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Abstract Weuse the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniquewith
the European Space Agency’s Envisat and ERS SAR data acquired on three neighboring descending tracks (T350,
T078, and T307) to map the interseismic strain accumulation along a ~225 km long, NW-SE trending section
of the North Anatolian Fault that ruptured during the 1939, 1942, and 1943 earthquakes in eastern Turkey. We
derive a line-of-sight velocity map of the region with a high spatial resolution and accuracy which, together
with the maps of earthquake surface ruptures, shed light on the style of continental deformation and the
relationships between the loading and release of interseismic strain along segmented continental strike-slip
faults. In contrast with the geometric complexities at the ground surface that appear to control rupture
propagation of the 1939 event, modeling of the high-resolution PS-InSAR velocity field reveals a fairly linear and
narrow throughgoing shear zonewith an overall 20 ± 3mm/yr slip rate above an unexpectedly shallow 7±2 km
locking depth. Such a shallow locking depth may result from the postseismic effects following recent
earthquakes or from a simplified model that assumes a uniform degree of locking with depth on the fault. A
narrow throughgoing shear zone supports the thick lithospheremodel in which continental strike-slip faults are
thought to extend as discrete shear zones through the entire crust. Fault segmentation previously reported
from coseismic surface ruptures is thus likely inherited from heterogeneities in the upper crust that either
preexist and/or develop during coseismic rupture propagation. The geometrical complexities that apparently
persist for long periods may guide the dynamic rupture propagation surviving thousands of earthquake cycles.

1. Introduction

Continental strike-slip faults are divided along their strike into segments separated by step overs and
restraining or releasing bends or combinations of the two structures [Allen, 1968; Sibson, 1989]. As predicted
by laboratory and numerical experiments and inferred from field observations, geometrical fault complexities
appear to persist over a long period of time surviving thousands of earthquake cycles but are eventually
smoothed out with increasing cumulative offset across the fault [Sieh, 1996; Finzi et al., 2009]. By forming
asperities and/or barriers, such discontinuities have long been thought to control the initiation, propagation,
and termination of earthquakes along major active faults [Das and Aki, 1977; Aki, 1984; King and Yielding,
1984; Barka and Kadinsky-Cade, 1988; Wesnousky, 2006; Klinger et al., 2006]. However, how the interseismic
strain accumulates along such segmented faults, particularly around geometrical heterogeneities, has not yet
been clearly documented. Global Positioning System (GPS) measurements are generally too sparse for
determining the pattern of strain accumulation along active faults at a kilometer scale, and conventional
interferometric synthetic aperture radar (InSAR) measurements are often heavily hampered by atmospheric
effects and signal decorrelation. Here, together with GPS data, we use the Persistent Scatterer synthetic
aperture radar (SAR) Interferometry technique [Hooper, 2008] with Envisat and ERS satellite SAR data acquired
on three neighboring descending tracks to map the interseismic strain accumulation along a ~225 km long
NW-SE trending section of the North Anatolian Fault (NAF) along the Kelkit Valley in eastern Turkey (Figure 1).
The strike of the NAF along the Kelkit Valley being nearly parallel to the ERS and Envisat satellites’ look
direction and the relatively low vegetation due to arid to semiarid climate south of the Black Sea coastal range
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make the region ideal for using InSAR
to determine interseismic strain
accumulation [Wright et al., 2001]. Unlike
the interferogram stacking methods
previously applied to the NAF [Wright
et al., 2001; Walters et al., 2011, 2014;
Cavalie and Jónsson, 2014], the
Persistent Scatterer SAR Interferometry
(PS-InSAR) technique we use in this
study provides a line-of-sight (LOS)
velocity map of the region along the
NAF with an unprecedented spatial
resolution and accuracy as it estimates
and reduces atmospheric noise. With
the maps of earthquake surface ruptures
[Barka and Kadinsky-Cade, 1988], our
InSAR analysis allows us to improve our
understanding of the relationship
between the loading and release of
interseismic strain along the NAF and
similarly segmented strike-slip faults.

2. Seismotectonics and
Segmentation of the NAF

Extending for over 1500km from the
Karlıova Triple Junction in eastern Turkey
to the Corinth Rift in central Greece
with a concave shape and a slip rate
of 2.4 cm/yr [McClusky et al., 2000], the
right-lateral NAF accommodates the
anticlockwise rotation of the Anatolian
Plate with respect to Eurasia that is

thought to result from Hellenic trench suction [Reilinger et al., 2006] and continental collision between Arabian
and Eurasian Plates [Sengor et al., 1985] (Figure 1a). The small circle arc of Anatolian Plate rotation is nearly
parallel to the part of the NAF studied here, imposing a predominantly strike-slip motion on it [Reilinger et al.,
2006; Tatar et al., 2012]. The SAR image frames we use cover parts of the NAF that ruptured during the 1939
(Mw 7.9), 1942 (Mw 6.9), and 1943 (Mw 7.7) earthquakes, the first three events of the well-known westward
migrating sequence of earthquakes in the last century along the NAF [Toksöz et al., 1979] (Figure 1). The 1939
earthquake rupture initiated near Erzincan and propagated unilaterally to thewest running about 250 km along
the NAF [Dewey, 1976] (Figure 1a). However, instead of continuing straight northwest along the South Erbaa
Fault or jumping to the north over a 10 km wide pull-apart basin at Niksar to follow the Taşova-Niksar Fault
that ruptured 3 years later in 1942, the rupture propagated westward on the lower slip rate Ezinepazarı Fault
(also known as the Ezinepazarı-Sungurlu Fault) [Erturaç and Tüysüz, 2012], running for an additional 75 km into
the Anatolian Plate (Figure 1b) [Yavaşoğlu et al., 2011]. Thus, the Niksar-Erbaa extensional step over appears
to have acted as a barrier to westward rupture propagation during the 1939 event, diverting it from the main
trace of the NAF [Barka, 1996]. The Ezinepazarı Fault, extending into the interior of the Anatolian Plate, is
probably an older structure that developed as part of the NAF during an early period of collision between the
Anatolian and Arabian Plates [Sengor et al., 1985]. With increasing convergence and changes in plate rotations
and the associated stress field, the NAF propagated northwestward forming the Niksar pull-apart basin.

Paleoseismological studies and historical documents suggest that in addition to medium-to-large-sized
earthquakes, like those in the twentieth century sequence, very large earthquakes greater than magnitude 8
(like the 1668 event; Figure 1), infrequently take place on the NAF [Kondo et al., 2009; Kozaci et al., 2011;
Zabcı et al., 2011]. Thus, the repeatability of surface slip and associated fault segments during earthquakes

a

b

Figure 1. (a) Shaded relief imagemap (SRTM30-Plus) of NE Turkey [Becker
et al., 2009] showing active faults (black lines) and the twentieth century
earthquake ruptures (colored lines) along the North Anatolian Fault (NAF)
and East Anatolian Fault (EAF) [Saroglu et al., 1992] that meet in the Karlıova
Triple Junction (KTJ) in eastern Turkey [Barka, 1996]. Arrows are GPS velo-
cities with respect to Eurasia [from Reilinger et al., 2006; Ozener et al., 2010;
Yavaşoğlu et al., 2011; Tatar et al., 2012]. Dashed rectangles show the SAR
image frames on descending tracks of ERS (T350 and T307) and Envisat
(T078) satellites. Combined white and black arrows indicate satellites’ LOS
look and flight directions, respectively. The inset map shows the tectonic
plates and major faults (red lines) in the study region and the potential
extent of the 1668 earthquake (white line) along the NAF [Kondo et al., 2009].
(b) Shaded elevation map (SRTM3) of the Niksar-Erbaa pull-apart basin and
its vicinity where the 1939, 1942, and 1943 earthquakes took place.
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along the NAF may not be constant;
segments may not break with characteristic
earthquakes along the NAF as is observed
along subduction zones [Konca et al., 2008].

2.1. Velocity Field From InSAR
Time Series

We generated time series and mean radar
line-of-sight (LOS) interseismic velocity
maps along the eastern portion of the NAF
from European Space Agency’s ERS and
Envisat SAR data using the PS-InSAR
technique. As a multitemporal InSAR
method, the PS-InSAR technique allows a
diminution in the effects of signal
decorrelation due to atmospheric
changes, digital elevation model errors,
and orbital inaccuracies by filtering in time
and space and selecting only the most
coherent pixels for analysis, which is
necessary when studying subtle and slow
deformation such as interseismic strain
accumulation [Ferretti et al., 2001; Hooper,
2008]. However, temporal filtering of
unevenly sampled data degraded by
stratified atmospheric delays might lead to
the aliasing of tropospheric delays into
the estimated velocity [Jolivet et al., 2014].
We used 54 SAR images acquired on three
descending tracks across the NAF: 19 on
ERS track T307 between 1992 and 2000,
13 on Envisat track T078 between 2004
and 2008, and 23 on ERS track T350
between 1993 and 2000, from east to
west, respectively (Figures 1 and 2). The
number of images given for each track

are only those which we used in our final time series calculations. Orbits that do not provide satisfactory
signal correlation with the master images due to large temporal and spatial baselines are not counted or
shown on baseline time plots in Figure 2. Overlapping with each other, the three tracks together cover about
255 km long continuous section of the NAF between longitudes 36.4°E and 38.8°E (Figure 1). We processed
the SAR data using the software package StaMPS [Hooper, 2008; Hooper et al., 2012] with Repeat Orbit
Interferometry Package [Rosen et al., 2004] for focusing the raw SAR images, Delft object-oriented radar
interferometric software (DORIS) [Kampes and Usai, 1999] for calculating the interferograms, and Shuttle
Radar TopographyMission (SRTM) 90m data for the removal of the topographic phase contribution. The details
of the processing procedure can be found in Hooper et al. [2012].

To account for any residual error due to imprecise orbit information in each track, a best fitting plane to the
southernmost part of the velocity field that covers a presumably undeforming part of the Anatolian Plate
is subtracted from the entire velocity field, producing mean LOS velocities with respect to stable Anatolia.
However, some residuals (2–3mm/yr) may remain in the velocity field due to plate rotation across the region
~100 km south of the North Anatolian Fault. During the time span of SAR data (1992–2010), there were no
earthquakes in the region with magnitude >5.5 that could perturb the interseismic velocity field. Assuming
that the LOS signal is due to surface motion and that the motion is predominantly horizontal and parallel
to the local strike of the NAF (N72°W), we converted the mean LOS velocities to fault-parallel (FP) InSAR
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Figure 2. Baseline plot of SAR images used to calculate the PS-InSAR
velocity field and time series. Plotted points are labeled with the date
of image acquisition (YYMMDD). Stars indicatemaster orbits chosen for
Persistent Scatterer InSAR analyses.
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velocities taking into account the
viewing geometry including the local
radar look angle [Lyons and Sandwell,
2003]. As shown in Figure 3, the
resulting mean FP InSAR velocity field
obtained from persistent scatterers
with standard deviation less than
3.8mm/yr reveals a clear picture of
the interseismic deformation along
the NAF. The deformation field shows
a gradual change in velocity across
the fault and is consistent with the
right-lateral sense of motion between
the Eurasian and Anatolian Plates as
warm colors indicate movement away
from the satellite (i.e., westerly) and
cool colors toward (i.e., easterly) the
satellites which are flying in descending
(i.e., heading southward) orbits.

The InSAR velocity fields on all the
tracks are in close agreement with
GPS velocities obtained from the
reprocessing of raw data from
Reilinger et al. [2006], Yavaşoğlu et al.
[2011], and Tatar et al. [2012] with the
GAMIT/GLOBK GPS software [Herring
et al., 2010] (Figure 3). Profiles of fault-
parallel velocities plotted in Figure 4
together with surface velocities
predicted by elastic screw dislocation
models better illustrate the excellent
agreement between the InSAR and
GPS measurements. As can be seen in

profiles P3 and P5 extracted from the overlapping sections of neighboring tracks (Figure 4), a broad consistency
is also present between InSAR velocities from independent tracks, suggesting that tropospheric effects in the
estimated velocity field should be insignificant. Fault-perpendicular components of GPS velocities and joint
analysis of ascending and descending InSAR data [Walters et al., 2011] confirm that this section of the NAF is
purely strike slip with no notable extensional or compressional strain [McClusky et al., 2000]. Therefore, the
potential error in LOS-to-FP velocity transformation with an assumption of a predominantly horizontal and
fault-parallel motion should be negligible.

3. Modeling of Interseismic Strain Accumulation

The low-level noise in the velocity fields allows us to explore potential variation in the locking depth and
slip rate along the fault. The inversion of the velocity field and the related inferred fault slip at depth document
the crustal deformation along the NAF. We therefore model many fault-parallel InSAR velocity profiles instead
of modeling just one profile representing an entire track or a large section of it. The profiles are spaced
~10 km apart with a sampling swath width of 10 km (i.e., no overlaps between them). An average velocity
with standard deviation is calculated every 100m in 200m bins along the profiles to smooth and reduce
the number of data points to be modeled. We model these profiles using screw dislocations on an infinitely
long and vertical fault in an elastic half-space following Savage and Burford [1973]. Four parameters are
estimated from fault-normal InSAR profiles; slip rate at depth (mm/yr), locking depth (km), location of the
fault (km) (i.e., horizontal shift), and a shift in the reference point for velocity (i.e., vertical shift). To estimate
these parameters, we use a modified bootstrap procedure including a least squares optimization algorithm

Figure 3. Color-coded InSAR fault-parallel velocity field relative to Anatolia
deduced from mean line-of-sight (LOS) measurements assuming that the
radar LOS displacements are due to purely horizontal motion on the N72°W
striking, vertical North Anatolian Fault (white lines). Movements away (i.e.,
westerly) from the satellite are shown with warm colors, and toward (i.e.,
easterly) the satellite are with cool colors. Numbered thick dashed lines
show the location of the velocity profiles in Figure 4 with white circles on
top indicating the origin of the horizontal axes of the plots (i.e., location of
predicted faults). GPS velocities are in an Anatolia-fixed reference frame.
The blue and red brackets show the sampling width for the GPS (50 km) and
PS-InSAR (10 km) data, respectively. White arrows are GPS velocities (with
four-letter site names) with 95% confidence ellipses relative to Anatolia.
Green circles show the location of earthquakes Mw >5.0 that took place
between 1992 and 2010.
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with no constraints [Segall, 2002; Tatar et al., 2012]. Bootstrap standard errors and 95% confidence limits
are estimated from 500 models (Figure 5). Estimated parameters are plotted in Figure 6d where the well-
known trade-off between slip rate and locking depth can be seen [Smith-Konter et al., 2011]. Except at two
short sections of the fault (longitudes 36.55°E–36.75°E and 37.35°E–37.47°E) (Figure 6d), the overall slip

rate is around 20± 3mm/yr, which is consistent with
previous estimates based on InSAR [Wright et al.,
2001; Walters et al., 2011, 2014; Cavalie and Jónsson,
2014], GPS [Tatar et al., 2012], and geological studies
nearby (18 ± 3.5–19.5 ± 3mm/yr) [Hubert-Ferrari et al.,
2002; Kozaci et al., 2009; Zabcı et al., 2011].

4. Discussion and Conclusions

High slip rates above ~25mm/yr to the west and
central section of the fault are inconsistent with GPS
and most likely due to unmodeled atmospheric noise
as visual checking of interferograms does not show
clear unwrapping errors. Relatively shorter length of
profiles to the west may also lead to the higher slip
rates. If a 20 ± 3mm/yr slip rate is assumed, the
locking depth is constrained to be 7 ± 2 km, which is
surprisingly shallow compared to previous estimates
(>14 km) based on InSAR models in the region and
the globally estimated depth of 14 ± 7 km by Wright
et al. [2013]. It should be noted that locking depths
were weakly constrained by previous InSAR and GPS
studies due to lack of near-field data. The absence
of well-located seismicity along this section of the
NAF makes it difficult to validate the inference of
shallow locking depths. Shallow locking depths that
we estimate can be due to measuring the NAF during

Figure 4. Observed and modeled fault-parallel and fault-normal horizontal GPS (circles with error bars showing 95% confidence interval) and InSAR (white lines
enveloped by 1 sigma error bounds) velocities along profiles shown in Figure 3. Consistency between the independent InSAR velocity profiles in the overlapping
zones of neighboring tracks is notable (P3 and P5). Thick curves with different colors are the best fitting model of elastic screw dislocations to each InSAR data set with
line thickness showing 95% prediction bounds estimated with a bootstrap sampling method (model parameters are shown in Figure 6c). Interseismic strains
predicted by screw dislocation models are shown with yellow Gaussian curves to better visualize the width of the shear zone. Black and red arrows show the location
of the fault segments and historical surface ruptures (1942 and 1369), respectively. Topographic elevation along the profiles (thin black lines) is shown in order to
reveal any potential correlation between the topography and InSAR measurements.
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the early-middle interseismic stage of the earthquake cycle as the locking depth increases throughout the
seismic cycle [e.g., Savage and Lisowski, 1998; Hetland and Hager, 2006]. Another possible explanation for
the shallow fault locking can be the simplifiedmodel that assumes a uniform degree of locking with depth on
the fault. As shown by Lindsey et al. [2013], the tapered slip rate at depth may give rise to shallow apparent
locking depths. Although locking depths may vary significantly along the faults [Smith-Konter et al., 2011;
Wright et al., 2013], the variation observed in the studied section of the fault should be interpreted with
caution as it is clearly correlated with slip rate. The overall lower locking depths may, however, result from the
relatively higher heat flow in the region [Bektaş et al., 2007]. Assuming that locking depth is shallow and
uniform along the fault, we model the profiles with a fixed locking depth of 7 km. The results show an overall
westward increase in slip rate from 20mm/yr to 25mm/yr in good agreement with GPS-based estimates
[Tatar et al., 2012] (Figure 6d).

While surface projections of the modeled fault segments coincide well with the mapped fault traces at both
ends, those in the central sections between longitudes 37.05°E and 37.85°E step over to the north with
respect to the 1939 surface ruptures (Figure 6). From east to west, the modeled fault follows the 1939 rupture
for about 70 km. However, west of Koyulhisar, the modeled fault deviates from the fault trace and joins
with the 1942 rupture at Niksar after running fairly straight for about another 70 km (Figure 6b). Therefore,
the along-strike complexity of the NAF that apparently controlled the 1939 and 1942 ruptures disappears at

b

a

d

c

Figure 6. Modeling results. (a) Mean fault-parallel InSAR velocity with black lines showing the active faults. Circles with error bars indicate fault locations at depth as
predicted by the screw dislocation modeling of velocity profiles extracted at about every 10 km along strike. Different colors depict estimates from different tracks.
Dark transparent box illustrates sampling width of data used to construct InSAR velocity profiles in Figure 4. (b) Earthquake ruptures along the North Anatolian Fault
plotted on a shaded elevation image. Straight dark gray band envelopes the locations of modeled faults. (c) Coseismic slip distribution of the recent earthquakes on
the NAF [from Barka, 1996]. Red square shows a channel offset of 6m caused by the 1668 earthquake, unveiled in a paleoseismological trench by Kondo et al. [2009].
(d) Along-strike variation of slip rate and locking depth of the North Anatolian Fault. Geologic slip rates are based on offset measurements on stream networks
by Hubert-Ferrari et al. [2002]. GPS rates are from Tatar et al. [2012]. Numerals in circles indicate profile numbers in Figure 4.
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depth, an inference being supported by two independent InSAR data sets on two different overlapping
tracks (i.e., T350 and T78). The shear zone is highly localized and aligns to first order with the NAF, which
suggests most of the deformation concentrates on the block boundary [Cavalie and Jónsson, 2014]. Therefore,
these observations support the thick lithosphere model in which major continental strike-slip faults are
thought to extend through the entire crusts, and possibly the entire lithosphere, as discrete narrow
damage zones [e.g., Stern and McBride, 1998; Lekic et al., 2011; Miller et al., 2014] on the contrary to the thin
lithosphere model with a weak lower crust (i.e., the crème brûlée model) [Wright et al., 2013; Yamasaki et al.,
2014]. This is also because interseismic deformation along strike-slip faults embedded in a weak lower crust is
expected to be controlled by fault segmentation and thus be discontinuous along fault strike. However,
these two models should be considered as the extreme end-member models [see Thatcher, 2007, 2009].

As can be seen from the strain curve in yellow along profile P1 of Figure 4, the shear zone widens across the
Niksar-Erbaa pull-apart. Although this may potentially result from deep locking depths, it is likely a result of
distributed deformation on other subparallel subsidiary faults mapped in the field. Although recent GPS
measurements suggest a slip rate of up to 2mm/yr for the Ezinepazarı Fault [Yavaşoğlu et al., 2011], the
PS-InSAR velocity field does not show a clear sign of interseismic strain accumulation on the Ezinepazarı
(1939 rupture) or South Erbaa Faults (Figures 1 and 6). The symmetry in the velocity field about the 1942
earthquake rupture suggests that interseismic strain accumulates mostly on this segment. As can be seen
in profile 3 of Figure 4, there is an offset of up to 9 km between the modeled fault and the 1939 surface
rupture in the central section, which introduces an asymmetry in the velocity field with respect to
geologically mapped faults. Such an asymmetry in the velocity gradient may result from a nonvertical fault
geometry, differences in rigidity [Lisowski et al., 1991; Le Pichon et al., 2005; Fialko, 2006], lower crustal/mantle
viscosity [Malservisi et al., 2001; Huang and Johnson, 2012], or crustal thickness [Chery, 2008; Fulton et al.,
2010] across the fault or from postseismic deformation [Kenner and Segall, 2003]. The fact that the
asymmetry along the NAF is present only locally between Koyulhisar and Niksar suggests that it must be
due to a change in fault dip at shallow depths since the modeled vertical fault is fairly straight and
coincides with the mapped faults on both sides (Figure 6b). The fault dip probably steepens at depth
and becomes vertical merging with a narrow shear zone at shallow crustal depths. The shallow fault dip
implied (40°–60°) by the offset between the mapped and predicted faults is probable considering that
the NAF follows an old suture zone here [Sengor et al., 1985] and hence may follow an old reverse fault
with shallow dip. According to Barka [1996], this section of the fault experienced 2–2.5m vertical offset,
although it is not known if it was reverse or normal faulting (Figure 6c).

Despite the geometric complexities at the ground surface, the inferred simplicity of the fault zone at depth
predicted by the models along the studied section of the NAF implies that fault segmentation at surface is
most likely inherited from preexisting heterogeneities in the seismogenic zone during the localization of
faults by repeated earthquakes [Sieh, 1996; Wesnousky, 2006; Aksoy et al., 2010]. Observations of natural
fault systems and analogue laboratory experiments show that with increasing deformation (i.e., increasing
cumulative offset), strike-slip faults evolve toward geometrically simple structures (i.e., planar and curvilinear
geometry) since strain weakening in the seismogenic zone gives rise to zones of localized deformation and
strength reduction [Sibson, 1989; Ben-Zion and Sammis, 2003]. However, heterogeneities along natural faults
and dynamic processes may prevent complete localization and regularization, resulting in geometrical fault
complexities such as the Niksar releasing step over that appear to endure over a long period of time surviving
thousands of earthquake cycles [Chester et al., 1993; Finzi et al., 2009]. Although the Niksar pull-apart appears
to be a resilient complexity along the NAF and has behaved as a barrier to rupture propagation during the
1939 earthquake, Kondo et al. [2009] suggest that it did not stop the 1668 rupture. Their inference is based on
a 6m offset associated with the 1668 event that they discovered in a paleoseismological trench across the
1942 fault rupture at Niksar. According to Kondo et al. [2009], such a large coseismic offset at the tip of a fault
segment implies that rupture must have continued on the adjacent fault segment to the east, that is, on the
1939 fault segment during the 1668 event (Figure 6c). A recent paleoseismological study by Zabcı et al. [2011]
suggests that the 1668 rupture likely continued eastward as far as Koyulhisar, supporting the inference of
Kondo et al. [2009] (Figure 6b). Pull-apart basins showing a similar behavior to the Niksar pull-apart have also
been observed elsewhere [Klinger, 2010]. For example, the Jingtai pull-apart basin along the Haiyuan Fault
(Tibet) is thought to have acted as a barrier to the propagation of most earthquakes (the most recent being
the 1920 event), but let the 1092 rupture go through [Liu-Zeng et al., 2007; Jolivet et al., 2013].
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Diversion of the rupture from the main fault trace or branching at fault junctions is likely controlled by the
regional stress distribution (the orientation of regional maximum compressive stress relative to the main
fault), slip history, fault geometry, structure, and connectivity [Poliakov et al., 2002; Schwartz et al., 2012].
Unlike the case during the 2002 Denali event [Schwartz et al., 2012], deviation of the 1939 earthquake rupture
from the main fault trace on to the Ezinepazari Fault cannot be due to the differences in the accumulated
strain since the most recent earthquakes on the Ezinepazarı and Taşova-Niksar Faults because the latter also
ruptured coseismically just 3 years later (Figures 1b and 6b). The deviation was most likely related to the stress
level of the Ezinepazarı Fault and the rupture dynamics and dynamic stresses. Once the rupture jumped on
to the Ezinepazarı Fault, the South Erbaa and the Taşova-Niksar Faults likely remained in a stress shadow,
inhibiting and possibly delaying the failure on the Taşova-Niksar Fault for 3 years (Figure 1). Fault geometry
and structure, connectivity, and heterogeneous fault mechanical properties might have also played some
role in the rupture propagation [Kaneko et al., 2010; Noda et al., 2014]. Due to its much lower slip rate (2mm/yr),
the Ezinepazarı Fault, presumably, will not rupture together with the 1939 segment of the NAF during the next
earthquake. This may allow a very large earthquake, like the 1668 event to occur rupturing at once all the
segments that broke separately during the 1939, 1942, 1943, and 1944 events as depicted on the inset map
in Figure 1 [Kondo et al., 2009; Fraser et al., 2009; Zabcı et al., 2011]. The Ezinepazarı Fault and its slip history may
thus play a critical role in determining the size of earthquakes on the NAF.
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