle of the
grating to the virtual anchor point for the cantilever beam.
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IðuÞ¼jR1expðj4πg=λÞ½ð1−DÞsincðð1−DÞΛuÞ:combðΛuÞ��Tðu−2θ=λÞþR2expðjπuΛÞ½DsincðDΛuÞ:combðΛuÞ��TðuÞj2;
ð2Þ

where u is spatial frequency (m−1), sincðxÞ ¼ sinðπxÞ=πx,
D ¼ f =Λ is the grating duty cycle, and TðuÞ is the Fourier
transform of tðxÞ. Equation (2) is a general expression
and simplifies to the well-known diffraction efficiency
formulas for zeroth-order and odd diffraction orders
under the following assumptions: θ ¼ 0 and the grating
is wide and illuminated with uniform profile (tðxÞ is
infinitely wide, thus TðuÞ ¼ δðuÞ, R1 ¼ R2 ¼ 1, and
D ¼ 0:5):

Iðu ¼ 0Þ ¼ cos2ð2πg=λÞ; ð3Þ

Iðu ¼ m=ΛÞ ¼ 4=m2π2 sin2ð2πg=λÞ; ð4Þ
wherem is any odd integer. Even diffraction orders for a
square phase grating vanish, since they correspond to the
zero crossings of the sinc term in Eq. (2).
Fringe visibility (γ) can be defined as below using the

maximum and the minimum intensities when g is varied.
For the zeroth order (u ¼ 0), assuming no tilt (θ ¼ 0)
and wide grating with uniform illumination (i.e., TðuÞ ¼
δðuÞ), γ can be calculated by simplifying Eq. (2):

γ ¼ Imax − Imin

Imax þ Imin
¼ 2Dð1 − DÞ

R1=R2ð1 − DÞ2 þ R2=R1D
2 : ð5Þ

For different R1 and R2, maximum fringe visibility,
based on Eq. (5), is observed when

R1ð1 − DÞ ¼ R2D: ð6Þ
When R1 ¼ R2, the maximum fringe visibility is obtained
at D ¼ 0:5 as expected. Similar behavior is observed for
higher diffracted orders as well.
The following paragraphs analyze the effect of tilt and

detector size on the fringe visibility of the diffracted
orders when the grating is illuminated with a Gaussian
profile laser defined as

tðxÞ ¼ expð−x2=W2
0Þ:rectðx=GÞ; ð7Þ

where W0 is the beam radius at the grating plane and the
beam is clipped with grating size G. The radius of curva-
ture of the laser beam wavefront is omitted for our case,
however, it could be incorporated into Eq. (7) as an
additional phase term.
The reflected beam from the tilted sensor follows a

different path from the beam that reflects off the grating.
Figure 2(a) illustrates zeroth, first, and −1st diffracted
orders under tilted reflector condition, observed at dis-
tance z away from the grating sensor. Figures 2(b) and
2(c) are close-up views of constructive and destructive
interference cases at the zeroth diffracted order. Detec-
tor size is critical in determining the fringe visibility (γ) at
the output. A detector that captures both beams [area 1 in
Figs. 2(b) and 2(c)] exhibits a low γ in its output since it
also captures light that does not interfere, which creates

bias and reduces the fringe visibility. On the other hand, a
detector that captures only the interference area at the
intersection [area 2 in Figs. 2(b) and 2(c)], rejects most
of the bias and gives high (γ).

An analytical expression can be obtained for the
encircled power around the zeroth diffracted order by
superposing two Gaussian beams at the detector plane
due to reflections from the top and bottom surfaces of
the sensor. To obtain a simplified expression, perfect re-
flectors (R1 ¼ R2 ¼ 1), D ¼ 0:5, incident Gaussian beam
having radius WðzÞ with no clipping such that G ≫ WðzÞ
is assumed. Two Gaussians are separated by a distance
of 2θz at the detector plane due to tilt (as in Fig. 2), and
the detector area is taken as Ld × Ld. The encircled
power is given by

P0 ∼ Aþ B cosð4πg=λÞ expð−2ðθz=WðzÞÞ2Þ; ð8Þ

where

A ¼ erfc

�
−

ffiffiffi
2

p

WðzÞ
�
Ld

2
− θz

��
− erfc

� ffiffiffi
2

p

WðzÞ
�
Ld

2
− θz

��
;

ð9Þ
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In Eqs. (9) and (10), erfc is the complimentary error
function. Based on Eq. (8), γ for the zeroth-order power
at the detector can expressed assuming g is varied:

γ ¼ ðB=AÞ expð−2ðθz=WðzÞÞ2Þ: ð11Þ
It can be shown that Eq. (11) is also the fringe visibility

(γ) expression for all odd diffraction orders. For a large
detector, which captures all the energy of the two beams

Fig. 2. (Color online) (a) Intensity profile for destructive
interference when the sensor is tilted by an angle θ illustrating
zeroth, first, and −1st diffracted orders. (b) Constructive inter-
ference at zeroth order. (c) Destructive interference at zeroth
order. The detector that spans area 1 exhibits lower fringe
visibility than the detector that spans area 2.
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such that Ld > 2θz, without causing cross talk between
diffraction orders, i.e., Ld < λz=Λ, the error integrals A

and B become equal. Equation (11) suggests a Gaussian
decay of the visibility with tilt for all diffraction orders.
Uniform illumination intensity instead of a Gaussian
beam results in a sinc type of decay profile with tilt, as
previously illustrated [8]. Based on Eq. (11), and well-
known Gaussian beam formulation [7], a fringe visibility
(γ) of <0:3 is observed at the far field, where WðzÞ ≈
zλ=πW0 when the height difference within the interferom-
eter isW 0θ ¼ λ=4, which indicates a reversal in the phase
of two extreme rays within the grating interferometer [9].
Figure 3 illustrates fringe visibility contours for differ-

ent detector sizes and tilt angles. Experimental param-
eters: λ ¼ 0:633 um,Wðz ¼ 0:4mÞ ¼ 400 um is used while
plotting Fig. 3. Higher γ is observed when the detector
size is within the intersection of two beams, where inter-
ference takes place (detector size indicated by line 1 in
Fig. 3.). γ decreases as the detector captures regions that
are outside the intersection (line 3 in Fig. 3). Besides de-
tector size, γ also depends on the tilt of reference reflec-
tor. At small tilt angles, the effect of detector size on γ
becomes insignificant since the two beams fully coincide.
As the tilt angle increases, the detector size needs to
decrease in order to capture intersection area with high
γ at the cost of power.
Decrease in the fringe visibility is experimentally de-

monstrated with an amplitude grating and a back reflec-
tor. A translating mirror was placed at about 100 μm from
the grating of period 40 μm. This distance is much closer
than the Talbot image distance of the grating, which is at
about 2:5mm. The grating is on a precision tilt stage, and
fringe visibility of the zeroth order was recorded with a
large area photodetector placed 0:4m away (sufficient
distance since Gaussian beam profile is maintained
everywhere) from the grating interferometer. Figure 4 il-
lustrates the theoretical (shown as continuous functions)
and the experimental results (shown as discrete points)
of the change in fringe visibility with respect to tilt angle
of the back reflector and photodetector sizes that
are shown in Fig. 3. Experimental results match the
theoretical model observed in Eq. (11) and similar decay

behavior is observed for other orders as well. The discre-
pancies between the theory and the measurements are
attributed to the error in manufacturing of the apertures
using a printed circuit board prototyping machine and
the handling precision of the manual tilt stage.

Study and experimental verification of diffraction or-
der fringe visibility for grating-based tilted sensors with
Gaussian illumination profile were presented. Simula-
tions indicate that gratings with equal sensor and grating
reflectivities and 50% duty cycle perform the best, as
expected. It was observed that the fringe visibility de-
creases to <0:3 when the height difference due to tilt
across the grating interferometer, i.e., W0θ product, ex-
ceeds λ=4. This study shows that diffraction grating read-
out principle is not limited to translating sensors but can
also be used for sensors with tilt or other types of motion
with some compromise in sensitivity. Decrease in fringe
visibility may be corrected by using a small area detector
at the expense of optical power. The change in the fringe
visibility can also be used as a new method to detect
small tilts in the sensor.
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Fig. 4. (Color online) Zeroth-order fringe visibility (γ) versus
tilt angle of the back reflector and detector size for λ ¼ 633 nm,
Wðz ¼ 0:4mÞ ¼ 400um for Ld ¼ 0:2, 0.6, 2mm. Theoretical
results are illustrated as continuous plots and experimental
results are marked as discrete points.

Fig. 3. (Color online) Fringe visibility contours of the
detector output for different detector sizes and tilt angles.
Lines 1 through 3 indicate detector sizes of Ld ¼ 0:2, 0.6,
2mm that are used in the experiments, where λ ¼ 0:633 um,
Wðz ¼ 0:4mÞ ¼ 400 um.
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