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Abstract: Microfabricated Lamellar grating interferometers (LGI) require 
fewer components compared to Michelson interferotemeters and offer 
compact and broadband Fourier transform spectrometers (FTS) with good 
spectral resolution, high speed and high efficiency. This study presents the 
fundamental equations that govern the performance and limitations of LGI 
based FTS systems. Simulations and experiments were conducted to 
demonstrate and explain the periodic nature of the interferogram envelope 
due to Talbot image formation. Simulations reveal that the grating period 
should be chosen large enough to avoid Talbot phase reversal at the expense 
of mixing of the diffraction orders at the detector. Optimal LGI grating 
period selection depends on a number of system parameters and requires 
compromises in spectral resolution and signal-to-bias ratio (SBR) of the 
interferogram within the spectral range of interest. New analytical equations 
are derived for spectral resolution and SBR of LGI based FTS systems. 
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1. Introduction 

Fourier transform spectrometry (FTS) is an established method that finds use in a variety of 
applications such as chemical substance detection and analysis, quality control, mining, or 
bomb detection. FTS is performed by measuring an interference signal which has the whole 
information about the spectrum of the light. Conventional FTS devices use a Michelson 
interferometer that is composed of a beam splitter, a stationary mirror, and a moving mirror 
which occupy a significant amount of space [1,2]. However, FTS can also be built in a more 
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compact manner using a lamellar grating interferometer (LGI) that utilizes a movable 
diffraction grating and operates in the zeroth order [3–5]. Even though the concept of LGI is 
known for several decades, it became practical only after the advancements in the 
microfabrication and Micro-electro-mechanical systems (MEMS) technologies. MEMS 
technology enables fabrication of very precise diffraction gratings that can move at high-
speed and in a pure translation mode with simple actuation and control methods. A study 
regarding the limitations of LGI and optimization was missing. 

This study is carried out under MEMFIS project within the EU 7th framework program 
which aims to build an ultrasmall mid-wave IR (MWIR) spectrometer working in the 2.5um-
16um range. Figure 1(a) illustrates the basic FTS layout using a LGI. In this configuration, an 
infrared (IR) source is collimated with a parabolic IR mirror. The incoming beam is reflected 
partly from the fixed grating fingers and partly from the moving grating fingers. The two 
reflected beams interfere and create an interferogram at the detector in response to the 
changing optical path difference (OPD) between the grating fingers. The light spectrum can 
be computed by recording the 0th diffraction order intensity and computing its Fourier 
transform with OPD as the integration variable. When a sample is placed at the illustrated 
sample plane, the transmittance properties of the sample can be observed when compared with 
the source spectrum without the sample. There are other well known FTS configurations that 
allow recording of the reflectance and absorbance spectrum of the sample. The key 
advantages of the LGI configuration compared to the Michelson configuration are the 
elimination of the beam splitter and reference mirror, which make the system more robust, 
more compact and lower cost. Note that all the optics in Fig. 1 are reflective, therefore the 
spectral range of operation can be very broad and limited by the detector. 

Our group previously demonstrated MEMS based LGI with 53um deflection operated at 
1KHz [Fig. 1(b)], which can read a spectrum in ~1msec [5]. The design is based on 
electrostatic actuation of comb fingers to obtain a pure translatory motion that is necessary to 
create the interference. Besides providing comb-type electrostatic actuation, the aluminum 
coated comb fingers also function as reflectors for the lamellar grating where an optical path 
difference is created between the movable and fixed fingers. The next generation design being 
fabricated has a predicted peak-to-peak OPD >1mm and should achieve <10cm−1 spectral 
resolution. 

Decreasing the size of a complete FTIR system without any performance degradation 
requires optimization at many levels. This study particularly focuses on the optical design 
aspects and optimization of the grating period size in order to achieve best efficiency, spectral 
resolution, and signal-to-bias ratio at the detector. The relationship between the Talbot image 
distance and spectral resolution is investigated for the first time and a new fundamental 
equation for spectral resolution of LGI systems is derived. 

(C) 2009 OSA 9 November 2009 / Vol. 17,  No. 23 / OPTICS EXPRESS  21290
#115556 - $15.00 USD Received 14 Aug 2009; revised 23 Oct 2009; accepted 1 Nov 2009; published 6 Nov 2009



(a) (b)

LGI

(top view)

IR PD

Sample

Plane

parabolic

mirror

elliptic

mirror

IR Source

parabolic

mirror (f=f1)

LGI

(side view)

fixed
grating

movable
grating

 

Fig. 1. (a) Cartoon drawing of an LGI based FTS system illustrating IR source, parabolic and 
elliptic mirrors, LGI, sample plane and IR photodetector. Side view illustrates the moving and 
fixed fingers (b) Microscope picture of a MEMS LGI fabricated on Silicon wafer. Each grating 
finger is 1.2 mm long, 70um wide with 5um gap in between [5]. 

2. LGI theory 

Four basic limitations of the Fourier Transform Spectrometers are revisited in this section. 
First two limitations are related to the spectral resolution set by the optical path difference in 
the interferometer arms and the divergence of the source, which are applicable to both 
Michelson and LGI based FTS. Additional limitations that apply to LGI spectrometers only 
are based on the mixing of diffracted orders and the Talbot effect that is explained in detail 
throughout the section. 

The spectral operation range of an FTS is defined as [λmin - λmax] and in terms of the 
wavenumber k = 1/λ as [kmax – kmin]. The spectral resolution of the FTS depends on the 
distance that the moving part travels, ± d, and how well the source is collimated. Assuming a 
point source which can be collimated perfectly, the spectral resolution is expressed with the 
well known equation [1] 

 
1 1

2
k

OPD d
∆ = =   (1) 

where ∆k is the spectral resolution, OPD stands for optical path difference between the two 
parts of the interferometer, and d is the maximum deflection of the moving part of the LGI. 
The half divergence angle, θd, is a measure of how well the source is collimated, which is 
expressed by the size of the source (Ds) or source aperture and the focal length of the first 
collimating mirror (f1): 

 1tan( / 2 )
d s

D fθ =   (2) 

After the collimating mirror, rays travel in an unparallel fashion due to the divergence 
effect. Assuming a monochromatic source, two extreme rays that travel within the LGI 
experience different optical path difference, which can be expressed as: 

 
1

2 (1 )
cos

d

OPD d
θ

∆ = −   (3) 
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A destructive interference occurs once the OPD difference is half the wavelength. 
Limiting OPD difference to half wavelength, and using small angle approximation such that 
cos(θd) = 1 - θd

2/2 brings the following criteria to the half divergence angle in order to achieve 
the spectral resolution depicted by Eq. (1) [1]: 

 min

max2
d

k

d k

λ
θ

∆
≤ =   (4) 

Equation (1) and Eq. (4) apply to all interferometric Fourier Transform Spectrometers. 
There are other criteria that apply to only LGI spectrometers, which are based on the 
formation of diffraction orders. Diffraction orders are observed at integer multiples of the 
angle: λ/Λ where Λ is the grating period. The separation of the 0th and 1st diffraction orders 
for a finite source size is assured under the following condition: 

 minsin(2 ) /
d
θ λ≤ Λ   (5) 

The main focus of this study is to bring forward and demonstrate the main resolution 
determining factor in LGI spectrometers, which is based on the Talbot effect [6]. The 
following paragraphs explain the Talbot effect and its implications on the spatial and the 
spectral resolution in detail: 

Illumination of a periodic pattern (square-wave amplitude grating in this case) results in 
approximate images (Talbot images) of the grating at integer multiple of the distance [6]: 

 22 /T λ= Λ   (6) 
Phase reversed images appear in between two consecutive Talbot images. Figure 2(a) and 

Fig. 2(b) illustrate the wave pattern created after a collimated beam passes through a grating. 
Figure 2(a) shows the result of a vector diffraction analysis performed with COMSOL FEM 
software, where polarization and grating thickness effects are taken into account. The top of 
the grating is coated with aluminum and reflects the incident radiation. Reflection and 
transmission through silicon side walls of the LGI structure are also taken into account.  
Figure 2(b) shows the result given by the scalar diffraction calculations performed in Matlab. 
The results of the two analyses agree well and predict the Talbot distances accurately, which 
verifies the validity of our diffraction code that will be used throughout this study. 

Talbot images and phase reversal can be clearly observed at the highlighted distances. 
Talbot phase reversal need to be avoided since nearly all the energy transmitted from the top 
reflector escapes between the fingers of the bottom reflector. Since little energy is reflected 
back from the bottom reflector, interference and the fringe contrast reduces nearly to zero. 
The first Talbot phase reversal appear at ½ of the Talbot distance, which effectively set the 
limit of the maximum usable OPD for the LGI. The same phase reversal effect is observed 
when a movable mirror is placed behind a fixed grating, where the phase reversed Talbot 
image of the returning light is blocked by the fingers of the fixed grating when the deflection 
is equal to ¼ of the Talbot period. 
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Fig. 2. Intensity pattern of Talbot (plane II) and phase reversed Talbot (plane I) images created 
when an amplitude grating is illuminated from top with a plane wave (only fixed grating is 
shown): (a) COMSOL FEM simulation tool results (b) results of our wave propagation code 
using scalar diffraction theory. 

Talbot phase reversal can be avoided by adjusting the maximum displacement to be d < 
T/2, which brings a new restriction to the grating period, such that: 

 max
max

2
d

k

λ
λΛ > =

∆
  (7) 

3. FTS design case study 

After the selection of the desired resolution and spectral band of operation, it is possible to 
calculate the maximum displacement; the maximum allowed divergence, the grating period to 
ensure adequate order separation while avoiding the Talbot phase reversal based on the 4 
criteria given above. Assuming a desired resolution of ∆k = 10 cm−1 and a spectrum of interest 
in the Mid-Wave Infrared (MWIR) λ = [2.5um - 16um], or k = [625cm−1 - 4000cm−1], the 
following requirements can be derived: 

• d = 500 um, based on Eq. (1) 

• θd < 2.5°, based on Eq. (4), 

• Λ < 25 um, based on Eq. (5), to ensure order separation, 

• Λ > 90 um, based on Eq. (7), to avoid Talbot phase reversal. 
Note that using the system specifications and the fundamental equations, there are 

conflicting requirements on the grating period. Therefore, an optimization and compromise in 
system performance is required, which is the main focus of the next section. 

4. Numerical simulations 

4.1 Algorithm and interferogram results 

Scalar diffraction theory is widely used in analyzing diffractive optical elements. Fresnel 
propagation codes based on scalar diffraction theory [6] were developed in MATLAB to 
investigate the effects of a lamellar grating structure on the spectrum measurements. 
Simulated model is illustrated in Fig. 3. For the MWIR wavelength range (2.5um – 16 um), 
the grating period in the range 50um-150um is well above the wavelength, where scalar 
diffraction theory provides accurate results with high computation speed. 
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Fig. 3. (a) Lamellar grating interferometer with grating period grating deflection d, and top and 
bottom reflector reflectivities of R1 and R2; (b) diffraction calculation algorithm used for the 
numerical simulations. 

The source is modeled as the sum of plane waves with different incidence angles to 
account for the divergence. The incoming wave is multiplied by an amplitude grating function 
(movable grating) and propagated for a distance of x. Once the transmitted wave reaches the 
fixed grating, the diffracted pattern is multiplied by the amplitude function of the fixed grating 
and the reflected beam is propagated once again a distance of x. Finally the resultant 
diffracted pattern is multiplied by the amplitude transmittance function of the movable grating 
and added with the initially reflected beam to form the reflected wave pattern. The detector 
intensity is then calculated after a Fraunhofer propagation, which is essentially a Fourier 
transformation followed by integration of the beam energy within the detector window. The 
procedure is repeated for all incidence angles in the range [-θd – θd], which are added together 
in incoherent (i.e., intensity) basis, and for all deflections in the range x = [-d – + d] to form 
the interferogram, which is a function of interference with respect to deflection x. The final 
spectrum is the modulus square of the Fourier transform of the interferogram. 

For a non diverging source, constructive interference occurs at d = nλ/2 for 0th order 
diffracted light [Fig. 4(a)] and d = λ/4 + nλ/2 for the 1st order diffracted light [Fig. 4(b)] 
where n is any integer. Divergence of the source results in a shift on the order locations as 
illustrated in Fig. 4(c) for an intermediate point: d = kλ/2 + λ/8. The light is collected through 
an integration window that is tailored to include all 0th orders for the calculated half 
divergence angle of 2.5°. Once all 0th orders are collected, some of the 1st orders are also 
included within the integration window, lowering the light efficiency and fringe contrast. 
Effect of mixing of the orders and size of integration window on spectral resolution will be 
discussed further. 
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Fig. 4. Far field (observed 15 cm away from LGI for λ = 2.5 um, Λ = 100 um) pattern of a) d = 
k.λ/2 b) d = λ/4 + k.λ/2 c) = k.λ/2 + λ/8 for all angles between −2.5 and + 2.5 degrees with 0.5 
degree intervals. Integration window is illustrated in red. 

The source is assumed to be spatially incoherent, therefore the interferogram is recorded 
by summing the total intensity within the integration window versus displacement of the 
movable finger. The interferogram signal is of the form 

 
0

4
( ) cos( ) . ( )I x B S x E x

π
λ

 
= + 
 

  (8) 

where E(x) is a slowly varying envelope function effected by all the system parameters and 
will be discussed later. Amplitude of DC components is taken as bias and the amplitude of 
spectral component at excitation wavelength λ0 is taken as the signal. Signal to Bias ratio 
(SBR) can be represented as 

 
S

SBR
B

=   (9) 

Figure 5 and Fig. 6 illustrate examples of interferograms and their spectrum for different 
grating periods and divergence angles. The wavelengths of interest are chosen to be the border 
wavelengths of MWIR region, 2.5 and 16 um respectively. Spectral resolution is then 
computed by calculating the main-lobe-width of a best fit sinc function centered on λo. 
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Fig. 5. Interferograms and their spectrum for 16 um illumination wavelength, Λ = 50, 100 um 
and θd = 0° and θd = 2.5°. All plots in the same column have the same scale. 
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Fig. 6. Interferograms and their spectrum for 16 um illumination wavelength, Λ = 50, 100 um 
and θd = 0° and θd = 2.5°. All plots in the same column have the same scale.. 
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Figure 5 illustrates that, for λ = 16um, since the diffraction order angles are large, the half 
divergence angle of 2.5° doesn’t effect the spectral resolution performance. However, the 
effects of Talbot phase reversal are clearly seen for λ = 16 um and Λ = 50 um when d = T/2 = 
156 um which is the exact location of the dip in the interferogram. The second dip takes place 
at 3T/2 = 469 um, exactly one Talbot period after the first dip. For Fig. 5(d), the divergence of 
the source prevents the fringe contrast to totally vanish, nevertheless the dip is still observable 
and the resultant spectral peak is multi-lobed and broadened. 

In Fig. 6, λ is set to 2.5um and the effects of divergence angle on the SBR is clearly 
observed due to the mixing of 0th and 1st diffraction orders within the detector integration 
window. Low SBR uses up the detector dynamic range and can reduce the spectral resolution 
further by increasing the noise level due to the detector limitations, which are not considered 
in this analysis. 

The following sections explore two critical effects observed in Fig. 5 and Fig. 6; the cyclic 
nature of the interferogram that is observed in Fig. 4(c) and Fig. 4(d) and the decrease in the 
SBR in Fig. 5(b) and Fig. 5(d). Based on the results of this section, one can state that the 
spectral resolution can be kept < 15cm−1 which is close to the theoretical limit of 10cm−1 for a 
displacement of 500um. 

4.2 Optimization results 

Figure 7 illustrates the spectral resolution and SBR contours for a range of wavelength and 
grating period combinations assuming point source (θd = 0) and a finite size source with θd 
limited to 2.5°. The spectral resolution worsens at large wavelengths and small grating 
periods, where Talbot phase reversal distance is smaller than the mechanical displacement and 
interferograms with cyclic constrast variation are observed. Furthermore SBR is inversely 
proportional with the spectral resolution since SBR decreases due to Talbot phase reversals as 
well. The irregularities in the lower right parts of the figure are due to the large fluctuations in 
the width and the peak values of a multi-lobed spectrum [e.g. see Fig. 5(c) and Fig. 5(d)]. 
Those regions are not of interest due to poor resolution and low SBR performance. 

When the divergence is introduced SBR decreases significantly for large diffraction 
gratings periods and the small wavelength regions due to order mixing at diffraction angles 
smaller than the divergence. Note that, when the incidence angle of the illuminating beam in 
the axis perpendicular to the grating fingers is not normal, strong shadowing effects would be 
observed that reduces both the SBR and the spectral resolution rapidly. 

It is possible to avoid Talbot phase reversals by choosing the grating period sufficiently 
large. On the other hand, keeping the SBR high demand smaller grating periods for high 
dynamic range detection. The optimal grating period for this case study seem to be in the 
80um-120um range. The final selection depends on the application and the importance of 
different parts of the spectrum. 
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Fig. 7. Spectral resolution and signal to bias ratio contours for all wavelength and grating 
period range for a) θd = 0 and b) θd = 2.5°. 

4.3 Analytical formulas 

Undesired decrease in the fringe contrast created by the Talbot phase reversal can be modeled 
as illustrated in the interferogram of Fig. 8(a). For simplicity, the envelope of the 
interferogram is assumed to be a cosine function with a period of 2T. The divergence effect is 
not taken into account. The illustrated interferogram may be represented as: 

 ( ) ( ){ }0( ') 0.5cos '/  0.5 .[0.5cos 2 '/ ]+0.5 ( '/ 4 )I x x T x rect x dπ π λ= +     (10) 

where x′ is the OPD, which is twice the displacement x′ = 2x. The spectrum of the 
interferogram S(k) is the Fourier transform of Eq. (10). S(k) has a total of 7 dirac-delta terms. 
Those 3 terms of interest that are around the center wavenumber ko = 1/λo are given as below 
and illustrated in Fig. 8(b): 

 
0~

0 0 0

1 1 1 1 1
( ) 0.5 (k- )+0.25 (k+ - )+0.25 (k- ) *sinc(4 ( ))

2 2
k k

S k d k
T T

δ δ δ
λ λ λ

 
= + 
 

 (11) 

The spectrum exhibits multiple peaks around kο, when Talbot period is small in compared 
to the displacement. This multi-peaking behavior was observed in Fig. 5(c) and Fig. 5(d). 

From Eq. (11), the resolution can be expressed as 

 
1 1

2
k

T d
∆ = +   (12) 

Equation (12) implies that the spectral resolution is a function of both the Talbot period 
and displacement. Furthermore, the spatial resolution converges to Eq. (1) for large Talbot 
periods. From Eq. (11) and Fig. 8(b), SBR can be calculated by summing the contribution of 
each peak at excitation wavelength, and can be expressed as: 
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Fig. 8. a) An approximate interferogram corresponding to d, λ, and Λ combination. The 
interferogram envelope is obtained using Talbot phase reversal distance of T where fringe 
contrast vanishes. b) Corresponding spectrum 

Figure 9 illustrates the ∆k and SBR contours that are plotted using Eq. (12) and Eq. (13). 
The contours match quiet well with those in Fig. 7(a) for a divergence of 0 degrees. Using 
Fig. 7(a), Fig. 9, Eq. (12), and Eq. (13), one can conclude that Talbot phase reversal is the 
critical factor determining spectral resolution and SBR in an LGI spectrometer. Therefore, 
enforcing diffraction order separation as given by Eq. (5) is an over constraint in terms of 
achieving high spectral resolution and good SBR. 
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Fig. 9. spectral resolution and signal to bias ratio contours for all wavelength and grating period 
range, plotted using approximate analytical formulas given in Eq. (12) and Eq. (13). 

5. Experimental results 

Experiments were conducted using a red laser (λ = 633 nm), a diffraction grating etched into 
silicon with a period Λ = 40um in order to demonstrate the Talbot effect using a dynamic 
moving reflector placed underneath the grating. The moving platform is made using FR4 
material and developed in our laboratory for FTS applications [7]. The distance of the FR4 
platform to the grating was varied for 10 mm and the fringe contrast was recorded. Figure 10 
illustrates the simulation and the experimental data of the interferogram envelope with respect 
to the distance between FR4 platform and the grating. Both simulated and experimental data 
agree perfectly with Talbot half period of Τ/2 = 2.5 mm. The experimental and simulation 
results are sensitive to incidence angle and the Talbot period changes rapidly if the incidence 
angle deviates from normal incidence in the direction perpendicular to the grating fingers. 
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Fig. 10. (a) Interferogram obtained from simulation (b) Interferogram obtained from 
experiment 

The experimental result is the first to report fringe contrast reduction based on Talbot 
phase reversals in a LGI based Fourier Transform Spectrometer. Previous large scale LGI 
spectrometers, having large grating periods and long phase reversal distances, do not exhibit 
this phenomenon [3,8,9]. The effect was not reported in recent MEMS based LGI 
spectrometers as well [4,10] due to relatively small mechanical displacements that is smaller 
than the Talbot period. 

6. Conclusion 

MEMS based LGI offers compact yet high resolution spectrometer architecture. The main 
limitation of LGI based spectrometer in contrary to Michelson configuration arises when the 
OPD is greater than the Talbot period. The Talbot limit was observed in both numerical 
simulations and in the experiments. For LGI based FTS systems, in order to achieve OPD 
limited spectral resolution, the grating period should be designed subject to the condition that 
Λ>√dλ and the collimated beam divergence due to finite source size should be limited 
according to Eq. (4). Special attention to the incidence angle should be paid in the final setup 
in order to avoid further reductions in the Talbot period. 

Furthermore, numerical results of Fig. 7 and approximate analytical formulas developed in 
Sec. 4(c) are useful to select a grating period for a given d and waveband in order to achieve 
the optimal spectral resolution and SBR. 

The spectral resolution and SBR of LGI based FTS systems can be estimated fairly 
accurately using the equations Eq. (12) and Eq. (13). 
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