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CHAPTER 2 
 

 
FLUID STATICS 

 
 

Fluid statics is the study of fluid problems in which there is no relative motion 
between fluid elements. With no relative motion between individual elements (and thus no 
velocity gradients), no shear can exist, whatever the viscosity of the fluid is. Accordingly, 
viscosity has no effect in static problems and exact analytical solutions to such problems are 
relatively easy to obtain. Hence, all free bodies in fluid statics have only normal pressure 
forces acting on them. 

 
 

2.1. PRESSURE AT A POINT 
 

The average pressure is calculated by dividing the normal force pushing against a plate 
area by the area. The pressure at a point is the limit of the ratio of normal force to area, as the 
area approaches zero size at the point. 

 
Fig. 2.1 shows a small wedge of fluid at rest of size Δx by Δz by Δs and depth b into 

the paper. Since there can be no shear forces, the only forces are the normal surface forces and 
gravity. Summation of forces must equal zero (no acceleration) in both the x and z directions. 

Pz

z ( up)

xP

O

Δs θ

Element weight :
dW ρg(   bΔ xΔz )

Width b into paper

1
2

x

Δz

Δx

 

Pn

Fig. 2.1 
 

0
22

1

0
2

=
ΔΔ

=ΔΔ−Δ−Δ=

=
ΔΔ

=Δ−Δ=

∑

∑

znzz

xnxx

azxzxbsSinbpxbpF

azxsSinbpzbpF

ργθ

ρθ

            (2.1) 

 

Prof. Dr. Atıl BULU 11



In which px, pz, pn are the average pressures on the three faces, γ is the specific weight 
of the fluid, ρ is the specific mass, and ax and az are the acceleration components of the wedge 
in the x and z direction respectively. The geometry of the wedge is such that 

 
θsSinz Δ=Δ      , θsCosx Δ=Δ  

 
Substitution into Equ. (2.1) and rearrangement give 

 

nx pp =      , zpp nz Δ+= γ
2
1                  (2.2) 

 
These relations illustrate two important principles of the hydrostatic, or shear free, 

condition: 
 
1) There is no pressure change in the horizontal direction, 
2) There is a vertical change in pressure proportional to the specific mass, gravity 

and depth change. 
 

In the limit as the fluid wedge shrinks to a point, Δz→0 and Equ. (2.2) becomes 
 

pppp nzx ===                   (2.3) 
 

Since θ is arbitrary, we conclude that the pressure p at a point in a static fluid is 
independent of orientation, and has the same value in all directions. 

 
 

2.2. PRESSURE VARIATION IN A STATIC FLUID 
 

The fundamental equation of fluid statics is that relating pressure, specific mass and 
vertical distance in a fluid. This equation may be derived by considering the static equilibrium 
of a typical differential element of fluid (Fig. 2.2). The z-axis is in the direction parallel to the 
gravitational force field (vertical). Applying Newton’s first law (ΣFx = 0 and ΣFz = 0) to the 
element  
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And using the average pressure on each face to closely approximate the actual 
pressure distribution on the differential element (recall dx and dz are very small), give 
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                   (2.4) 

 
In which p and γ are functions of x and z. In partial derivation notation the pressures 

on the faces of the element are, in terms of pressure p in the center 
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The weight of the small element is dW = γdxdz   (as dx and dz approach zero in the 

limiting process for partial differentiation, any variations in γ over the element will vanish). 
Thus, Eqs. (2.4) become 
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And similarly 
 

0=−
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Canceling the dxdz in both cases gives 
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                  (2.5) 

 
 
The first of these equations shows there is no variation of pressure with horizontal 

distance, that is, pressure is constant in a horizontal plane in a static fluid; therefore pressure 
is a function of z only and the total derivative may replace the partial derivative in the second 
equation, which is the basic equation of fluid statics. 

 
Equ. (2.5) may be integrated directly to find 
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For a fluid of constant specific weight, the integration yields 
 

γ
21

12
pphzz −

==−    or   ( ) hzzpp γγ =−=− 1221          (2.7) 

 
Permitting ready calculation of the increase of pressure with depth in a fluid of 

constant specific weight. Equ. (2.7) also shows that pressure differences (p1 – p2) may be 
readily expressed as a head h of fluid of specific weight γ. Thus pressures are often quoted as 
heads in millimeters of mercury, meters of water. The open manometer and piezometer 
columns of Fig. 2.3 illustrate the relation of pressure to head. 
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Equ. (2.7) may be arranged fruitfully to 
 

=+=+ 2
2

1
1 zpzp

γγ
Constant                 (2.8) 

 
for later comparison with equations of fluid flow. Taking points 1 and 2 as typical, it is 
evident from Equ. (2.8) that the quantity (z + p/γ) is the same for all points in a static fluid. 
This may be visualized geometrically as shown on Fig. 2.4. 
 

Frequently, in engineering problems the liquid surface is exposed to atmospheric 
pressure; if the latter is taken to be zero, the dashed line of Fig. 2.4 will necessarily coincide 
with the liquid surface. 
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2.3. THE HYDROSTATIC PARADOX 
 

From Equ. (2.7) it can be seen that the pressure exerted by a fluid is dependent only on 
the vertical head of fluid and its specific weight; it is not affected by the weight of the fluid 
present. Thus, in Fig. 2.5 the four vessels all have the same base area A and filled to the same 
height with the same liquid of specific weight γ. 

h

Area A Area A Area A Area A

Fig. 2.5 

 

 
Pressure on bottom in each case = p = γ×h 

 
Force on bottom = Pressure×Area = p×A = γ×h×A 

 
Thus, although the weight of fluid is obviously different in the four cases, the force on 

the bases of the vessels is the same, depending on the depth h and the base area A. 
 
 

2.4. ABSOLUTE AND GAGE PRESSURES 
 

Pressures are measured and quoted in two different systems, one relative (gage), and 
the other absolute; no confusion results if the relation between the systems and the common 
methods of measurement is completely understood. 
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Liquid devices that measure gage and absolute pressures are shown on Fig. 2.6; these 
are the open U-tube and conventional mercury barometer. With the U-tube open, atmospheric 
pressure will act on the upper liquid surface; if this pressure is taken to be zero, the applied 
gage pressure p will equal γh and h will thus be a direct measure of gage pressure. 

 

( a )  For gage pressure

Gage pressure p = 0

 p (gage )

( b )  For absolute pressure

 p ( abs )

Mercury

vapor

Absolute pressure
 p       = 0

 
Fig. 2.6 

 
The mercury barometer (invented by Toricelli, 1643) is constructed by filling the tube 

with air-free mercury and inverting it with its open end beneath the mercury surface in the 
receptacle. Ignoring the small pressure of the mercury vapor, the pressure in the space above 
the mercury will be absolute zero and again p = γh; here the height h is direct measure of the 
absolute pressure, p. 

 
From the foregoing descriptions an equation relating (gage) and absolute pressures 

may now be written, 
 

                                                                     -Vacuum 
Absolute pressure = Atmospheric pressure                                  (2.9) 
                                                                     + Gage pressure 
 

Which allows easy conversion from one system to the other. Possibly a better picture 
of these relationships can be gained from a diagram such as that of Fig. 2.7 in which are 
shown two typical pressures, A and B, one above, the other below, atmospheric pressure, with 
all the relationships indicated graphically. 

 
At sea level standard atmosphere patm = p0 = 10.33 t/m2, a pieozometer column of 

mercury will stand at a height of 0.76 m. However, if water were used, a reading of about 
10.33 m would be obtained. 
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EXAMPLE 2.1:A cylinder contains a fluid at a relative (gage) pressure of 35 t/m2. 

Express this pressure in terms of a head of, a) water (γwater = 1000 kg/m3), b) mercury (γHg = 
13.6 t/m3). 

 
What would be the absolute pressure in the cylinder if the atmospheric pressure is 

10.33 t/m2? 
 
SOLUTION: 
 
From Equ. (2.7), head, h = p/γ. 
 
a) Putting p = 35 t/m2, γ = 1 t/m3, 
 

Equivalent head of water = .35
1
35 m=  

 
b) For mercury γHg = 13.6 t/m3, 
 

Equivalent head of mercury = .57.2
6.13

35 m=  

 
Absolute pressure = Gage pressure + Atmospheric pressure 

 
233.4533.1035 mtpabs =+=  
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2.5. MANOMETER 
 

From the hydrostatic Equ. (2.7), a change in elevation (z2 – z1) of a liquid is equivalent 
to a change in pressure (p2 – p1)/γ. Thus a static column of one or more liquids can be used to 
measure differences between two points. Such a device is called a manometer. If multiple 
fluids are used, we must change the specific weight in the equation as move from one fluid to 
another. Fig. 2.8 illustrates the use of the equation with a column of multiple fluids. The 
pressure change through each fluid is calculated separately. If we wish to know the total 
change (p5 – p1), we add successive changes (p2 – p1), (p3 – p2), (p4 – p3), and (p5 – p4). The 
intermediate values of p cancel, and we have, for the example of Fig. 2.8, 
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Fig. 2.8 

 
( ) ( ) ( ) ( )4534231215 zzzzzzzzpp HgGwo −−−−−−−−=− γγγγ         (2.10) 

 
No additional simplification is possible on the right-hand side because of the different 

specific weights. Notice that we have placed the fluids in order from the lightest on top to the 
heaviest at bottom. 

 
When calculating hydrostatic pressure changes, engineers work instinctively by simply 

having the pressure increase downward and decrease upward. 
 

zpp up
down Δ+= γ                  (2.11) 

 
Thus, without worrying too much about which point is z1 and which is z2, the equation 

simply increases or decreases the pressure according to whether one is moving down or up. 
For example, Equ. (2.10) could be written in the following “multiple increase” mode: 

 
5443322115 zzzzzzzzpp HgGwo −+−+−+−+= γγγγ  

 
That is, keep adding on pressure increments as you move down through the layered 

fluid. A different application is a manometer, which involves both “up” and “down” 
calculations. 
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Fig. 2.9 shows a simple manometer for measuring pA in a closed chamber relative to 

atmospheric pressure p0, in other words, measuring gage (relative) pressure. The chamber 
fluid γ1 is combined with a second fluid γ2, perhaps for two reasons: 1) To protect the 
environment from a corrosive chamber fluid or, 2) Because a heavier fluid γ2 will keep z2 
small and the open tube can be shorter. One can apply the basic hydrostatic Equ. (2.7). Or, 
more simply, one can begin at A, apply Equ. (2.11) “down” to z1, jump across fluid 2 (see 
Fig. 2.9) to the same pressure p1, and then use Equ. (2.11) “up” to level z2: 

 
0221211 pppzzzzp atmAA ===−−−+ γγ           (2.12) 
 

The physical reason that we can “jump across” at section 1 in that a continuous length 
of the same fluid connects these two elevations. The hydrostatic relation (Equ. 2.7) requires 
this equality as a form of Pascal’s law: 

 
Any two points at the same elevation in a continuous mass of the same static fluid will 

be at the same pressure. 
 

This idea of jumping across to equal pressures facilitates multiple-fluid problems. 
 

EXAMPLE 2.2: A U-tube manometer in Fig. 2.10 is used to measure the gage 
pressure of a fluid P of specific weight γP = 800 kg/m3. If the specific weight of the liquid Q is 
γQ = 13.6×103 kg/m3, what will be the gage pressure at A if, a) h1 = 0.5 m and D is 0.9 m 
above BC, b) h1 = 0.1 m and D is 0.2 m below BC? 
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Fig. 2.10 
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SOLUTION: 
 

a) In Equ. (2.12), γ1 = 0.8 t/m3, γ2 = 13.6 t/m3, (zA – z1) = 0.5 m, (z1 – z 2) = 0.9 m. 
 

2
0

84.115.08.09.06.13

09.06.135.08.0

mtp

pp

A

A

=×−×=

==×−×+
 

 
b) Putting ⎜zA – z1⎜=0.1 m and ⎜z1-z2⎜=-0.2 m into Equ. (2.12) gives, 

 
( )

2
0

8.272.208.0

02.06.131.08.0

mtp

pp

A

A

−=−−=

==−×−×+
 

 
The negative sign indicating that pA is below atmospheric pressure. The absolute 

pressure at A is according to Equ. (2.9), 
 

2
0 53.78.233.10 mtppp AAabs

=−=+=  
 

Fig. 2.11 illustrates a multiple-fluid manometer problem for finding the difference in pressure 
between two chambers A and B. We repeatedly apply Equ. (2.7) jumping across at equal 
pressures when we come to a continuous mass of the same fluid. Thus, in Fig. 2.11, we 
compute four pressure differences while making three jumps: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( BA

BABA

zzzzzzzz
pppppppppp

−−−−−−−−= )
−+−+−+−=−

3432321211

332211

γγγγ
         (2.13) 

 
The intermediate pressures p1,2,3 cancel. It looks complicated, but it is merely 

sequential. One starts at A, goes down to 1, jump across, goes down to 3, jumps across, and 
finally goes up to B. 

 
 

Prof. Dr. Atıl BULU 20



EXAMPLE 2.3: Pressure gage B is to measure the pressure at point A in a water 
flow. If the pressure at B is 9 t/m2, estimate the pressure at A. γwater = 1000 kg/m3, γHg = 13600 
kg/m3, γoil= 900 kg/m3. 

Mercury

Water
flow

4 cm

5 cm

11 cm

6 cm

oil
Gage 

 
Fig. 2.12 

 
SOLUTION: Proceed from A to B, calculating the pressure change in each fluid and 

adding: 
    ( ) ( ) ( ) BooHgHgwwA pzzzp =Δ−Δ−Δ− γγγ  

or 
( )

22

2

96.99956

90005495250

06.090007.01360005.01000

mtmkgp

mkgpp

p

A

BA

A

≅=

==−−+=

×−×−−×−

 

 
 

2.6. FORCES ON SUBMERGED PLANE SURFACES 
 

The calculation of the magnitude, direction, and location of the total forces on surfaces 
submerged in a liquid is essential in the design of dams, bulkheads, gates, ships, and the like. 

 
For a submerged plane, horizontal area the calculation of these force properties is 

simple because the pressure does not vary over the area; for nonhorizontal planes the problem 
is complicated by pressure variation. Pressure in constant specific weight liquids has been 
shown to vary linearly with depth (Equ. 2.7), producing the typical pressure distributions and 
resultant forces on the walls of a container of Fig. 2.13. 
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 The shaded areas, appearing as trapezoids are really volumes, known as pressure 
prisms. In mechanics it has been shown that the resultant force, F, is equal to the volume of 
the pressure prism and passes through its centroid. 

 
Now consider the general case of a plane submerged area, A’ B’, such that of Fig. 

2.14. It is inclined θ0 from the horizontal. 
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Fig. 2.14 
 

The intersection of the plane of the area and the free surface is taken as the x-axis. The 
y-axis is taken in the plane of the area, with origin O, as shown, in the free surface. The xy-
plane portrays the arbitrary inclined area. The magnitude, direction, and line of action of the 
resultant force due to liquid, acting on one side of the area are sought. 

 
The force, dF, on the area, dA, is given by, 

 
dAySinhdApdAdF θγγ ===                 (2.14) 

 
The integral over the area yields the magnitude of force F, acting on one side of the 

area, 
 

∫ ∫ ====
A A

GG AhAySinydASinpdAF γθγθγ            (2.15) 
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With the relations from Fig. 2.14, yG×Sinθ = hG, and pG = γ×hG, the pressure at the 
centroid of the area. In words, the magnitude of force exerted on one side of the plane area 
submerged in a liquid is the product of the area and the pressure at its centroid. As all force 
elements are normal to the surface, the line of action of the resultant is also normal to the 
surface. 

 
The line of action of the resultant force has its piercing point in the surface at a point 

called the pressure center, with coordinates (xP,yP). Unlike that for the horizontal surface, the 
center of pressure of an inclined surface is not at the centroid. To find the pressure center, the 
moments of the resultant xP×F, yp×F are equated to the moment of the forces about the y-axis 
and x-axis, respectively; thus 

 
 

∫ ∫==
A A

P xpdAxdFFx                     (2.16) 

 

∫ ∫==
A A

P ypdAydFFy                    (2.17) 

 
After solving for the coordinates of pressure center, 

 

∫=
A

P xpdA
F

x 1
                     (2.18) 

 

∫=
A

P ypdA
F

y 1
                    (2.19) 

 
Eqs. (2.18) and (2.19) may be transformed into general formulas as follows: 

 

∫∫ ===
A G

xy

A GG
P Ay

I
xydA

Ay
dAySinx

ASiny
x 11 θγ

θγ
     (2.20) 

 
Since the products of inertia ⎯Ixy about centroidal axes parallel to the xy-axes produces, 

 
AyxII GGxyxy +=                      (2.21) 

 
Equ. (2.20) takes the form of, 

 

G
G

xy
P x

Ay
I

x +=                       (2.22) 

 
When either of the centroidal axes, x = xG or y = yG, is an axis of symmetry for the 

surface, ⎯Ixy vanishes and pressure center lies on x = xG. Since ⎯Ixy may be either positive or 
negative, the pressure center may lie on either side of the line x = xG. To determine yP by 
formula, with Eqs. (2.14) and (2.19) 
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∫ ∫ ===
A A G

x

GG
P Ay

I
dAy

Ay
dAySiny

ASiny
y 211 θγ

θγ
           (2.23) 

 
In the parallel-axis theorem for moments of inertia 

 
AyII GGx

2+=                  (2.24) 
 

If Ix is eliminated from Equ. (2.23) 
 

G
G

G
P y

Ay
I

y +=                     (2.25) 

 
 
or 

Ay
I

yy
G

G
GP =−                    (2.26) 

 
IG is always positive; hence (yP – yG) is always positive, and the pressure center is 

always below the centroid of the surface. It should be emphasized that yG and (yP–yG) are 
distances in the plane of the surface. A summary of IG’s for common areas is given in Table 
2.1.  

 
The areas of irregular forms may be divided into simple areas, the forces being located 

on them, and the location of their resultant being found by the methods of statics. The point 
where the line of action of the resultant force intersects the area is the center of pressure for 
the composite area. 
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EXAMPLE 2.4: The gate in Fig. 2.15 is 5 m wide, is hinged at point B, and rests 
against a smooth wall at point A. Compute, 

 
a) The force on the gate due to the water pressure, 
b) The horizontal force P exerted by the wall at point A, 
c) The reactions at hinge B.  

P
Wall

15 m

Water

Gate
6 m

Hinge 8 m

P

θ

A

a

a

Fig. 2.15 

B 

 
SOLUTION: 

 
a) By geometry the gate is 10 m long from A to B, and its centroid is halfway 

between, or at elevation 3 m above point B. The depth hC is thus 15 – 3 = 12 m. 
The gate area is 5×10 = 50 m2. Neglect p0 (atmospheric pressure) as acting on 
both sides of the gate. From Equ. (2.15) the hydrostatic force on the gate is 

 
tonAhApF CC 60050121 =××=== γ  

 
b) First we must find the center of pressure of F. A free-body diagram of the gate is 

shown in Fig. 2.16. The gate is rectangle, hence 
 

θ

A

l

5 mF

Bx

B

L 10 m

CG
CP

P

xBz
 

Fig. 2.16 
 

0=xyI         and       4
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12
mbLIG =

×
==  
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The distance l from the CG to the CP is given by Equ. (2.26) since p0 is neglected. 
 

6.0
10
6

==θSin      ,  037=θ

 

m
Ay

Iyyl

m
Sin
hy

G

G
GP

G
G

417.0
5020

417

20
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12

=
×

==−=

===
θ  

 
The distance from point B to force F is thus 10 – l –5 = 10 – 0.417 – 5 =4.583 m. 

Summing moments counterclockwise about B gives 
 

( )
( ) ( ) ton

LSin
lFP

lFPLSin

3.458
6.010
417.056005

05

=
×
−×

=
−

=

=−−

θ

θ
 

 
c) With F and P known, the reactions Bx and Bz are found by summing forces on the 

gate. 
 

tonB
PFSinBF

x

xx

3.986.06003.458
0

=×−=

=−+=∑ θ
 

 

tonB
FCosBF

z

zz

4808.0600
0

=×=

=−=∑ θ
 

 
 

2.7. DIFFERENT PRESSURES ON TWO SIDES 
 

The pressure has been considered as varying from zero at M to NK at N. In reality 
there is some pressure on the surface of the liquid, which might be represented by an 
equivalent height MO, and the absolute pressure on the left-hand side of the plane will vary as 
shown by ODE (Fig. 2.17) 

P a
γ

M D '

O

D

E K

γ
P a

N

W a te r  s u r f a c e

 
Fig. 2.17 
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In most practical cases it is the difference between the forces on the two sides is 
desired. The pressure of the air upon the surface of the liquid also produces a uniform 
pressure over the right-hand side of the area and thus MO = MD = MD’; and as the same air 
pressure acts a like on both sides, it mat be neglected altogether. 

 
In a case such as that in Fig. 2.18, where surface represented by the trace MN is 

submerged by a liquid at two different heights on the two sides, the pressure variations are 
represented by CDE and LK. If the liquids are of the same specific weight, triangles DEN and 
LNK are equal. Thus the net pressure difference on the two sides is the uniform value DL, 
which is equal to γh. 

E

F

    P
γ h

C

L

N N K

M

h

 

O 

Fig. 2.18 
 

Hence on any area by the same specific weight liquid on both sides but with a 
difference in level h as in Fig. (2.18), the resultant force is 

 
hAF γ=                           (2.27) 

 
and it will be applied at the centroid of the area. 

 
 

2.8.FORCE ON A CURVED SURFACE 
 

If a surface is curved, it is convenient to calculate the horizontal and vertical 
components of the resultant force. 
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Fig. 2.19 
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In Fig. 2.19 (a) and (b), AB is the immersed surface and Fh and Fv are the horizontal 
and vertical components of the resultant force F of the liquid on one side of the surface. In 
Fig. 2.19. (a) the liquid lies above the immersed surface, while in Fig. 2.19 (b) it acts below 
the surface. 

 
In Fig. 2.19 (a), if ACE is a vertical plane through A, and BC is a horizontal plane, 

then, since element ACB is in equilibrium, the resultant force F on AC must equal the 
horizontal component Fh of the force exerted by the fluid on AB because there are no other 
horizontal forces acting. But AC is the projection of AB on a vertical plane, therefore, 

 
Horizontal component, Fh = Resultant force on the projection of AB 

             on a vertical plane 
 

Also, for equilibrium, P and Fh must act in the same straight line; therefore, the 
horizontal component Fh acts through the center of pressure of the projection of AB on a 
vertical plane. 

 
Similarly, in Fig. 2.19 (b), element ABF is in equilibrium, and the horizontal 

component Fh is equal to the resultant force on the projection BF of the curved surface AB on 
a vertical plane, and acts through the center of pressure of this projection. 

 
In Fig. 2.19 (a), the vertical component Fv will be entirely due to the weight of the 

fluid in the area ABDE lying vertically above AB. There are no other vertical forces, since 
there can be no shear forces on AE and BD because the fluid is at rest. Thus, 

 
Vertical component, Fv = Weight of fluid vertically above AB 

 
and will act vertically downwards through the center of gravity G of ABDE. 

 
In Fig. 2.19 (b), if the liquid is on the right side of the surface AB, this liquid would be 

in equilibrium under its own weight and the vertical force on the boundary AB. Therefore, 
 

Vertical component, Fv = Weight of the volume of the same fluid which would lie  
                                          vertically above AB 
 

and will act vertically upwards through the center of gravity G of this imaginary volume of 
fluid. 

 
The resultant force F is found by combining the components vertically. If the surface 

is of uniform with perpendicular to the diagram, Fh and Fv will intersect at O. Thus, 
 

Resultant force, 22
vh FFF +=  

 
and acts through O at an angle θ given by hv FFTan =θ . 

 
In the special case of a cylindrical surface, all the forces on each small element of area 

acting normal to the surface will be radial and will pass through the center of the curvature O 
(Fig. 2.20). The resultant force F must, therefore, also pass through the center of curvature O. 
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F

O

 
Fig. 2.20 

 
EXAMPLE 2.5: A sluice gate is in the form of a circular arc of radius 6 m as shown 

in Fig. 2.21. Calculate the magnitude and direction of the resultant force on the gate, and the 
location with respect to O of a point of its line of action. 
 

30°

30°

Fv

F
Fhθ

h 6m

P

Q

O

Water 6 m rad

 

S 

Fig. 2.21 
 

SOLUTION: 
 

Since the water reaches the top of the gate, 
 

Depth of water,  mSinh 63062 0 =××=
 

Horizontal component of force on gate = Fh  (per unit length) 
 

Fh = Resultant force on PQ per unit length 
 

tonF

hhhF

h

h

18
2
61

22
2

2

=
×

=

=××=
γγ

 

 
Vertical component of force on gate = Fv (per unit length) 

 
Fv = Weight of water displaced by segment PSQ 
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Fv = (Sector OPSQ – Triangle OPQ)×γ 
 

tonF

CosSinF

v

v

26.3

13063066
360
60 002

=

×⎟
⎠
⎞

⎜
⎝
⎛ ×××−××= π

 

 
Resultant force on gate,  

 

mtonF

FFF vh

/29.1826.318 22

22

=+=

+=
 

 

18.0
18
26.3

===
h

v

F
F

Tanθ  

 
72100 ′=θ    to the horizontal 

 
Since the surface of the gate is cylindrical, the resultant force F must pass through O. 

 
 

2.9. BUOYANCY AND FLOTATION 
 

The familiar laws of buoyancy (Archimedes’ principle) and flotation are usually 
stated: 

 
1) A body immersed in a fluid is buoyed up by a force equal to the weight of fluid 

displaced, 
2) A floating body displaces its own weight of the fluid in which it floats. 
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Fig. 2.22 
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A body ABCD suspended in a fluid of specific weight γ is illustrated in Fig. 2.22. 
Isolating a free body of fluid with vertical sides tangent to the body allows identification of 
the vertical forces exerted by the lower (ADC) and upper (ABC) surfaces of the body 
surrounding fluid. These are F1 and F2 with (F1 - F2) the buoyant force on the body. For the 
upper portion of the free body 

 
0222 =−−=∑ ApWFFz  

 
and for the lower portion 

 
0111 =−+=∑ ApWFFz  

 
Whence (by subtracting of these equations) 

 
( ) ( 212121 WWAppFFFB )+−−=−=  

 
However, (p1 – p2) = γh and γhA is the weight of a cylinder of fluid extending between 
horizontal planes 1 and 2, and the right side of the equation for FB is identified as the weight 
of volume of fluid exactly equal to the of the body 

 
FB = γ×(Volume of object)                (2.28) 

 
For the floating object of Fig. 2.23 a similar analysis will show that 

 
FB = γ×(Volume displaced)             (2.29) 

 
and, from static equilibrium of the object, its weight must be equal to this buoyant force; thus 
the object displaces its own weight of the liquid in which it floats. 

A

FB

W

B

D C

z

γ

 
Fig. 2.23 

 
 EXAMPLE 2.6: A block of concrete weighs 100 kg in air and weighs 60 kg when 
immersed in water. What is the average specific weight of the block? 

 
SOLUTION: The buoyant force is, 

 
010060 =−+=∑ Bz FF  

waterB kgF γ== 40 ×(Volume of the block) 
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304.0
1000

40 mV ==  

 
Therefore the specific weight of the block is, 

 
33 5.22500

04.0
100 mtonmkg ===γ  

 
 

2.10. FLUIDS IN RELATIVE EQUILIBRIUM 
 

If a fluid is contained in a vessel which is at rest, or moving with constant linear 
velocity, it is not affected by the motion of the vessel; but if the container is given a 
continuous acceleration, this will be transmitted to the fluid and affect the pressure 
distribution in it. Since the fluid remains at rest relative to the container, there is no relative 
motion of the particles of the fluid and, therefore, no shear stresses, fluid pressure being 
everywhere normal to the surface on which it acts. Under these conditions the fluid is said to 
be in relative equilibrium. 

 
2.10.1. Pressure Distribution in a Liquid Subject to Horizontal Acceleration 

 
Fig. 2.24 shows a liquid contained in a tank which has an acceleration a. A particle of 

mass m on the free surface at O will have the same acceleration as the tank and will be 
subjected to an accelerating force F. From Newton’s second law, 

 
maF =                       (2.30) 

 

h

R

mg
θ

F

z

x

aθ

 

O 

Fig. 2.24 
 

Also, F is the resultant of the fluid pressure force R, acting normally to the free surface 
at O, and the weight of the particle mg, acting vertically. Therefore, 

 
θmgTanF =                     (2.31) 

 
Comparing Eqs. (2.30) and (2.31) 

g
aTan =θ                     (2.32) 

 
and is constant for all points on the free surface. Thus, the free surface is a plane inclined at a 
constant angle θ to the horizontal. 
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Since the acceleration is horizontal, vertical forces are not changed and the pressure at 
any depth h below the surface will be γh. Planes of equal pressure lie parallel to the free 
surface.  

 
2.10.2. Effect of Vertical Acceleration 

 
If the acceleration is vertical, the free surface will remain horizontal. Considering a 

vertical prism of cross-sectional area A (Fig. 2.25), subject to an upward acceleration a, then 
at depth h below the surface, where the pressure is p, 

a

h

X

F
Pressure p

F

Prism of cross-sectional
area A

luid
ensity ρdSpecific 
mass, ρ 

 
Fig. 2.25 

 
Upward accelerating force, F = Force due to p – Weight of prism 

 
hApAF γ−=  

 
By Newton’s second law, 
 

F = Mass of prism × Acceleration 
 

ahAF ×= ρ  
 

Therefore, 
 

hAahApA ργ =−
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

g
ahp 1γ                (2.33a) 

 
If the acceleration a is downward towards to the center of the earth as gravitational 

acceleration, Equ. (2.33a) will take the form of, 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

g
ahp 1γ                  (2.33b) 
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2.10.3. General Expression for the Fluid in Relative Equilibrium 
 

If ∂p/∂x, ∂p/∂y and ∂p/∂z are the rates of change of pressure p in the x, y and z 
directions (Fig. 2.26) and ax, ay and az the accelerations, 

 

Force in x direction, zyx
x
ppzypFx ΔΔ⎟

⎠
⎞

⎜
⎝
⎛ Δ

∂
∂

+−ΔΔ=  

 

zyx
x
pFx ΔΔΔ

∂
∂

−=  

az

ay

ax

δyδx

δz

y

z

 
Fig. 2.26 

 
By Newton’s second law, Fx = ρΔxΔyΔz×ax, therefore 

 

xa
x
p ρ=

∂
∂

−                      (2.34) 

 
Similarly, in the y direction 
 

ya
y
p ρ=

∂
∂

−                     (2.35) 

 
In the vertical z direction, the weight of the element W = ρgΔxΔyΔz must be considered: 

 

zyxgzyx
z
pF

zyxgyxz
z
ppyxpF

x

z

ΔΔΔ−ΔΔΔ
∂
∂

−=

ΔΔΔ−ΔΔ⎟
⎠
⎞

⎜
⎝
⎛ Δ

∂
∂

+−ΔΔ=

ρ

ρ
 

 
By Newton’s second law, Fz = ρΔxΔyΔz×az, therefore, 

 

( zag )
z
p

+=
∂
∂

− ρ                   (2.36) 
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For an acceleration as in any direction in the x-z plane making an angle φ with the 
horizontal, the components of the acceleration are 

 
φCosaa sx =          and         φSinaa sz =  

 
Now 

 

ds
dz

z
p

ds
dx

x
p

ds
dp

∂
∂

+
∂
∂

=                  (2.37) 

 
For the free surface and all other planes of constant pressure, dp/ds = 0. If θ is the 

inclination of the planes of constant pressure to the horizontal, Tanθ = dz/dx. Putting dp/ds = 
0 in Equ. (2.37) 

 

zp
xpTan

dx
dz

ds
dz

z
p

ds
dx

x
p

∂∂
∂∂

−==

=
∂
∂

+
∂
∂

θ

0
 

 
Substituting from Eqs. (2.34) and (2.36) 

 

z

x

ag
a

Tan
+

−=θ                  (2.38) 

 
Or, in terms of as, 

 

( )φ
φ

θ
Sinag

Cosa
Tan

s

s

+
−=                (2.39) 

 
For the case of horizontal acceleration, φ = 0 and Equ. (2.39) gives Tanθ = -as/g, 

which agrees with Equ. (2.32). For vertical acceleration, φ = 900 giving Tanθ = 0, indicating 
that the free surface remains horizontal. 

 
EXAMPLE 2.7: A rectangular tank 1.2 m deep and 2 m long is used to convey water 

up a ramp inclined at an angle φ of 300 to the horizontal (Fig. 2.27). 

30°

θ
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Depth

as

φ = 
 

Fig. 2.27 
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Calculate the inclination of the water surface to the horizontal when, 
 
a) The acceleration parallel to the slope on starting from bottom is 4 m/sec2, 
b) The deceleration parallel to the slope on reaching the top is 4.5 m/sec2. 
 

If no water is to be spilt during the journey what is the greatest depth of water permissible in 
the tank when it is at rest? 

 
SOLUTION: The slope of the water surface is given by Equ. (2.39). During 

acceleration, as = 4 m/sec2

 

93163

2933.0
30481.9

304

0

0

0

′=

−=
×+

×
−=

+
−=

A

s

s
A Sin

Cos
Sinag

Cosa
Tan

θ

φ
φ

θ
 

 
During retardation, as = - 4.5 m/sec2, 

 
( )

6127

5154.0
305.481.9

305.4

0

0

0

′=

=
×−

×−
−=

R

R Sin
CosTan

θ

θ
 

 
Since 1800 - θR > θA, the worst case for spilling will be during retardation. When the water 
surface is inclined, the maximum depth at the tank wall will be 

 
Depth + 0.5×Length×Tanθ 

 
Which must not exceed 1.2 m if the water is not to be spilt. Putting length = 2 m, Tanθ = Tan 
θR = 0.5154, 

 
Depth + 0.5×2×0.5154 = 1.2 

 
Depth = 1.2 – 0.5154 = 0.6846 m 
 

 
2.10.4. Forced Vortex 

 
A body of fluid, contained in a vessel, which is rotating about a vertical axis with 

uniform angular velocity, will eventually reach relative equilibrium and rotate with the same 
angular velocity w as the vessel, forming a forced vortex. The acceleration of any particular of 
fluid at radius r due to rotation will be (-w2r) perpendicular to the axis of rotation, taking the 
direction of r as positive outward from the axis. Thus, from Equ. (2.34), 

 

rw
dr
dp 2ρ−=                 (2.40) 
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Fig. 2.28 

 
Fig. 2.28 shows a cylindrical vessel containing liquid rotating about its axis, which is 

vertical. At any P on free surface, the inclination θ of the free surface is given by Equ. (2.38), 
 

dr
dz

g
rw

ag
a

Tan
z

x ==
+

−=
2

θ               (2.41) 

 
The inclination of the free surface varies with r and, if z is the height of P above O, the 

surface profile is given by integrating Equ. (2.41): 
 

C
g
rwdr

g
rwz

x

+== ∫ 2

22

0

2

             (2.42) 

 
Thus, the profile of the water is a paraboloid. Similarly, other surfaces of equal 

pressure will also be paraboloids. 
 

The value of integration constant is found by specifying the pressure at one point. If    
z = 0 at point O, then the integration constant is zero. Then the Equ. (2.42) becomes, 

 

g
rwz

2

22

=                   (2.43) 
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