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CHAPTER 2

FLUID STATICS

Fluid statics is the study of fluid problems in which there is no relative motion
between fluid elements. With no relative motion between individual elements (and thus no
velocity gradients), no shear can exist, whatever the viscosity of the fluid is. Accordingly,
viscosity has no effect in static problems and exact analytical solutions to such problems are
relatively easy to obtain. Hence, all free bodies in fluid statics have only normal pressure
forces acting on them.

2.1. PRESSURE AT A POINT

The average pressure is calculated by dividing the normal force pushing against a plate
area by the area. The pressure at a point is the limit of the ratio of normal force to area, as the
area approaches zero size at the point.

Fig. 2.1 shows a small wedge of fluid at rest of size Ax by Az by As and depth b into
the paper. Since there can be no shear forces, the only forces are the normal surface forces and

gravity. Summation of forces must equal zero (no acceleration) in both the x and z directions.

z (up)

Element weight :
dw = pg(%bA XAZ)

O ‘ Width b into paper
P,

Fig. 2.1

D F, = pbAz - p,bAsSinG = AXZAZ pa, =0

2.1)

D F, = p,bAx— p,bAsSing —%mAxAz = szAz pa, =0
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In which px, pz, pn are the average pressures on the three faces, y is the specific weight
of the fluid, p is the specific mass, and a, and a, are the acceleration components of the wedge
in the x and z direction respectively. The geometry of the wedge is such that

Az = AsSind , Ax=AsCosd

Substitution into Equ. (2.1) and rearrangement give
1
Py = Pn ) pz = pn +57/AZ (22)

These relations illustrate two important principles of the hydrostatic, or shear free,
condition:

1) There is no pressure change in the horizontal direction,
2) There is a vertical change in pressure proportional to the specific mass, gravity
and depth change.

In the limit as the fluid wedge shrinks to a point, Az—0 and Equ. (2.2) becomes
Py=P, =P, =P (2.3)

Since 6 is arbitrary, we conclude that the pressure p at a point in a static fluid is
independent of orientation, and has the same value in all directions.

2.2. PRESSURE VARIATION IN A STATIC FLUID

The fundamental equation of fluid statics is that relating pressure, specific mass and
vertical distance in a fluid. This equation may be derived by considering the static equilibrium
of a typical differential element of fluid (Fig. 2.2). The z-axis is in the direction parallel to the
gravitational force field (vertical). Applying Newton’s first law (£Fx = 0 and XF, = 0) to the
element

p, dx
2
dx
D
A — L pd
X C|dz : p,dz Y P 0z
B
Z;
z p, dx
F 1
Z
i X

Fig. 2.2
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And using the average pressure on each face to closely approximate the actual
pressure distribution on the differential element (recall dx and dz are very small), give

D F, = padz—pcdz =0
(2.4)
D F, = pgdx— ppdx—dW =0

In which p and y are functions of x and z. In partial derivation notation the pressures
on the faces of the element are, in terms of pressure p in the center

_,_0pdx _,_0pdz
Pr=1P X 2 , Pg =D 5 2
3 +@% 3 +6pdz
Pc =P o 2 , Pp=p 5 2

The weight of the small element is dW = ydxdz (as dx and dz approach zero in the
limiting process for partial differentiation, any variations in y over the element will vanish).
Thus, Egs. (2.4) become

(p—a—p%)dz—(p &» dxjdz_ » dxdz=0
oX 2 oX 2 OX

And similarly

ap dzdx yxdz =

Canceling the dxdz in both cases gives

op op _dp

-0 i )
o and 57 dz 4 (2.5)

The first of these equations shows there is no variation of pressure with horizontal
distance, that is, pressure is constant in a horizontal plane in a static fluid; therefore pressure
is a function of z only and the total derivative may replace the partial derivative in the second
equation, which is the basic equation of fluid statics.

Equ. (2.5) may be integrated directly to find

P1d
2,-2,= [P (2.6)
P2 4
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For a fluid of constant specific weight, the integration yields

_ pl_pZ
v

z,-z,=h or pl_pzzﬂ/(zz_zl):?/h 2.7)

Permitting ready calculation of the increase of pressure with depth in a fluid of
constant specific weight. Equ. (2.7) also shows that pressure differences (p1 — p2) may be
readily expressed as a head h of fluid of specific weight y. Thus pressures are often quoted as
heads in millimeters of mercury, meters of water. The open manometer and piezometer
columns of Fig. 2.3 illustrate the relation of pressure to head.

Open
Open 34]

Piezometer B 3
Manometer columns

L
I Liquid !
b Y
=
| P
Gage shows
pressure , p
Liquid vy,
Fig. 2.3
Equ. (2.7) may be arranged fruitfully to
P, — P2y _constant (2.8)
— 1= 2 = )
e v

for later comparison with equations of fluid flow. Taking points 1 and 2 as typical, it is

evident from Equ. (2.8) that the quantity (z + p/y) is the same for all points in a static fluid.
This may be visualized geometrically as shown on Fig. 2.4.

Frequently, in engineering problems the liquid surface is exposed to atmospheric
pressure; if the latter is taken to be zero, the dashed line of Fig. 2.4 will necessarily coincide
with the liquid surface.
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for any point
R in the liquid

Horizontal datum —]
plane

Fig. 2.4

2.3. THE HYDROSTATIC PARADOX

From Equ. (2.7) it can be seen that the pressure exerted by a fluid is dependent only on
the vertical head of fluid and its specific weight; it is not affected by the weight of the fluid
present. Thus, in Fig. 2.5 the four vessels all have the same base area A and filled to the same
height with the same liquid of specific weight .

Area A Area A Area A Area A
Fig. 2.5

Pressure on bottom in each case = p = yxh
Force on bottom = PressurexArea = pxA = yxhxA

Thus, although the weight of fluid is obviously different in the four cases, the force on
the bases of the vessels is the same, depending on the depth h and the base area A.

2.4. ABSOLUTE AND GAGE PRESSURES
Pressures are measured and quoted in two different systems, one relative (gage), and

the other absolute; no confusion results if the relation between the systems and the common
methods of measurement is completely understood.
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Liquid devices that measure gage and absolute pressures are shown on Fig. 2.6; these
are the open U-tube and conventional mercury barometer. With the U-tube open, atmospheric
pressure will act on the upper liquid surface; if this pressure is taken to be zero, the applied
gage pressure p will equal yh and h will thus be a direct measure of gage pressure.

Absolute pressure

o

Gage pressurep=0 Puapor

Mercury

p(abs)

(a) For gage pressure (b) For absolute pressure
Fig. 2.6

The mercury barometer (invented by Toricelli, 1643) is constructed by filling the tube
with air-free mercury and inverting it with its open end beneath the mercury surface in the
receptacle. Ignoring the small pressure of the mercury vapor, the pressure in the space above
the mercury will be absolute zero and again p = yh; here the height h is direct measure of the
absolute pressure, p.

From the foregoing descriptions an equation relating (gage) and absolute pressures
may now be written,

-Vacuum
Absolute pressure = Atmospheric pressure (2.9)
+ Gage pressure

Which allows easy conversion from one system to the other. Possibly a better picture
of these relationships can be gained from a diagram such as that of Fig. 2.7 in which are
shown two typical pressures, A and B, one above, the other below, atmospheric pressure, with
all the relationships indicated graphically.

At sea level standard atmosphere pam = po = 10.33 t/m?, a pieozometer column of

mercury will stand at a height of 0.76 m. However, if water were used, a reading of about
10.33 m would be obtained.
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A
Gage
pressure A
ot
Vacuum B
V2 Local
Absolute B atmospheric
pressure A pressure
(varies with
Absolute weather and
pressure B altitude)
Fixed Abs. 0
datum '
Fig. 2.7

EXAMPLE 2.1:A cylinder contains a fluid at a relative (gage) pressure of 35 t/m?.
Express 3this pressure in terms of a head of, a) water (ywawer = 1000 kg/m®), b) mercury (YHg =
13.6 t/m°).

What would be the absolute pressure in the cylinder if the atmospheric pressure is
10.33 t/m??

SOLUTION:
From Equ. (2.7), head, h = ply.

a) Putting p=35t/m? y=1t/m’,
. 35
Equivalent head of water = T =35m.
b) For mercury yug = 13.6 t/m°,
: 35
Equivalent head of mercury = 36 =2.57m.

Absolute pressure = Gage pressure + Atmospheric pressure

P, = 35+10.33 = 45.33t/m?
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2.5. MANOMETER

From the hydrostatic Equ. (2.7), a change in elevation (z, — z;) of a liquid is equivalent
to a change in pressure (pz — p1)/y. Thus a static column of one or more liquids can be used to
measure differences between two points. Such a device is called a manometer. If multiple
fluids are used, we must change the specific weight in the equation as move from one fluid to
another. Fig. 2.8 illustrates the use of the equation with a column of multiple fluids. The
pressure change through each fluid is calculated separately. If we wish to know the total
change (ps — p1), we add successive changes (p2 — p1), (Ps — P2), (P2 — ps), and (ps — ps). The
intermediate values of p cancel, and we have, for the example of Fig. 2.8,

Known pressure p,
2=z =
7, | O, - b -p, =-pd(z 2)
j g, | Water, g, _ p-p,=-p0(z 2)
., Glycerin, p, _ D -p, =- o 2)
2 Mercury, p,, _ p-p,=- ng(Zs' 2)
=P, -P,
Fig. 2.8
Ps =Py =—70(2: = 2)=7u(2: = 2,) =76 (24 = 23) = 7 (25 - 2,) (2.10)

No additional simplification is possible on the right-hand side because of the different
specific weights. Notice that we have placed the fluids in order from the lightest on top to the
heaviest at bottom.

When calculating hydrostatic pressure changes, engineers work instinctively by simply
having the pressure increase downward and decrease upward.

pdown = pup +7/|AZ| (211)

Thus, without worrying too much about which point is z; and which is z,, the equation
simply increases or decreases the pressure according to whether one is moving down or up.
For example, Equ. (2.10) could be written in the following “multiple increase” mode:

Ps = p1+7o|z1_zz|+7w|22 _23|+7/G|23_Z4|+7Hg|24 _25|

That is, keep adding on pressure increments as you move down through the layered
fluid. A different application is a manometer, which involves both “up” and “down”
calculations.
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Open, p,

T4, P= R

Y
Zpy P —

Jump across

— p=patz=zinfluid 2
2

Fig. 2.9

Fig. 2.9 shows a simple manometer for measuring pa in a closed chamber relative to
atmospheric pressure po, in other words, measuring gage (relative) pressure. The chamber
fluid vy, is combined with a second fluid y,, perhaps for two reasons: 1) To protect the
environment from a corrosive chamber fluid or, 2) Because a heavier fluid y, will keep z,
small and the open tube can be shorter. One can apply the basic hydrostatic Equ. (2.7). Or,
more simply, one can begin at A, apply Equ. (2.11) “down” to z;, jump across fluid 2 (see
Fig. 2.9) to the same pressure p;, and then use Equ. (2.11) “up” to level z,:

pA+71|ZA_21|_72|21_22|: P2 = Pam = Po (2.12)
The physical reason that we can “jump across” at section 1 in that a continuous length
of the same fluid connects these two elevations. The hydrostatic relation (Equ. 2.7) requires

this equality as a form of Pascal’s law:

Any two points at the same elevation in a continuous mass of the same static fluid will
be at the same pressure.

This idea of jumping across to equal pressures facilitates multiple-fluid problems.

EXAMPLE 2.2: A U-tube manometer in Fig. 2.10 is used to measure the gage
pressure of a fluid P of specific weight yp = 800 kg/m°. If the specific weight of the liquid Q is
vo = 13.6x10° kg/m®, what will be the gage pressure at A if, a) h; = 0.5 m and D is 0.9 m
above BC, b) h; =0.1 mand D is 0.2 m below BC?

Fluid , P
G
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SOLUTION:
a) InEqu. (2.12),y1=0.8t/m? y,=13.6 t/m°, (za—21)=0.5m, (z1—22) = 0.9 m.

p,+0.8x05-13.6x0.9=p, =0
p, =13.6x0.9-0.8x0.5=11.84t/m?

b) Putting | za — zal =0.1 m and | z;-zJl =-0.2 m into Equ. (2.12) gives,

p,+0.8x0.1-13.6x(-0.2)=p, =0
P, =-0.08-272=-28t/m’

The negative sign indicating that pa is below atmospheric pressure. The absolute
pressure at A is according to Equ. (2.9),

Pa, = Po+ Pp =10.33-2.8=7.53t/m?

Fig. 2.11 illustrates a multiple-fluid manometer problem for finding the difference in pressure
between two chambers A and B. We repeatedly apply Equ. (2.7) jumping across at equal
pressures when we come to a continuous mass of the same fluid. Thus, in Fig. 2.11, we
compute four pressure differences while making three jumps:

Py

Jump across

ZZ’ p2 22’ p2

Y]
Z,, P @IIIIIII@
. / Jump across Z,p
1) M1 /
%ZZZM Jump across /
P, Zs P 3 Zs, [0

R,

Fig. 2.11

Pa—Pe=(Pa—p)+(p,—P,)+ (P, — Ps)+(ps - Ps)

2.13
:_71(ZA_Zl)_72(zl_zz)_73(zz_23)_74(23_23) ( )

The intermediate pressures pi23 cancel. It looks complicated, but it is merely
sequential. One starts at A, goes down to 1, jump across, goes down to 3, jumps across, and
finally goes up to B.
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EXAMPLE 2.3: Pressure gage B is to measure the pressure at point A in a water
flow. If the pressure at B is 9 t/m?, estimate the pressure at A. ywaer = 1000 kg/m®, YHg = 13600
kg/m®, yoi= 900 kg/m®,

oil

6cm
Mercury

11cm

\\

Fig. 2.12

SOLUTION: Proceed from A to B, calculating the pressure change in each fluid and
adding:
pA _7W(AZ)W _7Hg (AZ)Hg _70(AZ)0 = pB
or
P —1000 x (—0.05)—13600 x 0.07 — 900 x 0.06

= P, +50-952-54 = pg = 9000kg/m?
P, = 9956kg/m? = 9.96t/m?

2.6. FORCES ON SUBMERGED PLANE SURFACES

The calculation of the magnitude, direction, and location of the total forces on surfaces
submerged in a liquid is essential in the design of dams, bulkheads, gates, ships, and the like.

For a submerged plane, horizontal area the calculation of these force properties is
simple because the pressure does not vary over the area; for nonhorizontal planes the problem
is complicated by pressure variation. Pressure in constant specific weight liquids has been
shown to vary linearly with depth (Equ. 2.7), producing the typical pressure distributions and
resultant forces on the walls of a container of Fig. 2.13.

hy
p1 = th c. of
l pressure

hz prism
c.of A c. of
' \ % pressure _
/ prism c. of pressure prism

/ D077 p =, P~

\p= h
c. of A p,=vh, F:Yth
c.of A
Fig. 2.13
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The shaded areas, appearing as trapezoids are really volumes, known as pressure
prisms. In mechanics it has been shown that the resultant force, F, is equal to the volume of
the pressure prism and passes through its centroid.

Now consider the general case of a plane submerged area, A’ B’, such that of Fig.
2.14. It is inclined 6° from the horizontal.

Fig. 2.14

The intersection of the plane of the area and the free surface is taken as the x-axis. The
y-axis is taken in the plane of the area, with origin O, as shown, in the free surface. The xy-
plane portrays the arbitrary inclined area. The magnitude, direction, and line of action of the
resultant force due to liquid, acting on one side of the area are sought.

The force, dF, on the area, dA, is given by,

dF = pdA = yhdA = ySin@dA (2.14)

The integral over the area yields the magnitude of force F, acting on one side of the
area,

F = [ pdA =8in6] ydA = 8intys A = shs A (2.15)
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With the relations from Fig. 2.14, ysxSin6 = hg, and ps = yxhg, the pressure at the
centroid of the area. In words, the magnitude of force exerted on one side of the plane area
submerged in a liquid is the product of the area and the pressure at its centroid. As all force
elements are normal to the surface, the line of action of the resultant is also normal to the
surface.

The line of action of the resultant force has its piercing point in the surface at a point
called the pressure center, with coordinates (Xp,yp). Unlike that for the horizontal surface, the
center of pressure of an inclined surface is not at the centroid. To find the pressure center, the

moments of the resultant xpxF, ypxF are equated to the moment of the forces about the y-axis
and x-axis, respectively; thus

X, F = j xdF = j xpdA (2.16)
A A
y.F =jde :jypdA (2.17)
A A

After solving for the coordinates of pressure center,

1

1
Yo == { ypdA (2.19)

Egs. (2.18) and (2.19) may be transformed into general formulas as follows:

|
j xydA = —2 (2.20)
A yG A

B 1
W ASIng

1
Yo A

Xp

waSinédA:
A

Since the products of inertia I_Xy about centroidal axes parallel to the xy-axes produces,
ly =1y +Xs Yo A (2.21)

Equ. (2.20) takes the form of,

|
LS (2.22)

X, =
i Yo A

When either of the centroidal axes, X = Xg Or y = yg, is an axis of symmetry for the
surface, Iy vanishes and pressure center lies on X = Xg. Since Iy, may be either positive or
negative, the pressure center may lie on either side of the line x = Xg. To determine yp by
formula, with Eqgs. (2.14) and (2.19)
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1 JyZdA: IX
yGAA yGA

1 :
Ve 6£y7y8|n49dA:

B W ASin
In the parallel-axis theorem for moments of inertia
Ix = IG + yéA

If Iy is eliminated from Equ. (2.23)

Yp = +Ys

Yo A

or
IG

Yo A

Yo = Yo =

(2.23)

(2.24)

(2.25)

(2.26)

Ic is always positive; hence (yp — Yg) is always positive, and the pressure center is
always below the centroid of the surface. It should be emphasized that ys and (yer—Yyg) are
distances in the plane of the surface. A summary of Ig’s for common areas is given in Table

2.1.

The areas of irregular forms may be divided into simple areas, the forces being located
on them, and the location of their resultant being found by the methods of statics. The point
where the line of action of the resultant force intersects the area is the center of pressure for

the composite area.
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Table 2.1

Properties of Areas

Location of
Sketch Area Centroid | orl.
b
\ _h _ bh?®
Rectangle . x 5 bh =5 <~ 12
‘ L
. bh h bh’
Triangle — = — =
g - %v ’ T o
b
Circle “ nd* -4 _ nd’
e i =
d
\
4
Semicircle | ¥ nd? y = A =™
r 8 c 3n 128
b
- h h o
Ellipse . mbd y = —— = 0
Y 4 -T2 64
| o | bd Pl b
Semiellipse | ‘\y mod y = = =
h\ ¢ 4 “T 3 <7 16
L
b
— 3
[ x : s 2
Parabola 1 Zbh =
1B: (= !
)
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EXAMPLE 2.4: The gate in Fig. 2.15 is 5 m wide, is hinged at point B, and rests
against a smooth wall at point A. Compulte,

a) The force on the gate due to the water pressure,
b) The horizontal force P exerted by the wall at point A,
c) The reactions at hinge B.

Wall
Pa
Water
A
15m
Pa
Gat
6m
B 0
s - T
Hinge 8m
Fig. 2.15

SOLUTION:

a) By geometry the gate is 10 m long from A to B, and its centroid is halfway
between, or at elevation 3 m above point B. The depth hc is thus 15 - 3 =12 m.
The gate area is 5x10 = 50 m% Neglect p, (atmospheric pressure) as acting on
both sides of the gate. From Equ. (2.15) the hydrostatic force on the gate is

F = po A=sh. A=1x12x50 = 600ton

b) First we must find the center of pressure of F. A free-body diagram of the gate is
shown in Fig. 2.16. The gate is rectangle, hence

Fig. 2.16

_bl® 5x10°

=—= =417m*
12 12

l,, =0 and Is
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The distance | from the CG to the CP is given by Equ. (2.26) since po is neglected.

Sin0:£:0.6 , 6=37°
10

he 12
-~ === = 20m
Y6 = Sing " 056
l=yp—Yg =—2-= M7 _o417m
yoA 20x50

The distance from point B to force F is thus 10 — | -5 = 10 — 0.417 — 5 =4.583 m.
Summing moments counterclockwise about B gives

PLSing-F(5-1)=0
_ F(5-1) 600x(5-0.417)

=— /= = 458.3ton
LSin® 10x0.6

c) With F and P known, the reactions By and B, are found by summing forces on the
gate.

> F,=B,+FSing-P=0
B, = 458.3—-600x 0.6 = 98.3ton

> F,=B,-FCosf =0
B, =600x0.8 = 480ton

2.7. DIFFERENT PRESSURES ON TWO SIDES

The pressure has been considered as varying from zero at M to NK at N. In reality
there is some pressure on the surface of the liquid, which might be represented by an
equivalent height MO, and the absolute pressure on the left-hand side of the plane will vary as
shown by ODE (Fig. 2.17)

o_h
Pa
Y
Watersurface D E ML D
o pa
ey sty
T EF K N
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In most practical cases it is the difference between the forces on the two sides is
desired. The pressure of the air upon the surface of the liquid also produces a uniform
pressure over the right-hand side of the area and thus MO = MD = MD’; and as the same air
pressure acts a like on both sides, it mat be neglected altogether.

In a case such as that in Fig. 2.18, where surface represented by the trace MN is
submerged by a liquid at two different heights on the two sides, the pressure variations are
represented by CDE and LK. If the liquids are of the same specific weight, triangles DEN and
LNK are equal. Thus the net pressure difference on the two sides is the uniform value DL,
which is equal to yh.

Hence on any area by the same specific weight liquid on both sides but with a
difference in level h as in Fig. (2.18), the resultant force is

F =5hA (2.27)

and it will be applied at the centroid of the area.

2.8.FORCE ON A CURVED SURFACE

If a surface is curved, it is convenient to calculate the horizontal and vertical
components of the resultant force.

E D E D

Fig. 2.19
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In Fig. 2.19 (a) and (b), AB is the immersed surface and F, and F, are the horizontal
and vertical components of the resultant force F of the liquid on one side of the surface. In
Fig. 2.19. (a) the liquid lies above the immersed surface, while in Fig. 2.19 (b) it acts below
the surface.

In Fig. 2.19 (a), if ACE is a vertical plane through A, and BC is a horizontal plane,
then, since element ACB is in equilibrium, the resultant force F on AC must equal the
horizontal component F, of the force exerted by the fluid on AB because there are no other
horizontal forces acting. But AC is the projection of AB on a vertical plane, therefore,

Horizontal component, F,, = Resultant force on the projection of AB
on a vertical plane

Also, for equilibrium, P and F, must act in the same straight line; therefore, the
horizontal component Fy, acts through the center of pressure of the projection of AB on a
vertical plane.

Similarly, in Fig. 2.19 (b), element ABF is in equilibrium, and the horizontal
component Fy, is equal to the resultant force on the projection BF of the curved surface AB on
a vertical plane, and acts through the center of pressure of this projection.

In Fig. 2.19 (), the vertical component F, will be entirely due to the weight of the
fluid in the area ABDE lying vertically above AB. There are no other vertical forces, since
there can be no shear forces on AE and BD because the fluid is at rest. Thus,

Vertical component, F, = Weight of fluid vertically above AB

and will act vertically downwards through the center of gravity G of ABDE.

In Fig. 2.19 (b), if the liquid is on the right side of the surface AB, this liquid would be
in equilibrium under its own weight and the vertical force on the boundary AB. Therefore,

Vertical component, F, = Weight of the volume of the same fluid which would lie
vertically above AB

and will act vertically upwards through the center of gravity G of this imaginary volume of
fluid.

The resultant force F is found by combining the components vertically. If the surface
is of uniform with perpendicular to the diagram, F, and F, will intersect at O. Thus,

Resultant force, F = \/F? + F?

and acts through O at an angle 6 given by Tané = F, /F, .

In the special case of a cylindrical surface, all the forces on each small element of area
acting normal to the surface will be radial and will pass through the center of the curvature O
(Fig. 2.20). The resultant force F must, therefore, also pass through the center of curvature O.
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Fig. 2.20

EXAMPLE 2.5: A sluice gate is in the form of a circular arc of radius 6 m as shown

in Fig. 2.21. Calculate the magnitude and direction of the resultant force on the gate, and the

location with respect to O of a point of its line of action.

P

Fig. 2.21

SOLUTION:

Since the water reaches the top of the gate,

Depth of water, h = 2x6x Sin30° = 6m

Horizontal component of force on gate = F, (per unit length)

Fn, = Resultant force on PQ per unit length

h  sh?

F =yxhx—=%—

h=7Y 5 5
2

thlXG =18ton

Vertical component of force on gate = F, (per unit length)

Fv = Weight of water displaced by segment PSQ
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Fv = (Sector OPSQ — Triangle OPQ)xy

\

F :[ﬂ><7r><62 —6xSin30° ><6><COS300J><1
360

F, =3.26ton

Resultant force on gate,

F=\F>+F/
F =+/18° +3.26° =18.29ton/m

Tan9=5=ﬁ=o.18
F 18

h

6 =10°27" to the horizontal

Since the surface of the gate is cylindrical, the resultant force F must pass through O.

2.9. BUOYANCY AND FLOTATION

The familiar laws of buoyancy (Archimedes’ principle) and flotation are usually
stated:

1) A body immersed in a fluid is buoyed up by a force equal to the weight of fluid
displaced,
2) A floating body displaces its own weight of the fluid in which it floats.

R

>
o)
T

Fig. 2.22
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A body ABCD suspended in a fluid of specific weight v is illustrated in Fig. 2.22.
Isolating a free body of fluid with vertical sides tangent to the body allows identification of
the vertical forces exerted by the lower (ADC) and upper (ABC) surfaces of the body
surrounding fluid. These are F; and F, with (F; - F,) the buoyant force on the body. For the
upper portion of the free body

D> F,=F,-W,-p,A=0
and for the lower portion

ZFZ =F +W,-p,A=0
Whence (by subtracting of these equations)

Fo=F-F =(p,—p,)A-(W,+W,)
However, (p1 — p2) = vh and yhA is the weight of a cylinder of fluid extending between
horizontal planes 1 and 2, and the right side of the equation for Fg is identified as the weight
of volume of fluid exactly equal to the of the body

Fgs = yx(Volume of object) (2.28)
For the floating object of Fig. 2.23 a similar analysis will show that

Fg = yx(Volume displaced) (2.29)

and, from static equilibrium of the object, its weight must be equal to this buoyant force; thus
the object displaces its own weight of the liquid in which it floats.

N

W
,,,,,,,,, A B,,,,,,,,,,,
fffffffff PRI
R
Fig. 2.23

EXAMPLE 2.6: A block of concrete weighs 100 kg in air and weighs 60 kg when
immersed in water. What is the average specific weight of the block?

SOLUTION: The buoyant force is,

ZFZ =60+F; -100=0
Fg = 40Kg = 7, X(VOlume of the block)
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v=9 _0o04m’
1000

Therefore the specific weight of the block is,

100
=—— =2500kg/m?® = 2.5ton/m?
’ 004 9/ /

2.10. FLUIDS IN RELATIVE EQUILIBRIUM

If a fluid is contained in a vessel which is at rest, or moving with constant linear
velocity, it is not affected by the motion of the vessel; but if the container is given a
continuous acceleration, this will be transmitted to the fluid and affect the pressure
distribution in it. Since the fluid remains at rest relative to the container, there is no relative
motion of the particles of the fluid and, therefore, no shear stresses, fluid pressure being
everywhere normal to the surface on which it acts. Under these conditions the fluid is said to
be in relative equilibrium.

2.10.1. Pressure Distribution in a Liquid Subject to Horizontal Acceleration
Fig. 2.24 shows a liquid contained in a tank which has an acceleration a. A particle of
mass m on the free surface at O will have the same acceleration as the tank and will be

subjected to an accelerating force F. From Newton’s second law,

F=ma (2.30)
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Fig. 2.24

Also, F is the resultant of the fluid pressure force R, acting normally to the free surface
at O, and the weight of the particle mg, acting vertically. Therefore,

F =mgTand (2.31)

Comparing Egs. (2.30) and (2.31)

Tang =2 (2.32)
g

and is constant for all points on the free surface. Thus, the free surface is a plane inclined at a
constant angle 0 to the horizontal.
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Since the acceleration is horizontal, vertical forces are not changed and the pressure at
any depth h below the surface will be yh. Planes of equal pressure lie parallel to the free
surface.

2.10.2. Effect of Vertical Acceleration

If the acceleration is vertical, the free surface will remain horizontal. Considering a
vertical prism of cross-sectional area A (Fig. 2.25), subject to an upward acceleration a, then
at depth h below the surface, where the pressure is p,

Prism of cross-sectiona

area A
- h /
a Specific i
mass, p X
Pressure p
F
Fig. 2.25

Upward accelerating force, F = Force due to p — Weight of prism
F = pA—»A
By Newton’s second law,

F = Mass of prism x Acceleration

F = phAxa
Therefore,
pA—hA = phAa
a
p= m[1+EJ (2.333)

If the acceleration a is downward towards to the center of the earth as gravitational
acceleration, Equ. (2.33a) will take the form of,

D= m(l_gj (2.33b)
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2.10.3. General Expression for the Fluid in Relative Equilibrium

If op/ox, oploy and Opl/oz are the rates of change of pressure p in the X, y and z
directions (Fig. 2.26) and ax, ay and a, the accelerations,

Force in x direction, F, = pAyAz — [ p+ ?AXJAyAz
X

X

F = _% AXAYyAz
OX

)
Bx Nd y
y
X
Fig. 2.26
By Newton’s second law, Fx = pAXAyAzxay, therefore
P pa, (2.34)
OX
Similarly, in the y direction
0
_% = A, (2.35)

In the vertical z direction, the weight of the element W = pgAxAyAz must be considered:

F, = prAy—(p+Zp

— AszxAy — PJAXAYAz
z

F, = —?AxAyAz — PYAXAYAzZ
z
By Newton’s second law, F, = pAXAyAzxa,, therefore,
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For an acceleration as in any direction in the x-z plane making an angle ¢ with the
horizontal, the components of the acceleration are

a, =a,Cos¢ and a, =a.Sing
Now

dp_pdx oz

_ (2.37)
ds oxds o0zds

For the free surface and all other planes of constant pressure, dp/ds = 0. If 6 is the
inclination of the planes of constant pressure to the horizontal, Tan® = dz/dx. Putting dp/ds =
0 in Equ. (2.37)

apg+apg_o

xds ozds
9 _1ng - 00X
dx op/oz

Substituting from Egs. (2.34) and (2.36)

Tand = — axa (2.38)
g+a,

Or, in terms of a;,

a,Cosg

Tan@=——3""" _
(g +a,Sing)

(2.39)

For the case of horizontal acceleration, ¢ = 0 and Equ. (2.39) gives Tan6 = -aJ/qg,
which agrees with Equ. (2.32). For vertical acceleration, ¢ = 90° giving Tan® = 0, indicating
that the free surface remains horizontal.

EXAMPLE 2.7: A rectangular tank 1.2 m deep and 2 m long is used to convey water
up a ramp inclined at an angle ¢ of 30° to the horizontal (Fig. 2.27).

2m as
0 -~
Al
1.2m
Depth
o =3
Fig. 2.27
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Calculate the inclination of the water surface to the horizontal when,

a) The acceleration parallel to the slope on starting from bottom is 4 m/sec?,
b) The deceleration parallel to the slope on reaching the top is 4.5 m/sec?.

If no water is to be spilt during the journey what is the greatest depth of water permissible in
the tank when it is at rest?

SOLUTION: The slope of the water surface is given by Equ. (2.39). During
acceleration, a; = 4 m/sec?

0
Tan, = - a,Cosg 4 x C0s30 02933

g+asSing  9.81+4xSin30°
0, =163°39’

During retardation, as = - 4.5 m/sec?,

_ (~45)xCos30°
9.81-4.5% Sin30°
0, = 27°16'

Tané@, = =0.5154

Since 180° - 6 > B4, the worst case for spilling will be during retardation. When the water
surface is inclined, the maximum depth at the tank wall will be

Depth + 0.5xLengthxTan6

Which must not exceed 1.2 m if the water is not to be spilt. Putting length =2 m, Tan6 = Tan
Or = 0.5154,

Depth + 0.5x2x0.5154 = 1.2

Depth = 1.2 - 0.5154 = 0.6846 m

2.10.4. Forced Vortex

A body of fluid, contained in a vessel, which is rotating about a vertical axis with
uniform angular velocity, will eventually reach relative equilibrium and rotate with the same
angular velocity w as the vessel, forming a forced vortex. The acceleration of any particular of
fluid at radius r due to rotation will be (-w?r) perpendicular to the axis of rotation, taking the
direction of r as positive outward from the axis. Thus, from Equ. (2.34),

B (2.40)
dr
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Fig. 2.28

Fig. 2.28 shows a cylindrical vessel containing liquid rotating about its axis, which is
vertical. At any P on free surface, the inclination 6 of the free surface is given by Equ. (2.38),

Tang = —— > :M:% (2.41)
r

2
g+a, ¢

The inclination of the free surface varies with r and, if z is the height of P above O, the
surface profile is given by integrating Equ. (2.41):
2

X 2.2
2= ["Ltar="T yc (2.42)
> d 29

Thus, the profile of the water is a paraboloid. Similarly, other surfaces of equal
pressure will also be paraboloids.

The value of integration constant is found by specifying the pressure at one point. If
z = 0 at point O, then the integration constant is zero. Then the Equ. (2.42) becomes,

(2.43)
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