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Abstract— In a classification problem, when there are multiple One of the important steps in co-training is the classifier
feature views and unlabeled examples, co-training can be usedcombination, where the predicted labels on each feature set
to train two separate classifiers, label the unlabeled data points are combined to produce a final labeling. Product rule is the

iteratively and then combine the resulting classifiers. Especially S .
when the number of labeled examples is small due to expense orcombmauon method that has been used most of the time.

difficulty of obtaining labels, co-training can improve classifier In this study we explore the Bayesian [9] and maximum
performance. For binary classification problems, mostly, the [3] classifier combination techniques for co-training amd i
product rule has been used to combine classifier outputs. In addition propose an adaptive Bayesian combination rule.

this paper, we propose an adaptive Bayesian classifier combina- gy harimental results are obtained on Pollen image dataset.

tion method which selects either the Bayesian or the product Poll Vsis is i tant in the studv of allerai .
combination method based on the belief values. We compare our ' 0/€N analysis is important in the study of allergic reaus,

adaptive Bayesian method with Bayesian, product and maximum Search for hydrocarbons in medicine, derivation of gedgrap
classifier combination methods for the multi-class pollen image ical origin of products [11], paleo-ecology and paleo-@iin
classification problem. Two diffgrent fe_ature sets, Haralick's tex  reconstruction [12]. The tasks of classification of polleaigs
ture features and features obtained using local linear transforrs are laborious and require highly skilled people.

are used for co-training. Experimental results show that adaptie : e .
Bayesian combinationgwithpco-training performs better thanpthe Previously pollen classification was stqdled by [11]_' [14],
other three methods. [15] for three types of pollen of the Urticaceae family. In
[14] area, perimeter, compactness, centroid, mean distamc
I. INTRODUCTION centroid, maximum distance to centroid, minimum distance
to centroid and diameter features based on shape are used
In many pattern recognition applications, in addition tby minimum distance classifier. Brightness and shape based
labeled training data, unlabeled data is also availablee THescriptors are also used as pollen features [11]. In a de-
unlabeled data becomes available where obtaining the nptatiled study [16], Haralick’s coefficients, gray level riangth
for data points is cheap, however labeling them is time, monstatistics, local linear transformations, neighboringygtevel
and effort consuming. For example, in speech recognitiodependence statistics, first-order statistics, energyeatpy
recording huge amount of audio doesn’t cost a lot. Howevdeatures computed for three levels of decomposed wavelet
labeling it requires someone to listen and type. Similarlpackets are evaluated by Support Vector Machine, K-Nearest
billions of web pages can be obtained from web servemdeighbour and Multi-Layer Perceptron classifiers.
However, classifying these web pages into classes is a timdn this paper, unlike the previous studies, we use a co-
consuming and difficult task. Similar situations are vafidre- training algorithm for pollen image classification. Two -dif
mote sensing, face recognition, medical imaging and ifdrus ferent feature splits from co-occurrence matrix and local
detection in computer networks [8]. Semi-supervised liegrn linear transform are obtained. Logistic Linear Classifier i
methods [1] are used in order to make use of unlabeled dataubed as the classifier of co-training algorithm. In co-irain
some applications, data samples obtained from variougssurusually product combination is used for combining the out-
may be represented in different multiple ways (or viewsy), feout probabilities. We propose an adaptive Bayesian classifi
example, web pages can be represented by using both textahbination, which eliminates the zero belief values thaym
information and hyperlink structure information betwebarh be obtained due to small amount of labeled data. We compare
[5]. Generally, when there is more than one feature viewy théhe classification accuracy results of Adaptive Bayesiath wi
are concatenated to form the whole feature space. Howeger Bayesian, product and maximum product rules. We show that
may sometimes be problematic, i.e. the concatenated &satuto-training helps with classification of pollen patternsdan
may lack physical meaning [7]. These different views can aladaptive Bayesian combination gives the best results.
be used for training more than one classifiers. The co-trgini
algorithm was proposed to reduce the misclassification rate Il. CO-TRAINING ALGORITHM
by reducing the disagreement between classifiers generatewhen there are more than one feature splits for data, they
for different views [5]. can each be used to train a classifier. Co-training algorithm



an iterative algorithm, proposed to train classifiers ofedént
feature splits and compensate each others’ classification e

iteration t

by adding the most surely classified data samples from unla- |/ classifie Label patterns| oo |
beled data. Under certain assumptions, by starting withakwe |- .» “ew s Fy view N
classifier co-training algorithm can learn from the unlabel | r ’ .

data. The first assumption is that the target function oveh ea ! 2

feature set predicts the same label (compatibility). Treasd Select one example
assumption is, given the class of the instance, the featige s et on Yo O vsngl | e &

are conditionally independent [5]. It is, however, diffictor view F2 e s confident

real datasets to satisfy compatibility and conditionalejpein- H

dence. In the general co-training algorithm the featurs set iteration t+1 Add new labeled

are referred to as views and it is assumed that two different data to training part

views such asF; and F, are available. The overall feature
set F' is the concatenation of the different views: = F}
U F,. The general co-training algorithm starts with a set of
labeled datd. and unlabeled datd. Than creates a po6l’ by
choosing u examples at random frém The algorithm iterates
a specified number of items and does the following: By using
L it trains classifiers’; and C» that considers only thé"
and F, portion of F' respectively.C; and C, label examples P(wg|ay, ..ar) = Play, zplwy) P(wy) (1)
from U’ and select the most surely classified single example P(z1,...xR)
for each class. Each classifier adds self-labeled examples tP(z1,...xzg) (the unconditional feature joint probability
L. Than the algorithm randomly chooses examples fiéio  density) can be expressed in terms of conditional feature
replenishU’. The block diagram of the co-training system islistributions:
given in fig.1. m

Two classifiers,C; and Cy, predict class labels for data P(x1,...xR) = ZP(xl,...xR\wj)P(wj) 2
samples. At each iteration, we select the samples from U’, if =
a cIaSS|f|§r IS sure about.that sample above a threshold.. T\W§ consider three different rules for classifier combinaiio
process is continued until the number of data samples in yc')-training.
are less than a threshold. Then the predictions are combinedl) Product Rule: P(x1,...,xr|wy,) represents the joint

Most of the previous research combined the predictions By, pijity distribution of the features extracted by thase
multiplying their class probability scores together an@rh gifiers Assume that the representations are conditiorsadly

renormalizing them. In this work, we use new CIaSSiﬁetfstically independent. Then we can rewri&z1, ..., zr|wy)
combination methods for co-training algorithm. ’

Fig. 1. Block diagram of co-training algorithm.

as:
PrTools [18] implementation of Logistic Linear Classifier R
is used [4] as the base classifier for co-training algorithm. P(x1, ..., wplwe) = [ [ Plailws) 3)
=1

Previously it was used for medical image analysis [2] in a co- . . N

training approach. The combination scheme was naive Bay&§ can rewrite the posterior probability as:

and the proposed method in [2] also considered hand labeling

the data samples. However we don't get require an oracle and P(wy) [T, Pa|wy)

use Bayesian classifier combination. In the experiments one Plwglar,...;wr) = ) TTE - Pl o (4)
. e . Zj (wj) ITi=1 Plilw;)

against all classification scheme is used.

Using the Bayes rule results in:

A. Classifier Combination for Co-training B e
P(wk|$1, ey Q;‘R) = HZ=1 (wk|lz)/ (wk) (5)

Let m be the number of classes; be theith class label, 2w ALy Plwwlay )/ P(wy ) B0
R be the number of classifiers; be the measurement vectoProduct rule assigns pattefhto the class/ which maximizes
used by theth classifier and Z be the pattern to be classifie¢he right handside of Eq.5.
Given measurements;, i = 1,2,..., R, the pattern Z is  If a priori class probabilities are equaP(w;) =1/ (number
assigned to class;, provided the posterior probability of thatof classes)) this formula reduces to product combination.
interpretationP (w; |zy, ...z r) is maximum [3]. 2) Max Rule: Under the assumption of equal priors and
In order to reach a decision, probabilities of various hyEonditional independence given class labels the max rule
potheses should be computed by considering all featur@SSIgns patteri to classw; if [3]
Using the Bayes theorem we can write thgwy|x1,...xR)
as:

J=arg rilnéf m%lx P(wg|z;) (6)
=1 i=



3) Bayesian Rule:Bayesian combination rule takes into
consideration each classifier's performance. The perfooma
of a classifier is indicated by it's confusion matrix C, where
C;; denotes the number of patterns with actual class
classified as clasg by the classifier. Total number of patterns
that are classified as clagscan be obtained by_." | C;;.
The conditional probability that a pattetnactually belongs Fig. 2. Different types of pollen images from three differefisses: lantago
to classi given that classifier assigns it to class can be lanceolata, Quercus robor and Alnus glutenosa respegtivel
estimated as [9]:

o™ B. Feature Sets
_ ) — ij . . . .
P(z e Ciler(z) = j) = N () In this paper, in order to conserve the physical meanings of
i=1"ij features, we use semi-supervised approach on two kinds.of fe
where C{"”), 1 < r < R, represents théth row andjth tures. The first type of feature set is Haralick's textureifess
column ofrth classifier's confusion matrix,(z) is classifier [6] that uses co-occurrence Matrix (CM) obtained form each

k’'s decision. Eq.(7) represents the degree of accuracy wHgrage and the second one uses Local Linear Transforms (LLT)
classifierr assigns class to a pattern. [17]. Haralick's texture features [6] uses the co-occuceen

Let e,(z) = j, for 1 < r < R be the classification resultsMatrix obtained form each image. The co-occurrence matrix
of any patternz obtained byR classifiers, then a belief valueis calculated using the relative distance among the pixels
that 2 belongs to class can be defined as: and their relative orientation. It captures a significanbant
of textural information. Based on these matrices, Contrast
. . ) Inverse Difference Moment, Angular Second Moment and

bel(i) = P(x € Cilex(w) = jr, - en(®) = jr)  (8) Entropy features are obtained for different orientatiof} [
Assuming independence of classifiers and applying Baya&sotal of 20 Haralick's features are extracted for each imag

formula belief value can be approximated as [9]: Local linear transforms features (LLT) [17] are statistica
R , measurements of the outputs of filter banks applied to images

bel(i) = [[.—, P(z € Ciler(2) = jr) (9) Filters are designed to extract a particular feature from th

Sy m IR, P(ze Cileq(x) = ji) texture of the image. A total of 9 features are obtained from

for 1 < i < m. Input patternz is assigned to clasg if local linear transforms. For details of these featuresgaesee
bel(j) > bel(i) for all i # j. [17]. _ ,

In our experiments we computed confusion matricesfar In the results, Harahclg’s feature set is referred to as the_
F, and F feature sets. Considering the fact that, small amoulgature set 1 and local linear transform based feature set is
of data samples in the training set may lead to zero beligferred to as the feature set 2.
values. Due to sparsity of labeled data when co-training, \\%e Experiment Details
used the training set to compute the confusion matrices. We
propose to use an adaptive Bayesian combination scheme fdi? order to balance the dataset, for each class 196 images
co-training. If the maximum belief value for a data samplare used. Initially, the dataset is splitted into trainingda
is less than a threshold, instead of Bayesian rule, we U&sting part with equal amount of data. 15% and 25% of the
product combination for that data sample. Experimentalltes training data is used as labeled training data and the rest is

show that this adaptive combination of co-training impsovel/sed as the unlabeled training data. Co-training is useddor
the classification performance. iterations (i.e. 30 unlabeled data points are labeled fehea

class). During the iterations the unlabeled data is divicdéal

2 equal random parts and one part is classified by logistic

A. Data Set linear classifiers. At each iteration, the data points which
In this work seven types of pollen images from Banare classified with a probability above a certain threshold

gor/Aberystwyth Pollen Image Database [13] is used. Tke added into the labeled dataset. Experimental resudts ar

types of pollen cells belongs to the following classes: Plagbtained for random 10 runs and the mean values of these

tago lanceolata, Quercus robor, Alnus glutenosa, Polymodi runs are reported.

vulgare, Rumex acetosella, Conopodium majus and Dactylis

glomerata. The dataset consists of relatively low spatiabsr D- Results

lution images (typically 80-100 pixels in each dimensidrt)e In fig. 3 classification performance with co-training is

Polypodium vulgare type consist of 196 images and the oth@jigen. Initially, 15 labeled samples are used for each class

have more. Fig.2 shows different types of pollen images. in the training phase. As shown in the figure, the Bayesian
Previously, this dataset is used in [10] and the best claSembination method doesn’t perform well because of the

sification performance of 83% obtained by using all featureggro belief values. However adaptive Bayesian combination

together and RBF networks as the classifier. performs best. On the other hand classification performance

I11. TESTRESULTS ONPOLLEN IMAGE DATASET
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IV. CONCLUSION

In experiments performed on pollen image dataset, we have
shown that when we apply co-training the general classifica-
tion performance improves. Unlike the previous appliaagio
which combined the classifier outputs by multiplying class
probabilites of each classifier, we apply adaptive Bayesian
classifier combination scheme. Experimental results shatv t
adaptive Bayesian combination with co-training gives best
results.
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