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Abstract— In a classification problem, when there are multiple
feature views and unlabeled examples, co-training can be used
to train two separate classifiers, label the unlabeled data points
iteratively and then combine the resulting classifiers. Especially
when the number of labeled examples is small due to expense or
difficulty of obtaining labels, co-training can improve classifier
performance. For binary classification problems, mostly, the
product rule has been used to combine classifier outputs. In
this paper, we propose an adaptive Bayesian classifier combina-
tion method which selects either the Bayesian or the product
combination method based on the belief values. We compare our
adaptive Bayesian method with Bayesian, product and maximum
classifier combination methods for the multi-class pollen image
classification problem. Two different feature sets, Haralick’s tex-
ture features and features obtained using local linear transforms
are used for co-training. Experimental results show that adaptive
Bayesian combination with co-training performs better than the
other three methods.

I. I NTRODUCTION

In many pattern recognition applications, in addition to
labeled training data, unlabeled data is also available. The
unlabeled data becomes available where obtaining the inputs
for data points is cheap, however labeling them is time, money
and effort consuming. For example, in speech recognition,
recording huge amount of audio doesn’t cost a lot. However,
labeling it requires someone to listen and type. Similarly,
billions of web pages can be obtained from web servers.
However, classifying these web pages into classes is a time
consuming and difficult task. Similar situations are valid for re-
mote sensing, face recognition, medical imaging and intrusion
detection in computer networks [8]. Semi-supervised learning
methods [1] are used in order to make use of unlabeled data. In
some applications, data samples obtained from various sources
may be represented in different multiple ways (or views), for
example, web pages can be represented by using both textual
information and hyperlink structure information between them
[5]. Generally, when there is more than one feature view, they
are concatenated to form the whole feature space. However this
may sometimes be problematic, i.e. the concatenated features
may lack physical meaning [7]. These different views can also
be used for training more than one classifiers. The co-training
algorithm was proposed to reduce the misclassification rate
by reducing the disagreement between classifiers generated
for different views [5].

One of the important steps in co-training is the classifier
combination, where the predicted labels on each feature set
are combined to produce a final labeling. Product rule is the
combination method that has been used most of the time.
In this study we explore the Bayesian [9] and maximum
[3] classifier combination techniques for co-training and in
addition propose an adaptive Bayesian combination rule.

Experimental results are obtained on Pollen image dataset.
Pollen analysis is important in the study of allergic reactions,
search for hydrocarbons in medicine, derivation of geograph-
ical origin of products [11], paleo-ecology and paleo-climatic
reconstruction [12]. The tasks of classification of pollen grains
are laborious and require highly skilled people.

Previously pollen classification was studied by [11], [14],
[15] for three types of pollen of the Urticaceae family. In
[14] area, perimeter, compactness, centroid, mean distance to
centroid, maximum distance to centroid, minimum distance
to centroid and diameter features based on shape are used
by minimum distance classifier. Brightness and shape based
descriptors are also used as pollen features [11]. In a de-
tailed study [16], Haralick’s coefficients, gray level run length
statistics, local linear transformations, neighboring gray level
dependence statistics, first-order statistics, energy andentropy
features computed for three levels of decomposed wavelet
packets are evaluated by Support Vector Machine, K-Nearest
Neighbour and Multi-Layer Perceptron classifiers.

In this paper, unlike the previous studies, we use a co-
training algorithm for pollen image classification. Two dif-
ferent feature splits from co-occurrence matrix and local
linear transform are obtained. Logistic Linear Classifier is
used as the classifier of co-training algorithm. In co-training,
usually product combination is used for combining the out-
put probabilities. We propose an adaptive Bayesian classifier
combination, which eliminates the zero belief values that may
be obtained due to small amount of labeled data. We compare
the classification accuracy results of Adaptive Bayesian with
Bayesian, product and maximum product rules. We show that
co-training helps with classification of pollen patterns and
adaptive Bayesian combination gives the best results.

II. CO-TRAINING ALGORITHM

When there are more than one feature splits for data, they
can each be used to train a classifier. Co-training algorithmis



an iterative algorithm, proposed to train classifiers on different
feature splits and compensate each others’ classification error
by adding the most surely classified data samples from unla-
beled data. Under certain assumptions, by starting with a weak
classifier co-training algorithm can learn from the unlabeled
data. The first assumption is that the target function over each
feature set predicts the same label (compatibility). The second
assumption is, given the class of the instance, the feature sets
are conditionally independent [5]. It is, however, difficult for
real datasets to satisfy compatibility and conditional indepen-
dence. In the general co-training algorithm the feature sets
are referred to as views and it is assumed that two different
views such asF1 and F2 are available. The overall feature
set F is the concatenation of the different views:F = F1

U F2. The general co-training algorithm starts with a set of
labeled dataL and unlabeled dataU . Than creates a poolU ′ by
choosing u examples at random fromU . The algorithm iterates
a specified number of items and does the following: By using
L it trains classifiersC1 and C2 that considers only theF1

andF2 portion of F respectively.C1 andC2 label examples
from U ′ and select the most surely classified single example
for each class. Each classifier adds self-labeled examples to
L. Than the algorithm randomly chooses examples fromU to
replenishU ′. The block diagram of the co-training system is
given in fig.1.

Two classifiers,C1 and C2, predict class labels for data
samples. At each iteration, we select the samples from U’, if
a classifier is sure about that sample above a threshold. This
process is continued until the number of data samples in U’
are less than a threshold. Then the predictions are combined.
Most of the previous research combined the predictions by
multiplying their class probability scores together and then
renormalizing them. In this work, we use new classifier
combination methods for co-training algorithm.

PrTools [18] implementation of Logistic Linear Classifier
is used [4] as the base classifier for co-training algorithm.
Previously it was used for medical image analysis [2] in a co-
training approach. The combination scheme was naive Bayes
and the proposed method in [2] also considered hand labeling
the data samples. However we don’t get require an oracle and
use Bayesian classifier combination. In the experiments one
against all classification scheme is used.

A. Classifier Combination for Co-training

Let m be the number of classes,wi be theith class label,
R be the number of classifiers,xi be the measurement vector
used by theith classifier and Z be the pattern to be classified.
Given measurementsxi, i = 1, 2, ..., R, the pattern Z is
assigned to classwj , provided the posterior probability of that
interpretationP (wj |x1, ...xR) is maximum [3].

In order to reach a decision, probabilities of various hy-
potheses should be computed by considering all features.
Using the Bayes theorem we can write theP (wk|x1, ...xR)
as:

Fig. 1. Block diagram of co-training algorithm.

P (wk|x1, ...xR) =
P (x1, ...xR|wk)P (wk)

P (x1, ...xR)
(1)

P (x1, ...xR) (the unconditional feature joint probability
density) can be expressed in terms of conditional feature
distributions:

P (x1, ...xR) =

m∑

j=1

P (x1, ...xR|wj)P (wj) (2)

We consider three different rules for classifier combination in
co-training.

1) Product Rule: P (x1, ..., xR|wk) represents the joint
probability distribution of the features extracted by the clas-
sifiers. Assume that the representations are conditionallysta-
tistically independent. Then we can rewriteP (x1, ..., xR|wk)
as:

P (x1, ..., xR|wk) =

R∏

i=1

P (xi|wk) (3)

We can rewrite the posterior probability as:

P (wk|x1, ..., xR) =
P (wk)

∏R

i=1 P (xi|wk)
∑m

j P (wj)
∏R

i=1 P (xi|wj)
(4)

Using the Bayes rule results in:

P (wk|x1, ..., xR) =

∏R

i=1 P (wk|xi)/P (wk)R−1

∑
k′{

∏
j′ P (wk′ |xj′)/P (wk′)R−1}

(5)

Product rule assigns patternZ to the classJ which maximizes
the right handside of Eq.5.

If a priori class probabilities are equal (P (wj) =1 / (number
of classes)) this formula reduces to product combination.

2) Max Rule: Under the assumption of equal priors and
conditional independence given class labels the max rule
assigns patternZ to classwj if [3]

J = arg
m

max
k=1

R
max
i=1

P (wk|xi) (6)



3) Bayesian Rule:Bayesian combination rule takes into
consideration each classifier’s performance. The performance
of a classifier is indicated by it’s confusion matrix C, where
Cij denotes the number of patterns with actual classi,
classified as classj by the classifier. Total number of patterns
that are classified as classj can be obtained by

∑m

i=1 Cij .
The conditional probability that a patternx actually belongs
to classi given that classifierr assigns it to classj can be
estimated as [9]:

P (x ǫ Ci|ek(x) = j) =
C

(r)
ij

∑m

i=1 C
(r)
ij

(7)

where C
(r)
ij , 1 ≤ r ≤ R, represents theith row andjth

column ofrth classifier’s confusion matrix.ek(x) is classifier
k’s decision. Eq.(7) represents the degree of accuracy when
classifierr assigns classi to a pattern.

Let er(x) = jr for 1 ≤ r ≤ R be the classification results
of any patternx obtained byR classifiers, then a belief value
that x belongs to classi can be defined as:

bel(i) = P (x ǫ Ci|e1(x) = j1, ..., eR(x) = jR) (8)

Assuming independence of classifiers and applying Bayes
formula belief value can be approximated as [9]:

bel(i) =

∏R

r=1 P (x ǫ Ci|er(x) = jr)∑
i=1 m

∏R

r=1 P (xǫ Ci|er(x) = jr)
(9)

for 1 ≤ i ≤ m. Input patternx is assigned to classj if
bel(j) > bel(i) for all i 6= j.

In our experiments we computed confusion matrices forF1,
F2 andF feature sets. Considering the fact that, small amount
of data samples in the training set may lead to zero belief
values. Due to sparsity of labeled data when co-training, we
used the training set to compute the confusion matrices. We
propose to use an adaptive Bayesian combination scheme for
co-training. If the maximum belief value for a data sample
is less than a threshold, instead of Bayesian rule, we use
product combination for that data sample. Experimental results
show that this adaptive combination of co-training improves
the classification performance.

III. T EST RESULTS ONPOLLEN IMAGE DATASET

A. Data Set

In this work seven types of pollen images from Ban-
gor/Aberystwyth Pollen Image Database [13] is used. The
types of pollen cells belongs to the following classes: Plan-
tago lanceolata, Quercus robor, Alnus glutenosa, Polypodium
vulgare, Rumex acetosella, Conopodium majus and Dactylis
glomerata. The dataset consists of relatively low spatial reso-
lution images (typically 80-100 pixels in each dimension).The
Polypodium vulgare type consist of 196 images and the others
have more. Fig.2 shows different types of pollen images.

Previously, this dataset is used in [10] and the best clas-
sification performance of 83% obtained by using all features
together and RBF networks as the classifier.

Fig. 2. Different types of pollen images from three differentclasses: lantago
lanceolata, Quercus robor and Alnus glutenosa respectively.

B. Feature Sets

In this paper, in order to conserve the physical meanings of
features, we use semi-supervised approach on two kinds of fea-
tures. The first type of feature set is Haralick’s texture features
[6] that uses co-occurrence Matrix (CM) obtained form each
image and the second one uses Local Linear Transforms (LLT)
[17]. Haralick’s texture features [6] uses the co-occurrence
Matrix obtained form each image. The co-occurrence matrix
is calculated using the relative distance among the pixels
and their relative orientation. It captures a significant amount
of textural information. Based on these matrices, Contrast,
Inverse Difference Moment, Angular Second Moment and
Entropy features are obtained for different orientations [6].
A total of 20 Haralick’s features are extracted for each image.

Local linear transforms features (LLT) [17] are statistical
measurements of the outputs of filter banks applied to images.
Filters are designed to extract a particular feature from the
texture of the image. A total of 9 features are obtained from
local linear transforms. For details of these features please see
[17].

In the results, Haralick’s feature set is referred to as the
feature set 1 and local linear transform based feature set is
referred to as the feature set 2.

C. Experiment Details

In order to balance the dataset, for each class 196 images
are used. Initially, the dataset is splitted into training and
testing part with equal amount of data. 15% and 25% of the
training data is used as labeled training data and the rest is
used as the unlabeled training data. Co-training is used for30
iterations (i.e. 30 unlabeled data points are labeled for each
class). During the iterations the unlabeled data is dividedinto
2 equal random parts and one part is classified by logistic
linear classifiers. At each iteration, the data points which
are classified with a probability above a certain threshold
are added into the labeled dataset. Experimental results are
obtained for random 10 runs and the mean values of these
runs are reported.

D. Results

In fig. 3 classification performance with co-training is
given. Initially, 15 labeled samples are used for each class
in the training phase. As shown in the figure, the Bayesian
Combination method doesn’t perform well because of the
zero belief values. However adaptive Bayesian combination
performs best. On the other hand classification performance
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Fig. 3. Classification performance of linear logistic classifier on pollen image
dataset. Initial labeled examples are15 for each class.
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Fig. 4. Classification performance of linear logistic classifier on pollen image
dataset. Initial labeled examples are25 for each class.

for combination rules are less than performance of feature set
2 for initial iterations. At the end of the iterations, though,
the product and maximum combination rules increase their
performances, Adaptive Bayesian combination is still better
than the other methods.

When the initial labeled samples for each class in the
training phase is increased to25. Increasing the number
of labeled examples also increases the general performance.
Bayesian Combination method improves it’s performance but
it is not better than any of the single feature sets. Adaptive
Bayesian combination performs best.

In order to understand contribution of co-training we eval-
uated classifiers trained on105, 175 and 686 (on feature
portion F ) training examples. We found out that supervised
classification with105, 175 and 686 training samples give
75.45% 79.94% and90.58% respectively. Note that the results
for 25 initial labeled examples for each class is around 88%.
This accuracy is slightly less than the accuracy when we use
all available data for training.

IV. CONCLUSION

In experiments performed on pollen image dataset, we have
shown that when we apply co-training the general classifica-
tion performance improves. Unlike the previous applications
which combined the classifier outputs by multiplying class
probabilites of each classifier, we apply adaptive Bayesian
classifier combination scheme. Experimental results show that
adaptive Bayesian combination with co-training gives best
results.
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