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Chapter 2 
 
 
 

Flows under Pressure in Pipes 
 

 
 

If the fluid is flowing full in a pipe under pressure with no openings to the atmosphere, it 
is called “pressured flow”. The typical example of pressured pipe flows is the water 
distribution system of a city.  
 
 
2.1. Equation of Motion 
 
Lets take the steady flow (du/dt=0) in a pipe with diameter D. (Fig. 2.1).  Taking a 
cylindrical body of liquid with diameter r and with the length Δx in the pipe with the 
same center, equation of motion can be applied on the flow direction. 
 

 
Figure 2.1. 

 
 
 

The forces acting on the cylindrical body on the flow direction are, 
 

a) Pressure force acting to the bottom surface of the body that causes the motion of 
the fluid upward is, 
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b) Pressure force to the top surface of the cylindrical body is, 
 

← F2= Pressure force = 2rpπ  
 
 

c) The body weight component on the flow direction is, 
 
 

← αγπ sin2 xrX Δ=  
 

d) The resultant frictional (shearing) force that acts on the side of the cylindrical 
surface due to the viscosity of the fluid is, 

 
 

← Shearing force = xrΔπτ 2  
 
 

The equation of motion on the flow direction can be written as, 
 

( ) =Δ−Δ−−Δ+ xrxrrprpp πταγπππ 2sin222 Mass × Acceleration   (2.1) 
 

The velocity will not change on the flow direction since the pipe diameter is kept 
constant and also the flow is a steady flow. The acceleration of the flow body will be 
zero, Equ. (2.1) will take the form of, 
 

02sin22 =Δ−Δ−Δ xrxrpr ταγ  
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The frictional stress on the wall of the pipe τ0 with r = D/2, 
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We get the variation of shearing stress perpendicular the flow direction from Equs. 
(2.2) and (2.3) as, 
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20 D
rττ =          (2.4) 

 
 

 
Fig. 2.2 

 
 

Since r = D/2 –y, 
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The variation of shearing stress from the wall to the center of the pipe is linear as can 
be seen from Equ. (2.5). 
 
 
2.2. Laminar Flow (Hagen-Poiseuille Equation) 
 
Shearing stress in a laminar flow is defined by Newton’s Law of Viscosity as, 
 
 

dy
duμτ =           (2.6) 

 
Where μ = (Dynamic) Viscosity and du/dy is velocity gradient in the normal direction 
to the flow. Using Equs. (2.5) and (2.6) together, 
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By taking integral to find the velocity with respect to y, 
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Since at the wall of the pipe (y=0) there will no velocity (u=0), cons=0. If the specific 
mass (density) of the fluid is ρ, Friction Velocity is defined as, 
 
 

ρ
τ 0=∗u         (2.8) 

 
 

Kinematic viscosity is defined by, 
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The velocity equation for laminar flows is obtained from Equ. (2.7) as, 
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Using the geometric relation of the pipe diameter (D) with the distance from the pipe 
wall (y) perpendicular to the flow, 
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Equ. (2.10) shows that velocity distribution in a laminar flow is to be a parabolic 
curve.  
 
The mean velocity of the flow is, 
 
 

A

udA

A
QV A∫==  

 
Placing velocity equation (Equ. 2.10) gives us the mean velocity for laminar flows as, 
 
 

υ8

2
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Since  
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And according to the Equ. (2.3), 
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Placing this to the mean velocity Equation (2.11), 
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We find the mean velocity equation for laminar flows. This equation shows that 
velocity increases as the pressure drop along the flow increases. The discharge of the 
flow is, 
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If the pipe is horizontal, 
 
 

x
pDQ

Δ
Δ

=
μ

π
128

4

         (2.13) 

 
 

This is known as Hagen-Poiseuille Equation. 
 
 
2.3. Turbulent Flow 
 
The flow in a pipe is Laminar in low velocities and Turbulent in high velocities. 
Since the velocity on the wall of the pipe flow should be zero, there is a thin layer 
with laminar flow on the wall of the pipe. This layer is called Viscous Sub Layer and 
the rest part in that cross-section is known as Center Zone. (Fig. 2.3) 
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Fig. 2.3. 
 
 
 

2.3.1. Viscous Sub Layer 
 
Since this layer is thin enough to take the shearing stress as, τ ≈ τ0 and since the flow 
is laminar, 
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By taking the integral, 
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Since for y =0 → u = 0, the integration constant will be equal to zero. Substituting 
υ=μ/ρ gives, 
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The variation of velocity with y is linear in the viscous sub layer. The thickness of the 
sub layer (δ) has been obtained by laboratory experiments and this empirical equation 
has been given, 
 
 

∗

=
u
υδ 6.11        (2.15) 

 
 

Example 2.1. The friction velocity u*= 1 cm/sec has been found in a pipe flow with 
diameter D = 10 cm and discharge Q = 2 lt/sec. If the kinematic viscosity of the liquid 
is υ = 10-2  cm2/sec, calculate the viscous sub layer thickness. 
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2.3.2 Smooth Pipes 
 
The flow will be turbulent in the center zone and the shearing stress is,  
 
 

( )vu
dy
du ′′−+= ρμτ         (2.16) 

 
The first term of Equ. (2.16) is the result of viscous effect and the second term is the 
result of turbulence effect. In turbulent flow the numerical value of Reynolds Stress 

)( vu ′′−ρ  is generally several times greater than that of ( )dyduμ . Therefore, the 
viscosity term ( )dyduμ may be neglected in case of turbulent flow. 
 
Shearing stress caused by turbulence effect in Equ. (2.16) can be written in the similar 
form as the viscous affect shearing stress as,  
 
 

dy
duvu Tμρτ =′′−=               (2.17) 
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Here μT is known as turbulence viscosity and defined by, 
 
 
 

dy
dulT

2ρμ =            (2.18) 

 
 

Here  l is the mixing length. It has found by laboratory experiments that l = 0.4y for  
τ≈τ0  zone and this 0.4 coefficient is known as Von Karman Coefficient. 
Substituting this value to the Equ. (2.18), 
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Taking the integral of the last equation, 
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The velocity on the surface of the viscous sub layer is calculated by using Equs. 
(2.14) and (2.15), 
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Substituting this to the Equ. (2.19) will give us the integration constant as, 
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Substituting the constant to the Equ. (2.19), 
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Equ. (2.20) is the velocity equation in turbulent flow in a cross section with respect to 
y from the wall of the pipe and valid for the pipes with smooth wall. 
 
 
The mean velocity at a cross-section is found by the integration of Equ. (2.20) for are 
A, 
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2.3.3. Definition of Smoothness and Roughness 
 
The uniform roughness size on the wall of the pipe can be e as roughness depth. Most 
of the commercial pipes have roughness. The above derived equations are for smooth 
pipes. The definition of smoothness and roughness basically depends upon the size of 
the roughness relative to the thickness of the viscous sub layer. If the roughnesess are 
submerged in the viscous sub layer so the pipe is a smooth one, and resistance and 
head loss are entirely unaffected by roughness up to this size. 
 
 

 
 

Fig. 2.4 
 
 
 

Since the viscous sub layer thickness (δ) is given by,
∗

=
u
υδ 6.11  pipe roughness size 

e is compared with δ to define if the pipe will be examined as smooth or rough pipe. 
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a)         
∗

=<
u

e υδ 6.11  

 
 
The roughness of the pipe e will be submerged in viscous sub layer. The flow in the 
center zone of the pipe can be treated as smooth flow which is given Chap. 2.3.2. 

b)    
∗

>
u

e υ70  

 
The height of the roughness e is higher than viscous sub layer. The flow in the center 
zone will be affected by the roughness of the pipe. This flow is named as Wholly 
Rough Flow. 
 
 

c)    
∗∗

<<
u

e
u

υυ 706.11  

 
 
This flow is named as Transition Flow. 
 
 
2.3.4. Wholly Rough Pipes 
 
Pipe friction in rough pipes will be governed primarily by the size and pattern of the 
roughness. The velocity equation in a cross section will be the same as Equ. (2.19).  
 
 

consLnyuu += ∗5.2       (2.19) 
 
 

Since there will be no sub layer left because of the roughness of the pipe, the 
integration constant needs to found out. It has been found by laboratory experiments 
that, 
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The integration is calculated as, 
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The velocity distribution at a cross section for wholly rough pipes is, 
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The mean velocity at that cross section is, 
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2.4. Head (Energy) Loss in Pipe Flows 
 
The Bernoulli equation for the fluid motion along the flow direction between points 
(1) and (2) is, 
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If the pipe is constant along the flow, V1 = V2, 
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Figure 2.5 
 

 
 
 

If we define energy line (hydraulic) slope J as energy loss for unit weight of fluid 
for unit length, 
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Where Δx is the length of the pipe between points (1) and (2), and using Equs. (2.25) 
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Using Equ. (2.3), 
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Using the friction velocity Equ. (2.8), 
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Energy line slope equation has been derived for pipe flows with respect to friction 
velocity u*. Mean velocity of the cross section is used in practical applications instead 
of frictional velocity. The overall summary of equational relations was given in 
Table. (2.1) between frictional velocity u* and the mean velocity V of the cross 
section. 
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Table 2.1. Mathematical Relations between u* and V 
 

 
 
Laminar Flow 
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After calculating the mean velocity V of the cross-section and finding the type of low, 
frictional velocity u* is found out from the equations given in Table (2.1). The energy 
line (hydraulic) slope J of the flow is calculated by Equ. (2.29). Darcy-Weisbach 
equation is used in practical applications which is based on the mean velocity V to 
calculate the hydraulic slope J. 
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Where f is named as the friction coefficient or Darcy-Weisbach coefficient. Friction 
coefficient f is calculated from table (2.2) depending upon the type of flow where 

υμ
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==Re  . 
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Table 2.2.  Friction Coefficient Equations 
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The physical explanation of the equations in Table (2.2) gives us the following results. 
 

a) For laminar flows (Re<2000), friction factor f depends only to the Reynolds 
number of the flow. ( )Reff =  

b) For turbulent flows (Re>2000), 
 
1. For smooth flows, friction factor f is a function of Reynolds number of the flow. 
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JLhL =       (2.31) 

 
 

b) The friction coefficient f will either be calculated from the equations given in 
Table (2.2) or from the Nikuradse diagram. (Figure 2.6) 

 
 
2.5. Head Loss for Non-Circular Pipes 
 
Pipes are generally circular. But a general equation can be derived if the cross-section 
of the pipe is not circular. Let’s write equation of motion for a non-circular prismatic 
pipe with an angle of α to the horizontal datum in a steady flow. Fig. (2.7). 

 
 

 
Figure 2.7 

 
 

( ) onacceleratiMassxAxPpAApp ×=Δ−Δ−−Δ+ αγτ sin0  
 
 

Where P is the wetted perimeter and since the flow is steady, the acceleration of the 
flow will be zero. The above equation is then, 
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Where, 
 
 

P
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Hydraulic radius is the ratio of wetted area to the wetted perimeter. Substituting this 
to the Equ. (2.32), 
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Since by Equ. (2.27), 
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Shearing stress on the wall of the non-circular pipe, 
 

RJγτ =0           (2.34) 
 

For circular pipes, 
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This result is substituted (D=4R) to the all equations derived for the circular pipes to 
obtain the equations for non-circular pipes. Table (2.3) is prepared for the equations 
as, 
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Table 2.3. 
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2.6. Hydraulic and Energy Grade Lines 
 
The terms of energy equation have a dimension of length [ ]L ; thus we can attach a 
useful relationship to them. 
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If we were to tap a piezometer tube into the pipe, the liquid in the pipe would rise in 
the tube to a height p/γ (pressure head), hence that is the reason for the name 
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Some hints for drawing hydraulic grade lines and energy lines are as follows. 
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Figure 2.9 

 
 

If the pressure head of water is less than the vapor pressure head of the 
water ( -97 kPa or -950 cm water head at standard atmospheric pressure), 
cavitation will occur. Generally, cavitation in conduits is undesirable. It 
increases the head loss and cause structural damage to the pipe from 
excessive vibration and pitting of pipe walls. If the pressure at a section in 
the pipe decreases to the vapor pressure and stays that low, a large vapor 
cavity can form leaving a gap of water vapor with columns of water on 
either side of cavity. As the cavity grows in size, the columns of water 
move away from each other. Often these of columns of water rejoin later, 
and when they do, a very high dynamic pressure (water hammer) can be 
generated, possibly rupturing the pipe. Furthermore, if the pipe is thin 
walled, such as thin-walled steel pipe, sub-atmospheric pressure can cause 
the pipe wall to collapse. Therefore, the design engineer should be 
extremely cautious about negative pressure heads in the pipe. 
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