Removal of Transition Metal Cations and Their Counteranions by Crosslinked Epoxy–Amine Polymer

NIYAZI BİÇAK, TÜLAY ATAY, GÜNES KOZA

Istanbul Technical University, Department of Chemistry, Maslak 80626 Istanbul, Turkey

Received 16 May 1997; accepted 3 September 1997

ABSTRACT: Reaction of epichlorohydrin with ethylenediamine is very exothermic, and severe explosions occur, even when a few milliliters of the reagents are interacted without solvent. A controlled reaction has been achieved safely by suspension polycondensation of epichlorohydrin with ethylenediamine. 1,2-Diaminoethane units in the resulting crosslinked polymer provide high chelating ability for transition metal ions, such as Cu(II), Ni(II), Co(II), Cd(II), Fe(III), and Cr(III). Having all-amine ligating groups, the polymer represents unique properties and can sorb not only metal cations but also their counteranions, such as chloride, sulphate, nitrate, and acetate. The crosslinked polymer is stable hydrolytically and regenerable by acid without losing its activity. It can be recycled and offers a means of simultaneous removal of cations and anions from aqueous solutions. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 103–109, 1998

Key words: epoxy–amine resin; sorption of cation and anions; condensation polymer; epichlorohydrin–ethylenediamine water purification; cationic hydrogel

INTRODUCTION

Crosslinked polymers bearing various ligating groups are promising materials for hydrometallurgical applications, water purification, etc. There have been recent attempts in the incorporation of many different chelating groups into polymeric networks. Although many chelating polymers with high metal-uptake ability have been reported, most suffer from their hydrolytic instabilities. In view of this, polymers having hydrolyzable or oxidizable groups are not suitable for large-scale applications, even though they have good metal-sorption abilities.

During our research, we realized that all-amine ligating polymers offer advantages of nonhydrolyzability, better ability of metal sorption and anion-binding ability. In these polymers, chelation is expected to occur by formation of cationic metal complexes. The counteranion of metal salts must also be bound ionically either to the cationic complex being formed or to other free amine groups of the polymer. Coordination chemistry of low-molecular-weight amines, such as ethylenediamine, and diethylenetriamine have been extensively studied in the literature. With these ligands, the counteranion of the metal complexes formed is the hydroxide or anion of the metal salt involved. At present, only a few nonhydrolyzable polyamines are known in the literature. These are polyvinylpyridines, polyethyleneimine, and polyvinylamine. Among them, only polyvinylpyridines and its monomers are commercially available. Polyethyleneimine is obtained either by cationic ring opening of ethylenimine monomer or by hydrolysis of oxazoline polymers.Vinylamine monomer does not exist, and its polymer is prepared by hydrolysis of poly(N-vinyl amides) or poly(N-vinyl t-butyl carbamate). Recently, we have demonstrated that it can also be prepared
by Hofmann’s N-bromamide method, from poly-
acrylamide in ethylene glycol. There are many
articles dealing with metal complexes of poly-
vinylpyridines, polyvinylamine, and polyeth-
yleneimine.

In our previous article, we have demonstrated
that a resinous polymer, obtained by condensa-
tion of p-dichloromethylbenzene with ethylene-
diamine, is capable of binding transition metal ions
together with their counteranions. However, after
regeneration with concentrated HCl solutions, the
polymer loses its original activity due to acid-cata-
lized side reactions, probably a Sommelet rear-
rangement, through phenyl rings.

In order to overcome this drawback, in the pres-
ent study, we have prepared a crosslinked ali-
phatic polyamine by condensing epichlorohydrin
with ethylenediamine. Its preparation and metal
complexes have been described in some patent lit-

erature, but its anion-binding character has not
been dealt with so far. In the present work, prep-

aration and metal uptake from aqueous solutions
and anion-binding ability (with chloride, sul-
phate, acetate, and nitrate anions) of the re-
sulting polymer have been investigated.

EXPERIMENTAL

All the chemicals were analytical grade chemical
products: ethylenediamine (E. Merck, Germany),
epichlorohydrin (Fluka, Switzerland), and metal
salts (E. Merck, Germany) were used without any
further purification.

Preparation of the Crosslinked Polymer

Fifty milliliters of liquid parafin was placed in a
250 mL volume two-necked flask equipped with a
reflux condenser and a dropping funnel. The
whole system was immersed in an ice bath. Ten
milliliters (0.15M) of ethylenediamine and 15 mL
of 1-methyl-2-pyrrolidone were added to the
 flask. While stirring with a magnetic stirring bar
(350–400 rpm), 12.9 mL (0.165M) of epichlorohy-
drin was added cautiously to the mixture through
a dropping funnel. A white flocculant occurred
after stirring for 45 min. Stirring was continued
for another 18 h at room temperature, then the
mixture was heated to 70°C for 3 h. The solid
precipitated was filtered and washed with 30 mL
toluene. The product was dispersed in 30 mL
of toluene and refluxed for 30 min to remove paraffin
residues, and filtered then washed with ethanol
and water. The product was transferred into the
50-mL 5% NaOH solution and stirred for 2 h to
obtain HCl-free resin. After filtration, the white-
yellow product was washed, with excess water
and 20 mL of ethanol, then dried at 80°C for 24
h in vacuo. Yield was 15.7 g (86.0%).

Determination of Accessible Amine Content

The accessible amine content was determined ac-
cording to the procedure described elsewhere.
For this purpose, 0.5 g of the resin sample was
soaked in 20 mL of 1M HCl solution and left in
contact overnight while stirring in a closed bottle.
The excess of unreacted acid was titrated with
0.1M NaOH solution in the presence of phenol-
phthalein as an indicator. The accessible amine
content was calculated as 11.4 mmol NH2/g resin.

Swelling of the Resin Sample

Disc-shaped samples with a diameter of 1 cm and
a thickness of 3.3 mm were prepared from 0.25 g
dry polymer by an infrared (IR) pellet sampler
under 10 tons/cm² of pressure. Each disc was
placed in a 100-mL volume, sintered glass funnel
in a closed bottle containing 150 mL of buffer solu-
tion (sodium citrate±HCl for a pH of 2.0 and ace-
tic acid±sodium acetate for a pH of 5.5). The level
of buffer solution was adjusted so that the upper
level was 5 cm higher than that of the sample.
The bottle was sealed to prevent any CO2 uptake,
which might cause shifts in pH.

The samples were allowed to stand in contact
with the buffer solutions for 6 weeks at room tem-
perature. From time to time, the glass funnels
were taken out, filtered by suction, and weighed.
The swelling ratios (w/wo) found were recorded
as a function of time (Fig. 1).

Determination of Metal Loading Capacities

To estimate maximum metal-sorption capacities,
0.5-g samples of the polymer were contacted sepa-

rately with 50 mL of buffer solution (acetic acid–
sodium acetate, pH = 4.3) containing 10.0 mmol
of the metal salts (CuCl2·2H2O, CoCl2·6H2O,
Cd(NO3)2·4H2O, NiCl2·6H2O, Cr(NO3)3·9H2O,
and FeCl3·6H2O), which is a 2.50-fold excess of
the theoretical capacity. The mixtures were
stirred for 30 min, filtered, and washed with dis-
tilled water. The filtrates and washings were
combined and made up to the level of 250 mL
in volumetric flasks. Metal ion contents of these
solutions were assayed by atomic absorption spectrometry (AAS). The difference of the metal contents between starting and interacted solutions and the amounts of sorbed metal ions were calculated and are tabulated as shown in Table I.

Determination of the Anion-Binding Capacities

Anion-binding capacities of the crosslinked polymer were determined by direct interaction of the metal salts. In these experiments, buffer solutions deliberately were not used to avoid any possible interferences coming from the components of the buffer. Cd(NO$_3$)$_2$·6H$_2$O, CuCl$_2$·2H$_2$O, NiSO$_4$·6H$_2$O, and Cd(CH$_3$COO)$_2$·4H$_2$O were used as nitrate, chloride, sulphate, and acetate anion sources. Nonsorbed anion concentrations of the interacted solutions were determined by classical analytical procedures, and sorbed amounts were calculated in a similar fashion. Chloride ion was determined gravimetrically as AgCl by addition of 0.1M AgNO$_3$ solution in the presence of 0.5-mL conc. HNO$_3$. Sulphate ion was determined gravimetrically by precipitation as BaSO$_4$. For determination of nitrate and acetate, Cd(II) was first precipitated as cadmium sulphide by bubbling H$_2$S through the dilute solutions. The filtered solutions were refluxed to remove traces of H$_2$S, then the resulting HNO$_3$ and CH$_3$COOH were determined by conductometric titrations with 0.1M NaOH solution.

Metal-Uptake Kinetics

Simple batch kinetic experiments for metal sorptions were performed as follows: A 0.5-g sample of the crosslinked polymer was soaked in 50 mL of a solution of one of the metal salts, which were prepared previously by mixing 25 mL of buffer solutions (acetic acid–sodium acetate, pH = 4.3) with 25 mL of metal ion solutions in 0.024M concentrations. Aliquots (1.0 mL) of the stirred solutions were taken at appropriate time intervals and transferred in volumetric flasks through filter papers. The filtrates and washings were combined and made up to 50 mL. Metal contents were assayed by AAS. The relevant data for different metal ions are shown in Figure 2.

pH Dependence of Metal Sorptions

pH-dependent metal sorptions were performed by interacting 0.5-g polymer samples with the metal ion solutions (2.0 mmol metal ion in 50 mL of each buffer solution). The mixtures were stirred for 30 min at room temperature. The pHs of the buffer

Table I Metal Sorption Characteristics of Crosslinked Polymer

<table>
<thead>
<tr>
<th>Metal Ions</th>
<th>AACa (mmol/g Resin)</th>
<th>Max Loading (mmol/g Resin) (pH, 4.3)</th>
<th>Amine–Metalb (mol/mol)</th>
<th>Stripped Metalc Ion (mmol/g Resin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(II)</td>
<td>11.4</td>
<td>2.3</td>
<td>4.84</td>
<td>1.4</td>
</tr>
<tr>
<td>Ni(II)</td>
<td>11.4</td>
<td>2.8</td>
<td>3.97</td>
<td>2.6</td>
</tr>
<tr>
<td>Co(II)</td>
<td>11.4</td>
<td>3.7</td>
<td>3.02</td>
<td>1.8</td>
</tr>
<tr>
<td>Cd(II)</td>
<td>11.4</td>
<td>2.0</td>
<td>5.57</td>
<td>1.8</td>
</tr>
<tr>
<td>Cr(III)</td>
<td>11.4</td>
<td>4.7</td>
<td>2.37</td>
<td>1.2</td>
</tr>
<tr>
<td>Fe(II)</td>
<td>11.4</td>
<td>4.5</td>
<td>2.47</td>
<td>1.6</td>
</tr>
</tbody>
</table>

a AAC is the abbreviation for accessible amine content.

b Based on the accessible amine content.

c By treating with 1M HCl solution for 30 min.
Recovery of the Metal Ions from the Loaded Samples

Metal ions were recovered by decomplexation of the metal ions from the loaded samples by treating with 50-mL 1M HCl for 30 min. After filtering, concentrations of the stripped metal ions were determined by AAS. For comparison, the stripped and sorbed metal contents of the same samples are listed in Table I.

Regeneration of the Crosslinked Polymer

After a first treatment with HCl solutions, metal sorbed polymer samples remained colored, which
REMOVAL OF TRANSITION METAL CATIONS

107

can be performed safely by careful addition of epichlorohydrin to the mixture of ethylenediamine, \(N\)-methyl-2-pyrrolidone and liquid paraffin at 0°C. At the end of the heating step, a cross-linked resinous polymer is obtained as particles. However, the particles are not spherical.

The structure of the polymer is shown in Scheme 1.\(^{16}\) In the IR spectra (with KBr disc) of the polymer, \(N-H\) stretching vibrations, which are expected to appear in the 3200–3400 cm\(^{-1}\) range, are not distinguished clearly due to superposition of the broad \(O-H\) stretching bands at the same frequencies. The band observed at 1580 cm\(^{-1}\) can be attributed to \(N-H\) plane bending vibrations.

Swelling characteristics of the polymer have similarities with those of polyelectrolyte gels. Being a cationic hydrogel, in acid conditions, polymer segments tend to expand due to increasing ionization. This factor is important in affecting the rate of regeneration, because, during the regeneration by acid treatment, expansion of the polymer segments may provide fast decomplexation, although diffusion of the desorbing metal ions from the swollen structure becomes difficult. For this reason, polymers, whose swelling rates do not change so much in different pHs, must be preferred to conduct the regeneration at reliable rates. Actually, we didn't study optimization of the rates of metal desorptions. However, in our case, the percentage difference of the swelling ratios at pHs 2 and 5.5 is about 6% (Fig. 1) and not so much.

Figure 3 pH dependence of the metal sorptions of the resin.

means decomplexation has not been completed. For this reason, the acid treatment processes were repeated at least three times. Then, to obtain the polymer samples in free-amine form, they were treated with 50 mL of 2\(M\) NaOH solutions. The filtered samples were washed with excess of distilled water and 20 mL of ethanol. The resulting regenerated polymer is in the free-amine form and ready for use in the next cycle.

RESULTS AND DISCUSSION

Violent explosions occur when contacting small amounts of epichlorohydrin with ethylenediamine, especially when used without solvent. The reaction is believed to proceed in the following two steps: (1) ring opening of the epoxide group, and (2) condensation of amine with the halogen group. Obviously, the first step is fast and responsible for the explosions.

The present study reveals that this drawback can be overcome by using liquid paraffin and toluene as the dispersing phase. The ring opening step can be performed safely by careful addition of epichlorohydrin to the mixture of ethylenediamine, \(N\)-methyl-2-pyrrolidone and liquid paraffin at 0°C. At the end of the heating step, a cross-linked resinous polymer is obtained as particles. However, the particles are not spherical.

The structure of the polymer is shown in Scheme 1.\(^{16}\) In the IR spectra (with KBr disc) of the polymer, \(N-H\) stretching vibrations, which are expected to appear in the 3200–3400 cm\(^{-1}\) range, are not distinguished clearly due to superposition of the broad \(O-H\) stretching bands at the same frequencies. The band observed at 1580 cm\(^{-1}\) can be attributed to \(N-H\) plane bending vibrations.

Swelling characteristics of the polymer have similarities with those of polyelectrolyte gels. Being a cationic hydrogel, in acid conditions, polymer segments tend to expand due to increasing ionization. This factor is important in affecting the rate of regeneration, because, during the regeneration by acid treatment, expansion of the polymer segments may provide fast decomplexation, although diffusion of the desorbing metal ions from the swollen structure becomes difficult. For this reason, polymers, whose swelling rates do not change so much in different pHs, must be preferred to conduct the regeneration at reliable rates. Actually, we didn't study optimization of the rates of metal desorptions. However, in our case, the percentage difference of the swelling ratios at pHs 2 and 5.5 is about 6% (Fig. 1) and not so much.

Figure 3 pH dependence of the metal sorptions of the resin.
and 3.5–4 for Cu(II), Ni(II), and Co(II) ions. This result generally establishes the above assumption. As a consequence, formation of tris chelates is prohibited by steric factors, and the most plausible types of metal complexation must be (a), (c), or (e) in Scheme 2.

But the situation still remains quite complicated due to the different behavior of metal ions. For instance, Fe(III) and Cr(III) precipitate, as Fe(OH)₃ and Cr(OH)₃, respectively, in the presence of ethylenediamine in water, so interaction with Fe(III) may run in accordance with Scheme 2(e). But in the case of Cu(II), both types of interaction are possible because, with ethylenediamine, Cu(II) forms both Cu(OH)₂ and Cu(en)(OH)₂, depending on the concentration of ethylenediamine, so chelation of Cu(II) with the polymeric ligand may be as shown in Scheme 2(b) or 2(e). In general, metal uptakes occur by chelate formation or precipitation of metal hydroxides on the surface of polymer particles.

Kinetic experiments indicate that metal sorptions are reasonably fast and that equilibria establish within 30–35 min at pH 4.3 (Fig. 2).

Regarding pH-dependent metal sorptions (Fig. 3), it can be deduced that it is not possible to separate any metal ion from the mixtures selectively, and the amounts of sorbed metal ions increase with increasing pH.

Metal Sorption Characteristics

All the amino groups in the crosslinked polymer do not participate in complexation with metal ions. Inevitably, some portion of amines remains unreacted. To represent the intrinsic activity of the polymer, we have introduced a new quantity, “accessible amine content.” This can be found by treating the polymer sample with excess HCl solution and back-titration of the excess acid with NaOH solution.

In our case, accessible amine content was found to be 11.4 (mmol/g dry resin). This corresponds to 67.7% of the theoretical amine content.

In ideal conditions, four or six amino groups may coordinate with one metal ion to give planar, tetrahedral, or octahedral complexes. With the ligands in crosslinked polymers, to attain such high coordinations is quite difficult due to restriction of the chains’ flexibilities. In our case, for true coordination, at least two amino groups must coordinate with one metal ion. Once a metal ion attaches to one of the amino groups, the neighboring amino group in the 1,2-diaminoethane unit must also be involved in coordination for formation of a stable five-membered chelate.

Maximum loading experiments (Table I) indicate that accessible amine content/metal ion ratios are about 2 : 1 for Fe(III) and Cr(III) ions.

Anion Binding Ability of the Polymer

The most important feature of the polymer is its anion binding ability. This fact has already been known from the complex-forming behavior of ethylenediamine, which is the monomeric analogue of the polymer. By a series of experiments, we have clearly demonstrated that Cl⁻, SO₄²⁻, and NO₃⁻ anions are bonded to the polymer at high levels, as shown in the Table II.

These experiments were deliberately carried out without using buffer solutions to avoid probable interferences arising from the buffer compo-

<table>
<thead>
<tr>
<th>Metal Salts Used</th>
<th>Anion</th>
<th>PH of the Mixture</th>
<th>Sorbed Anion (mmol/g Resin)</th>
<th>Accompanying Cation (mmol/g Resin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuCl₂·6H₂O</td>
<td>Cl⁻</td>
<td>5.1</td>
<td>10.0</td>
<td>5.1</td>
</tr>
<tr>
<td>NiSO₄</td>
<td>SO₄²⁻</td>
<td>6.2</td>
<td>4.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Cd(NO₃)₂</td>
<td>NO₃⁻</td>
<td>4.7</td>
<td>6.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Cd(CH₃COO)₂</td>
<td>CH₃COO⁻</td>
<td>4.6</td>
<td>6.7</td>
<td>3.5</td>
</tr>
</tbody>
</table>
REMOVAL OF TRANSITION METAL CATIONS

components because anions of the buffer especially may be competitive in the sorption of anions.

Comparing the sorbed anion contents with accompanying metal cations, their ratios are almost the same as in their free salts, at least for the anions studied.

Recovery of the Metal Ions and Regeneration of the Polymer

The metal ions were eluted and recovered by leaching with 1M HCl solutions. This process provides decomplexation of metal ions sorbed. With the exception of Cd(II), decomplexations are visually followed by disappearance of their characteristic colors, and the aqueous solutions become colored. However, within 30 min, we observed that polymer particles remain colored, which means incomplete decomplexation. Indeed, metal contents of the resulting acid solutions are 10–40% of the sorbed amounts. To speed up, the decomplexation, we also used more concentrated acid (5M) solutions. However, the effect was reversed in the cases for Fe(III) and Cr(III) ions. This can be ascribed to anionic complex forming ability of Cr(III) ions, which can be bonded to amonium cations as complex salts.\(^\text{16}\) We found that a suitable way of desorption is to repeat the leaching by acids in moderate concentrations (1M).

CONCLUSION

The crosslinked polymer presented has high metal-uptake abilities. Being an all amine-ligating polymer, it sorbs metal ions by forming cationic complexes, which carry counteranions for CuCl\(_2\), Cd(NO\(_3\))\(_2\), Cd(CH\(_3\)COO)\(_2\), and NiSO\(_4\) salts.

Being also an anion binder, this polymer provides a means of complete removal of some transition metal salts from aqueous solutions. Hydrophilicity of the structure does not change during complexation, due to formation of charged metal complexes, and this causes high metal uptakes.

Although we did not recycle the used polymer more than three times, hydrolytic stability of simple aliphatic amines implies that the polymer can be recycled many times without losing its original activity.

As a consequence, due to its anion binding ability, this material is superior to classical ion exchangers and might be of interest for water purification.

REFERENCES