5 Operator OVerioading

Operator Overloading I

P It 1s possible to overload the built-in C++ operators such
as +, >=, and ++ so that they invoke different functions,
depending on their operands.

» a+b will call one function if @ and b are integers, but will
call a different function if @ and b are objects of a class.

» Operator overloading makes your program easler to write
and to understand.

» Overloading does not actually add any capabilities to C++.
Everything you can do with an overloaded operator you
can also do with a function.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

» However, overloaded operators make your programs
easier to write, read, and maintain.

[Object Oriented Programming 198]

Operator Overloading I

» Operator overloading 1s only another way of calling a
function.

» You have no reason to overload an operator except 1if it
will make the code involving your class easier to write and
especially easier to read.

» Remember that code 1s read much more than it 1s written

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 199]

[Limitations I

» You can’t overload operators that don’t already exist in
C++. You can overload only the built-in operators.

il P You can not overload the following operators

<

= *

=

=

2 ->

o

(o)

o L |

2 ..

S ?:

o :
sizeof

{ Object Oriented Programming 200]

[Limitations I

» The C++ operators can be divided roughly into binary and
unary. Binary operators take two arguments. Examples are
atb, a-b, a/b, and so on. Unary operators take only one
argument: -a, ++a, a--.

» [f a built-in operator is binary, then all overloads of it
remain binary. It 1s also true for unary operators.

» Operator precedence and syntax (number of arguments)
cannot be changed through overloading.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

» All the operators used in expressions that contain only
built-in data types cannot be changed. At least one
operand must be of a user defined type (class).

[Object Oriented Programming 201]

Overloading the + operator for ComplexT I

[* A class to define complex numbers */
class TComplex {
float real,img;

= public:
[l Member functions

%D TComplex operator+(TComplex&); // header of operator+
=g function
2
§ /* The Body of the function for operator + */
@ TComplex TComplex::operator+(TComplex& z) {
S TCOMPIEXTESUIL e sseseesssees s s ssses s ssnseee
Bl ool g iy ntmainO '
o, : - img, : _
o return result: E TComplex z1,z2,z3;

] : . /I Other operations

z3=z1+22; like z3 = z1. operator+(22)

[Object Oriented Programming 202]

Overloading the Assignment Operator (=)

» Because assigning an object to another object of the same
type 1s an activity most people expect to be possible, the
compiler will automatically create a type::operator=(const
type &) 1f you don’t make one.

» The behavior of this operator 1s member wise assignment.
It assigns (copies) each member of an object to members
of another object. (Shallow Copy)

P If this operation is sufficient you don't need to overload
the assignment operator. For example, overloading of
assignment operator for complex numbers 1s not
necessary.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

[Object Oriented Programming 203]

Overloading the Assignment Operator (=)

vold ComplexT::operator=(const ComplexT& z)

d

re = Z.re;

m = z.1m;

h

» You don't need to write such an assignment operator
function, because the operator provided by the compiler
does the same thing.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 204]

Overloading the Assignment Operator (=)

» In general, you don’t want to let the compiler do this for
you.

» With classes of any sophistication (especially if they
contain pointers!) you want to explicitly create an
operator=.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 205]

Example I

class string {

Int size,

char *contents;
V) .

public:

.éo void operator=(const string &); // assignment operator
"§ | /I Other methods
= I
c>> void string::operator=(const string &s)
S
= size = s.size;
o8
o

delete [Jcontents;
contents = new char[size+1];
strcpy(contents, s.contents);

}

{ Object Oriented Programming 206]

Operator Provided by the Compiler I

Source object Destination object

- g ©° EEE
0x008d0080 0x008d0080 %

contents: | l contents

size

Data is still wasting
memory space.

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
[oF
O

{ Object Oriented Programming 207]

Operator of the Programmer I

Source object Destination object

‘ contents

0x008d0080

contents |

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
[oF
O

V V. VV V VVY VY

{ Object Oriented Programming 208]

Return value of the assignment operator I

» When there’s a void return value, you can’t chain the
assignment operator (asma=b=c).

¥ P To fix this, the assignment operator must return a reference

= to the object that called the operator function (its address).
s . . .
5 // Assignment operator , can be chainedasin a=b=c
= const String& String::operator=(const String &in_object) {
5 if (size !=1n_object.size){ // if the sizes of the source and destination
o size = in_object.size; // objects are different
IS delete [] contents; // The old contents is deleted
2. contents = new char[size+1]; // Memory allocation for the new contents
O h
strcpy(contents, in_object.contents);
return *this; // returns a reference to the object

b

[Object Oriented Programming 209]

Copy Constructor vs. Assignment Operator I

» The difference between the assignment operator and the
copy constructor 1s that the copy constructor actually
creates a new object before copying data from another
object 1nto 1t, whereas the assignment operator copies data
into an already existing object.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 210]

Copy Constructor vs. Assignment Operator I

> A a:
» A b(a);
» b=a;
> A c=a;

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
@F
O

{ Object Oriented Programming 211]

Overloading Unary Operators I

» Unary operators operate on a single operand. Examples are the
increment (++) and decrement (--) operators; the unary minus, as in -35;
and the logical not (!) operator.

@ .
» Unary operators take no arguments, they operate on the object for

%D which they were called. Normally, this operator appears on the left
] side of the object, as in lobj, -obj, and ++obj.
T’; Example: We define ++ operator for class ComplexT to increment the
®8 rcal part of the complex number by 0.1 .
c . .
IS Int main() {
= ComplexT z(1.2, 0.5);
o ++2z; [/ operator++ function is called

Z.print(); .

return O- void ComplexT::operator++() {

! ’ re=re+0.1;
by

[Object Oriented Programming 212]

» To be able to assign the incremented value to a new object,
the operator function must return a reference to the object.

/] ++ operator

8l // increments the real part of a complex number by 0.1
o const ComplexT & ComplexT::operator++() {
= re=re+0.1;
§ return *this;
S .
> .
el Iint main() {
3 ComplexT z1(1.2, 0.5), z2;
%’ 22 = ++2z1; //++ operator is called, incremented value is assigned to z2
o z2.print();
O .
return O;
¥

{ Object Oriented Programming 213]

Overloading the “[]” Operator

» Same rules apply to all operators. So we don’t need to
discuss each operator. However, we will examine some

gl 1nteresting operators.

%D » One of the interesting operators 1s the subscript operator.
qv . .

81 P It can be declared 1n two different ways:

)

>

M class C {

o

= returntype & operator [] (paramitype),
O

3 or

o

const returntype & operator [] (paramitype) const

Y

[Object Oriented Programming

214 |

Overloading the “[]” Operator

» The first declaration can be used when the overloaded
subscript operator modifies the object. The second
declaration 1s used with a const object; in this case, the
overloaded subscript operator can access but not modify the
object.

If ¢ 1s an object of class C, the expression
c[i]

1s interpreted as

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

c.operator|](i)

[Object Oriented Programming 215]

» Example: Overloading of the subscript operator for the String
class. The operator will be used to access the it" character of the
string. If 1 is less the zero then the first character and if 1 is greater
than the Size of the string the last character will be accessed.

/] Subscript operator

0 char & String::operator[](int 1) {

en if(i < 0)

-,g return contents|[0]; /] return first character

S if(i >= size)

E return contents[size-1]; /] return last character

5 return contentsli]; /] return i th character

q

= iInt main() {

) String s1("String 1");

8 s1[1] ="'p'; // modifies an element of the contents
sl.print();
cout << " 5 th character of the string sl is: " << s1[5] << endl;
return O;

}

[Object Oriented Programming 216]

Overloading the “()” Operator I

The function call operator is unique 1n that it allows any number of
arguments.

class C{
returntype operator () (paramtypes),

¥
If c 1s an object of class C, the expression

c(l, J, K) 1s interpreted as
c.operator()(1,], k)

Example: The function call operator is overloaded to print complex
numbers on the screen. In this example the function call operator does
not take any arguments.

/1 The function call operator without any argument, it prints a complex number
void ComplexT::operator()() const {
cout<<re<<","<<im<< endl;

}

[Object Oriented Programming 217]

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

Example: The function call operator is overloaded to copy a
part of the contents of a string into a given memory location.
In this example the function call operator takes two arguments:
the address of the destination memory and the numbers of
characters to copy.

Vo)
®¥Y // The function call operator with two arguments
E=8 void String::operator()(char * dest, int num) const {
Fg if (num > size) num=size; /1 if num is greater the size of the string
,8 for (int k=0; k < num; k++) dest[k]=contents[k];
O
>
O8 int main() {
§ String s1("Example Program");
S char * ¢ = new char[8]; /1 Destination memory
‘& s1(c,7); /] First 7 letters of string1 are copied into ¢
@, c[7] = "\O’; /] End of string (null) character

cout << c;

delete [] c;

return O;

b

[Object Oriented Programming 218]

"Pre" and "post" form of operators ++ and -- I

» Recall that ++ and -- operators come 1n “pre” and “post”
form.
P I these operators are used with an assignment statement
than different forms has different meanings.

z2=++z1; // preincrement

z2 =z1++; // postincrement

» The declaration, operator ++ () with no parameters
overloads the preincrement operator.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

» The declaration, operator ++ (int) with a single int
parameter overloads the postincrement operator. Here, the
int parameter serves to distinguish the postincrement form

from the preincrement form. This parameter 1s not used.
[Object Oriented Programming 219]

Post-Increment Operator I

// postincrement operator
ComplexT ComplexT::operator++(int) {

ComplexT temp;

temp = *this; // old value (original objects)
re=re +0.1; // Increment the real part
return temp; // return old value

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
@F
O

{ Object Oriented Programming 220]

Pre-Increment Operator I

// postincrement operator

ComplexT ComplexT::operator++() {
re=re +0.1; // Increment the real part
return *this; // return old value

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
@F
O

{ Object Oriented Programming 221]

