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Abstract: The Mw 7.4, August 17, 1999 [zmit earthquake ruptured a ~100-km-long onshore section of the North
Anatolian Fault (NAF) in the eastern Marmara region, causing the loss of more than 20,000 people and extensive
destruction. The western termination and total length of the earthquake rupture is still a matter of debate because
the surface rupture goes offshore in the Gulf of Izmit after displaying a coseismic displacement of ~5 m. Such a
considerable slip implies that the fault rupture must definitely continue some distance westward on the sea floor, but
where exactly it terminated is difficult to determine. This issue is critical for determining the size of the Marmara
seismic gap, south of Istanbul. Therefore, to explore the fault scarps associated with the 1999 rupture on the sea floor,
we have studied ultra-high resolution bathymetry (0.5 m resolution) acquired with a remotely operated submersible
during the MARMARASCARPS cruise, an innovative approach which proved to be useful in seeking earthquake
surface deformation on the sea floor. The analysis of microbathymetry suggests that the 1999 Izmit earthquake rupture
extended westward at least to 29.38°E longitude about 10 km west of the Hersek Delta in the Gulf of [zmit. It is clearly
expressed as a sharp fault break with a 50 cm apparent throw across the bottom of a submarine canyon. Further west, a
pronounced and linear fault rupture zone was observed, along with fresh en-échelon cumulative fault scarps. We infer
that the seismic break continues westwards, reaching a total length of ~145 km at around 29.24°E longitude, consistent
with the 1999 rupture deduced from SAR interferometry. It appears to stop at the entrance of the Cinarcik Basin where
a normal faulting component prevails. We suggest that fault complexity at the junction between dominant strike-slip
faulting along the {zmit fault and significant normal faulting in the Cinarcik Basin may act as a barrier to rupture
propagation of large earthquakes.

Key Words: North Anatolian Fault, Sea of Marmara, 1999 [zmit earthquake, submarine fault scarps, stress interaction

1999 izmit Deprem (Mw 7.4) Kiriginin Bati Ucu: Marmara Denizi’nde
Beklenen Biiyiik Deprem i¢in Onemi

Ozet: Dogu Marmarada Kuzey Anadolu Fayrnin (KAF) kara iizerindeki 100 knr'lik bir pargasini kiran Mw 7.4, 17 Agustos
1999 Izmit depremi, 20000 den fazla can kaybina ve bityiik yikima neden olmustur. 1999 {zmit depremi yiizey kiriginin
Golciik'te ~5 mr'lik bir yanal atim iirettikten sonra {zmit Korfezinde denize girmesi sebebiyle kirigin batida nerede
sonlandig1 hala tartiyma konusudur. Bu buytiklitkteki bir atim, fay kiriginin 6nemli miktarda batiya dogru denizaltinda
devam ettigini gostermektedir. Ancak tam olarak nerede sonlandigi belirlenememistir. Bu konu, Marmara sismik
boslugununun 6zelliklerinin belirlenebilmesi ve bununla baglantili olarak Marmara bolgesi ve 6zellikle 20 milyondan
fazlakiginin yasadig1 Istanbul metropolitanini tehdit eden deprem tehlikesinin ortaya konulabilmesi agisindan son derece
Snemlidir. Bu ¢aligmada Izmit depremi yiizey kiriginin deniz tabaninda meydana getirdigi fay sarpliklarini aragtirmak
amactyla, MARMARASCARPS seferi esnasinda uzaktan kumandali bir denizalt: ile toplanan yiiksek ¢oziintrliikli
(0.5 m) batimetri verileri incelenmistir. Bu yontem ile deniz tabaninda depremlerin yiizey defomasyonu basarili bir
sekilde tespit edilebilmekte ve fay geometrisi ayrintili olarak ortaya konulabilmektedir. Mikrobatimetri verisinin analizi
sonucunda Izmit depremi yiizey kiriginin, Hersek yarimadasinin en az 10 km batisinda, 29.38° Dogu boylamina kadar
ulasmis oldugu gortilmektedir. Bir denizalt: kanyonunun diiz tabani boyunca izlenen taze fay kiriklarina ait giincel
sarpligin diisey atimi 0.5 mdir. Bu noktadan batiya devam edildiginde, ¢izgisel dar bir fay zonu boyunca kademeli (en-
échelon) kiimiilatif sarpliklar tespit edilmistir. Bu zon boyunca dogrultu-atimli faylanmanin karakteristik yapilar1 olan
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kiigiik gek-ayir havzalar ve basing sirtlar: gozlenmektedir. Morfolojik analizler sonucunda 1999 yiizey kiriginin 29.26°E
boylamina kadar uzandigi ve toplam uzunlugunun ~145 km’ye bularak normal faylanmanin gériilmeye baslandig
Cinarcik Havzasi girisinde sonlanmis olabilecegi tespit edilmistir. Elde edilen sonuglar, saf yanal-atimli Izmit fayi ile
normal faylanmanin kontrol ettigi Cinarcik Havzasi kesisiminin 1999 kiriginin ilerlemesini durduracak bir bariyer

olusturmus olabilecegini gostermektedir.

Anahtar Sozciikler: Kuzey Anadolu Fayi, Marmara Denizi, 1999 Izmit depremi, denizalt: fay sarphklari, gerilme

etkilesimi

Introduction

The Mw 7.4, 17 August 1999 Izmit earthquake
(M, 1.7-2.0 x 10* Nm) was not a surprise because
westward migrating earthquakes had already taken
place along the North Anatolian Fault (NAF) all the
way from Erzincan to the Izmit region, breaking
a ~1000-km-long section of the NAF since 1939
(Toksoz et al. 1979; Barka 1996; Stein et al. 1997).
Like falling dominos, these triggered earthquakes
reached the Izmit region, following the southern
boundary of the Almacik Block (Figure la) (Barka
1996). Together with the 12 November 1999 Diizce
event (Mw 7.1), these two earthquakes ruptured
almost the entire northern boundary of the Almacik
Block (Figure 1a) and the Izmit fault segment (Figure
1b).

The 1999 Izmit earthquake nucleated on the NAF
south of Izmit with bilateral rupture propagation
to the west and east breaking four fault segments,
(i.e. the Karadere, Sakarya, Sapanca and Golciik
segments) with a total length of 100 km on land
(Figure 2a, b). They are separated by up to 4-km-wide
stepovers with both releasing and restraining bends
(Barka et al. 2002). The maximum horizontal offset
produced along the surface break was 5.5 m on the
Sakarya segment, immediately east of Sapanca Lake
(Figure 2¢) (Barka et al. 2002).

Active faults in the vicinity of the [zmit rupture,
particularly around the rupture tips, are now loaded
with high static stress whose peak value is equivalent
to tens of years of stress accumulation at a normal
tectonic rate (Hubert-Ferrari et al. 2000; Cakur et al.
2003a). An accurate estimate of static stress changes
caused by an earthquake on the neighbouring active
faults depends heavily on the source parameters
of the earthquake itself. Therefore, the rupture
parameters of the 1999 Izmit earthquake need to
be well constrained to assess the seismic hazard in
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the Istanbul metropolitan area that hosts nearly 20
million of people.

Although the surface rupture of the 1999
earthquake was very well documented onshore,
the offshore continuation in the Gulf of Izmit still
remains ambiguous because the coseismic surface
faulting of the Izmit earthquake disappears offshore
west of Golciik, immediately after displaying a right-
lateral offset of about 5 m (Figures 1b & 2c¢) (Barka
et al. 2002). Further west, field observations did not
reveal any evidence for a surface rupture in the Hersek
Delta except some ground cracks and open fissures,
suggesting that the rupture propagation must have
stopped somewhere between Golciik and Hersek
within the Karamursel Basin (Pinar et al. 2001;
Kozac1 2002; Lettis et al. 2002; Cormier et al. 2006).
However, GPS and InSAR modelling (Reilinger et al.
2000; Wright et al. 2001; Delouis et al. 2002; Cakir
et al. 2003b) together with the analysis of aftershock
distribution (Karabulut et al. 2002; Ozalaybey et
al. 2002), suggest that the rupture most probably
continued westward beyond the Hersek Peninsula
along the Hersek-Cinarcik segment.

While the study of fault scarps on land has been
a successful tool to determine constraints on fault
rupture kinematics and earthquake cycles, it is at
the pioneering stage for submarine environments.
Recent advances in high-resolution submarine
imaging allow us to apply a similar approach on the
sea floor. After the 1999 Izmit earthquake, many
scientific cruises have been carried out in the Sea
of Marmara in order to highlight the geometry
of active faults and earthquake ruptures on the
seafloor. Some of these cruises mainly focused on
collecting high resolution geophysical data, i.e. R/V
Odin Finder (2000) and R/V Urania (2001), in the
Gulf of Izmit in order to image the fault geometry
and the offshore extension of the 1999 Izmit rupture
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Figure 2. (a) Shaded relief map of the Mw 7.4 1999 Izmit earthquake rupture area in the east of Marmara Sea, showing

fault segments in black lines (Armijo et al. 2002) and 1999 Izmit surface rupture in red lines (Barka et al. 2002).
Red question marks denote the uncertainty concerning the submarine portion of the Izmit rupture. Yellow circles
are M, > 2 aftershocks recorded between August 20 and October 20 1999 by the TUBITAK permanent network
(Ozalaybey et al. 2002). Red star locates the epicentre of the 1999 izmit earthquake. The blue-red bar below the
map distinguishes individual fault segments that ruptured during the {zmit earthquake; red and blue bars indicate
whether or not offsets are observed and measured along the fault rupture. (b) Depth cross section of the aftershocks
taken parallel to the E-W strike. Red star represent the mainshock hypocentre. The aftershocks extend in an
uninterrupted continuation further west from the Hersek delta along the axis of the Izmit Gulf up to the Cinarcik
Basin. (c) Slip distribution diagram of the 17 August 1999 Izmit surface rupture (after Barka et al. 2002). Slip values

are extrapolated in dashed lines where there is no direct observation of slip achieved from offshore segments.

(Polonia et al. 2002, 2004; Cormier et al. 2006).
While the combined study of multi-beam and side-
scan sonar maps together with the chirp profiles
illustrated the fault geometry clearly along the Gulf
of Izmit, deformation associated with the 1999 Izmit
surface rupture offshore was not identified directly
other than some fresh looking cracks found in the
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Golciik Basin (Polonia et al. 2002). Consequently,
the MARMARASCARPS cruise performed in 2002
collected the first ultra-high-resolution bathymetry
(microbathymetry) along the active faults in the Sea
of Marmara to characterize in detail the submarine
fault scarps (Armijo et al. 2005). In this study, we
present a detailed map of the 1999 Izmit rupture
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offshore in the western Gulf of Izmit accompanied
by our analysis of microbathmetry extracts (0.5 m
resolution) from the MARMARASCARPS campaign
and inferences concerning the western termination
of the offshore fault rupture. We explore the rupture
geometry, segmentation, kinematics and morphology
of this section of the NAF combining high resolution
bathymetric data acquired during other cruises
(Polonia et al. 2004; Cormier et al. 2006), and discuss
the controversial extent of fault rupture within the
Sea of Marmara. We also perform Coulomb stress
modelling with two possible rupture tips to calculate
static stress changes caused by the Izmit earthquake
on the neighbouring active faults.

Tectonic Framework

The right-lateral North Anatolian transform fault
between the Eurasian and Anatolian plates is one of
the most prominent and seismically active structures
of the Eastern Mediterranean (inset diagram in
Figure 1a) (Barka 1996; Armijo et al. 1999; Sengor et
al. 2004). The NAF has an extremely well-developed
narrow and simple trace from Karliova in the east
to the Mudurnu valley in the west. However, west
of Mudurnu, the NAF splays into two major fault
strands known as northern and southern NAFE. The
northern branch runs through Sapanca Lake and
enters the Sea of Marmara through the Izmit Gulf,
while the southern branch runs south of the Biga
and Armutlu peninsulas through Iznik Lake, Bursa
and Gemlik Bay. According to GPS observations,
most of the lateral motion appears to be transferred
obliquely northward, from the main fault to the
northern branch, across the Sea of Marmara basin
(McClusky et al. 2000; Armijo et al. 2002; Reilinger
et al. 2006). The Sea of Marmara is characterized by
the 70-km-wide stepover between two well-known
strike-slip faults, [zmit and Ganos, which ruptured
during the 1999 Izmit and 1912 Ganos earthquakes
and appears to be among the clearest examples of
pull-apart basins in the world (Armijo et al. 2002).
The Neogene and Quaternary tectonics puts the
northern Marmara under an extensional regime that
has caused significant overall subsidence (Armijo et
al. 2002; Hirn et al. 2003; Miiller & Aydin 2005). The
northern Marmara stepover is formed by smaller
steps bounding three deep basins (Tekirdag, Central

and Cmarcik basins) with more active subsidence
than in the rest of Marmara (Barka & Kadinsky-Cade
1988; Wong et al. 1995; Armijo et al. 2002).

The northern branch of the NAF enters the Sea of
Marmara through Gulf of [zmit and its purely strike-
slip regime already becomes slightly transtensional
forming two interconnected basins (i.e., Karamiirsel
and Golciik) (Figure 1b). These are depressions,
bounded by short, en-énchelon, extensional and
strike-slip segments (Polonia et al. 2004). The
bathymetric mapping indicates that the NAF
branches into two segments west of the Hersek Delta
(Figure 3a); the E-W-trending Hersek-Cinarcik and
the ENE-WSW-trending Hersek-Yalova segments.
The latter segment runs parallel to the coast and
branches into numerous smaller normal faults that
partially bound the south of Cimarcik Basin. The
25-km-long Hersek-Cinarcik segment connects
to the Princes Islands fault (PIF) that bounds the
Cmarcik Basin to the north (Figure 3a). Here, it
makes a ~14-km-step to the north and continues
westward along the Central segment in the Sea of
Marmara (Figure 1a). Analyses of the high-resolution
bathymetric data and seismic profiles show that the
largest stepover along the northern branch is located
offshore in the Cinarcik Basin (Armijo et al. 2002).
The strike-slip motion between Hersek-Cinarcik
and Central segments is transferred via the NW-
SE-trending Princes Islands fault. Oblique opening
along this fault results in the formation of the deep
Cinarcik extensional basin filled with sediments of
up to 5 km thick (Carton et al. 2007) and represents
a major structural complexity along the NAF where
the transcurrent tectonics transfers into an oblique
extension resulting in significant thinning in the
brittle crust.

High Resolution Bathymetric Data Acquisition

After the 1999 Izmit earthquake numerous scientific
cruises have been carried out to investigate the
active faults in the Sea of Marmara. The Turkish-
French cruise of Ifremer R.V. Le Suroit obtained the
first complete high resolution bathymetric map of
the deep basins of the Sea of Marmara in 2000 (Le
Pichon et al. 2001; Armijo et al. 2002). The high-
resolution bathymetry (~25 m), seismic reflection
and side scan sonar imaging mapped in fine detail
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the submarine active faults in the Marmara Sea. In
particular, the side scan sonar towed 200 m above
the seafloor documented the detailed morphology of
fault scarps. In 2002, another Turkish-French cruise,
Marmarascarps, collected ultra-high resolution,
high-precision bathymetry data (microbathymetry)
focusing on the main submarine faults in the
northern Sea of Marmara. During the Marmarascarps
cruise, video-photo imaging and ultra-high-
resolution bathymetric mapping of the sea floor
were carried out with the unmanned submersible
(ROV Victor 6000), since other methods such as
seismic reflection, side scan sonar or multi beam
bathymetry could not resolve surface fault ruptures
of individual earthquakes. The new dataset revealed
the presence of well-preserved fault scarps associated
with recent and historical large earthquakes in the
Sea of Marmara (i.e. 1999 Izmit, 1912 Ganos, 1894
Cnarcik earthquakes). These observations allowed
the identification of the fault scarps associated with
the 1912 Ganos earthquake on the western side of the
Marmara Sea (Armijo et al. 2005).

The ROV was operated with a Seabat 8101
multibeam sounder to survey faults over a total
length of about 300 km with an average horizontal
resolution of 0.5 m and a vertical accuracy of 10 cm,
using a high-precision submarine navigation system
(less than 10 m of uncertainty) based on a DGPS
positioning of the vessel. Exploration at low altitude
over the sea bottom (2 m) was made in specific sites
to make direct visual observations of the fault breaks.
The point wise micro-bathymetric data were gridded
and plotted using Generic Mapping Tools (Wessel
& Smith 1995). In this study, we also combined
multibeam bathymetry data collected in the Western
and Karamiirsel basins of the Gulf of Izmit by R/V
Odin Finder (2000) and R/V Urania (2001) (Polonia
et al. 2004; Cormier et al. 2006) (Figure 1b).

Offshore Extension of the 1999 izmit Earthquake
Rupture: Submarine Fault Scarps West of Hersek

The westernmost section of the 1999 Izmit earthquake
surface rupture was observed onshore west of Golciik
where the fault rupture crosses the Navy base with a
4.7 mright-lateral offset (Barka et al. 2002) and enters
the Gulf of Izmit. From this point westward, the fault
entirely runs offshore and thus it becomes difficult

to identify the rest of the surface rupture (Figure
1b). However, Polonia et al. (2002) presented towed
camera images of fresh-looking polygonal cracks
offshore from Golciik filled by black and yellowish
mud possibly related to fluid or gas escape during
1999 earthquake. Such evidence of gas seepage
was also introduced by Kuscu et al. (2005) from
chirp profiles acquired during a post-earthquake
cruise off Golciik. Further west, faulting becomes
transtensional in the Karamiirsel Basin by composite
strike-slip and normal faulting (Figure 1b). Cormier
et al. (2006) described here a series of lineaments
that strike subparallel to the main fault branch east of
the Karamiirsel Basin and interpreted them as open
cracks or moletracks. No other significant inferences
were made for the 1999 fault break in the Karamiirsel
Basin except for a small slump which was probably
triggered by the 1999 Izmit earthquake (Cormier et
al. 2006). No ground rupture was observed in the
Hersek Delta although the Hersek lagoon reportedly
subsided by about 20-30 cm (Lettis et al. 2002). The
absence of surface rupture across the Hersek Delta
can be explained by the attenuation of faulting within
the deltaic sediments (Giilen et al. 2002). The most
likely scenario, however, is that the amount of right-
lateral slip across the Hersek Delta is rather small and
distributed or absent since it is located at the western
end of the Golciik segment. This was also observed
in the Akyaz1 bend where there is a gap in surface
rupture between the Sakarya and Karadere segments.

Sets of E-W-striking, en-échelon, open cracks
with throws of up to 25 cm were mapped in the
Taskoprii Delta west of Hersek ( Figures 1b & 3a)
(Barka et al. 2002; Giilen et al. 2002; Emre et al. 2003).
These fractures are probably due to lateral spreading
of unconsolidated deltaic sediments. North of the
Taskoprii delta, the multibeam bathymetry exposes
a prominent Quaternary submarine canyon which is
offset right-laterally by the Hersek-Cinarcik segment
(Figure 3a, b). Polonia et al. (2004) inferred a ~100
m right-lateral offset from the sea-floor reflectivity
based on CHIRP sonar data. The submarine canyon
runs north, but as it deepens it makes a sharp
westward turn towards the Ciarcik Basin (Figure
3a, b). It has a relatively flat bottom (at 180 m depth),
suggesting that it is now inactive and filled with
Holocene sediments. The canyon was active during
the Last Glacial sea-level lowstand until about 11 kyr
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BP when it was submerged by the Holocene sea-level
rise (Cagatay et al. 2003; Polonia et al. 2004).

The flat floor of the canyon represents the ideal
place to search for the sea floor rupture of the 1999
[zmit earthquake, since its levelled surface could
preserve only the last earthquake rupture. The
ultra high resolution bathymetry data from the
Marmarascarps campaign systematically covered
the extent of the Hersek-Cinarcik segment aiming
to detect the continuation of the surface rupture
(Figure 3a, b). Indeed, the microbathymetry shows
a remarkable linear rupture across the canyon floor
with a sharp south facing scarp (Figure 4a—c). The
scarp illustrates an apparent throw of 50 cm (Figure
4d) and moletrack morphology. The Mw 7.4 Izmit
earthquake produced a line of moletracks with
alternating topography, generally not exceeding 50
cm, while producing consistent right-lateral offsets
of ~5 m (Barka et al. 2002; Ferry et al. 2004). Slope-
degrading processes, such as gravity collapse, sliding,
talus creep, are expected to be more effective along
the canyon compared to in other places on the sea
bottom. Therefore, sediment transport must be
high enough to bury any individual event and thus
the scarp at the bottom of the canyon is most likely
to be associated with the 1999 Izmit earthquake.
The InSAR modelling indicates a minimum of 2 m
horizontal displacement in this area (Cakir et al.
2003b), suggesting ~14° rake giving the 0.5 m throw
on the canyon floor. Similar vertical and horizontal
offsets are common, especially along the Sakarya
segment of the 1999 Izmit rupture (see table 1 in
Lettis et al. 2002). We also re-measured the offset of
the submarine canyon using the eastern edge of the
canyon floor and the topographic high in its western
edge. Its eastern edge is offset 120+10 m right-
laterally. The offset of the topographic high seems
rather sharper than the edge of the canyon which
gives a right-lateral offset of 130+10 m. Although we
are able to measure the cumulative offset from the
edges of the canyon, the individual horizontal offset
related to the 1999 rupture is hard to assess due the
lack of required markers on the seafloor (comparable
to man-made features on land).

Further west, the ROV microbathymetry reveals
a set of significant fault breaks mostly in a left-
stepping en-échelon arrangement, running parallel
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to the E-W section and southern slope of the
canyon (Figures 3 & 5). The fine-scale morphology
of these submarine scarps is well preserved and can
be continuously traced in the microbathymetry for
~5 km. Morphological features typical of strike-slip
faulting such as oblique secondary fault branches,
sag ponds (Figure 5a, b) and push-ups (Figure 5c,
d), accompany the main fault trace here. Push-up
ridges and sag ponds alternate at segment ends or at
slight fault bends (Figure 5b, d). The dimensions of
these features (50-80 m long; 20-30 m wide) suggest
that they resulted from cumulative movements of
past events. Topographic profiles constructed from
the microbathymetry at this site resolve the fine-
scale morphology of these scarps (Figure 6a). As in
the canyon floor, nearly all the scarps face upslope
to the south and their heights range between 0.5 and
6 metres. The maximum vertical throw is measured
as ~6.2 m along this section (Figure 6b). Vertical
offsets of up to 2.5 m were observed along the surface
rupture on land but, large vertical displacements are
located only on extensional jogs mainly in Golcitk
and Sapanca (Figure 2). Vertical throws along the
main rupture zone are however much lower as
expected. Therefore, vertical displacements of up to
6.2 m along the Hersek-Cinarcik segment represent at
least three or more earthquakes. The fresh fault scarp
morphology in the canyon slope suggests that they
were most probably re-activated by a recent event
which can be attributed to the western extension of
the 1999 rupture. These cumulative scarps can be
associated with some of the historical earthquakes
that are thought to have taken place on this segment,
e.g., 1509, 1719, 1754 and 1894 (Ambraseys & Finkel
1991, 1995; Ambraseys 2002). Detailed investigation
of the canyon sedimentary units across the fault may
reveal which offshore segments were broken during
these earthquakes.

Coulomb Stress Modelling of the 1999 Izmit
Earthquake: Implications for the Expected Large
Earthquake in the Sea of Marmara

We have conducted Coulomb stress modelling in
order to understand how the active faults in the
eastern Sea of Marmara were affected by the static
stress transfer due to the 1999 Izmit earthquake. We
calculate Coulomb stress change on faults considering
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Figure 6. (a) Profiles constructed from the ROV microbathymetry with locations shown on the side map
(same as Figure 5d). Note that all the scarps face upslope southward. Vertical exaggeration
is 2. (b) Profile constructed with combined bathymetry. The microbathymetry data (red
line) resolves details of the scarp morphology that are not determined with the bathymetry
background (blue crosses). Blue dashed line represents the initial slope morphology before
faulting. Fault offsets the slope with a clear normal component. Apparent throw measured

here is 6.2 m.
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two scenarios; rupture terminating (1) near Hersek on
the eastern side of the delta or (2) near Yalova about
30 km west of Hersek. We calculate the static stress
resolved on the active faults of Armijo et al. (2002)
using Coulomb 3.1 software developed in the USGS
(Toda et al. 2005). In the first model, the rupture tip
is placed at the western end of the Golciik segment
located east of the Hersek Peninsula around the tip of
the Karamiirsel Basin. We use a model fault of ~120
km long with distributed (tapered) slip (equivalent
of Mw= 7.4) and a coeflicient of friction of 0.4. As
illustrated in Figure 7a, this model predicts that the
[zmit earthquake gives rise to the highest static stress
changes in the Hersek-Cinarcik and Hersek-Yalova

n auas
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-100

-50
Coulomb Stress (bar)

|

5 -4 -3 2 -1 0 1 2 3 4 5

0
DistanCe (km)

segments. However, if the Izmit rupture extended
30 km further west rupturing the Hersek-Cinarcik
segment, the stress on the Hersek-Yalova segment
would not increase, but would decrease significantly,
becoming negative. On the other hand, the Princes
Islands fault receives 3-4 bars more static stress

(Figure 7b). Therefore, in this scenario, while the
earthquake potential on the Hersek-Yalova segment
is reduced by the termination of Izmit rupture at the
entrance to the Cinarcik Basin, the high static stress
increase moves further west, bringing the southern
and northern boundary faults of the Cinarcik Basin
closer to failure.

50 -80
100

Figure 7. Coulomb stress changes on active faults due to the 1999 Izmit earthquake calculated using Coulomb 3.1
software (Toda et al. 2005) with a tapered slip distribution and a coefficient of friction of 0.4. Two possible
rupture terminations for the Izmit earthquake were tested. In the first model (a) the rupture reaches the
entrance of the Cinarcik Basin as we interpret in this study, whereas in the second model (b) it terminates just
east of the Hersek Delta. Note that in the first model the Hersek-Yalova segment, unlike the Princes Island

fault, is not loaded by the Izmit earthquake.

394



G. UCARKUS ET AL.

Recent studies incorporating the coseismic slip
distribution on land (Altunel et al. 2004) and sea
floor (Armijo et al. 2005) together with the analysis
of historical seismograms (Aksoy et al. 2009) from
the 1912 Ganos earthquake, suggest that the 1912
rupture probably extends from Saros Bay in the west
all the way to the Central Basin in the east (Figure
la). Consequently, if the Izmit fault rupture did not
extend west of the Hersek Peninsula, the unbroken
section of the NAF under the Sea of Marmara consists
of three segments, i.e., the Central Marmara, the
Princes Island and the Hersek-Cinarcik segments.
These three fault segments may rupture alone or
together, and this appears to depend on where the
earthquake initiates (Oglesby et al. 2008). If the
earthquake initiates on the Princes Islands fault, the
simulations suggest that rupture, probably, will not
propagate in to the neighbouring faults. However,
if the earthquake nucleates around the western tip
of the Central Marmara segment and propagates
eastwards, it seems very likely that the Princes Islands
and Hersek-Cinarcik segments will fail as well. The
same will also be true if the rupture starts around
the eastern tip of the Hersek-Cinarcik segment and
propagates westwards. Therefore, if this segment
did not rupture during the Izmit earthquake, the
probability of a multi-segment rupture is much
higher.

Conclusions

The analysis of the ultra-high resolution bathymetry
data gathered during the MARMARASCARPS
cruise presents evidence that the 1999 Izmit
earthquake rupture extends in Gulf of Izmit further
west than the Hersek Delta and continues with the
Hersek-Cinarcik segment. The supporting evidence
is the presence of a fresh fault scarp with a relatively
small vertical offset (i.e., 50 cm) across the floor of a
Quaternary submarine canyon located ~10 km west
of Hersek at 29.38° E longitude (Figure 4). Westward,
distinctive fault breaks with higher throws (up to 6.2
m) are traceable for 5 km up to 29.326° E by using
microbathymetry (Figures 3 & 5). Although the
1999 break could not be pointed out individually
as clearly as in the canyon floor, the fine scale
morphology of these fault scarps implies that the
rupture continues up to the entrance of the Cinarcik

Basin, reaching a total length of ~145 km at around
29.24°E. Instead of stopping in the middle of the
straight Hersek-Cinarcik fault segment, the rupture
must have propagated all the way to the entrance of
the Cinarcik pull-apart basin, where the strike-slip
tectonic regime of the NAF significantly changes into
oblique extension (Figure 8) (Armijo et al. 2002).
Our microbathymetry results at the eastern section
of the Cinarcik Basin along the Princes Islands fault
segment (Figure 3a) do not present any evidence for
a recent surface rupture, suggesting that 1999 Izmit
earthquake rupture did not proceed further west
along the PIE

Dynamic rupture studies of earthquakes as well
as historic observations show that large stepovers (>
4 km wide) play a crucial role in earthquake rupture
termination (Barka & Kadinsky-Cade 1988; Harris
& Day 1993, 1999; Oglesby 2005; Wesnousky 2006;
Elliott et al. 2009). In a recent study, Elliot et al. (2009)
suggested that the gradual increase in complexity
toward a stepover will incrementally reduce the
rupture energy, causing a gradual decrease of the
coseismic slip and prevent the rupture propagation
through the stepover. Therefore, we consider that the
Cinarcik pull-apart basin between the large stepover
(~14 km wide) of the strike-slip Izmit and Central
segments in the Sea of Marmara most probably acted
as a barrier to rupture propagation and induced the
termination of the 1999 Izmit earthquake (Figure 8).

We conclude that the 25-km-long Hersek-
Cinarcik segment was broken as the fifth segment
during the 1999 Izmit earthquake together with
the other four rupture segments (Karadere ~30
km, Sakarya ~25 km, Sapanca ~30 km, Golcitk
~35 km) mapped in the field (Barka et al. 2002).
Consequently, the static stress transferred by the
[zmit earthquake on to the faults bounding the
Cmarcik Basin is now significantly (3-4 bars)
higher than could have been caused by the rupture
termination east of Hersek (Figure 7b). However,
failure of the Hersek-Yalova segment is not promoted
by the [zmit earthquake as it is located mostly in the
stress shadow. Since the Hersek-Cinarcik segment
was broken during the izmit earthquake, it is unlikely
that a future earthquake can nucleate around Hersek
and propagate westward, breaking both the Princes
Islands and Central segments.
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entrance of the Cinarcik pull-apart basin.
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