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Abstract

In this paper, a novel orthogonal frequency division multiplexing (OFDM) scheme, called OFDM

with index modulation (OFDM-IM), is proposed for operation over frequency-selective and rapidly

time-varying fading channels. In this scheme, the information is conveyed not only by M -ary signal

constellations as in classical OFDM, but also by the indices of the subcarriers, which are activated

according to the incoming bit stream. Different low complexity transceiver structures based on maximum

likelihood detection or log-likelihood ratio calculation are proposed and a theoretical error performance

analysis is provided for the new scheme operating under ideal channel conditions. Then, the proposed

scheme is adapted to realistic channel conditions such as imperfect channel state information and very

high mobility cases by modifying the receiver structure. The approximate pairwise error probability

of OFDM-IM is derived under channel estimation errors. For the mobility case, several interference

unaware/aware detection methods are proposed for the new scheme. It is shown via computer simulations

that the proposed scheme achieves significantly better error performance than classical OFDM due to

the information bits carried by the indices of OFDM subcarriers under both ideal and realistic channel

conditions.
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I. INTRODUCTION

Multicarrier transmission has become a key technology for wideband digital communications in recent

years and has been included in many wireless standards to satisfy the increasing demand for high rate

communication systems operating on frequency selective fading channels. Orthogonal frequency division

multiplexing (OFDM), which can effectively combat the intersymbol symbol interference caused by

the frequency selectivity of the wireless channel, has been the most popular multicarrier transmission

technique in wireless communications and has become an integral part of IEEE 802.16 standards, namely

Mobile Worldwide Interoperability Microwave Systems for Next-Generation Wireless Communication

Systems (WiMAX) and the Long Term Evolution (LTE) project.

In frequency selective fading channels with mobile terminals reaching high vehicular speeds, the sub-

channel orthogonality is lost due to rapid variation of the wireless channel during the transmission of the

OFDM block, and this leads to inter-channel interference (ICI) which affects the system implementation

and performance considerably. Consequently, the design of OFDM systems that work effectively under

high mobility conditions, is a challenging problem since mobility support is one of the key features

of next generation broadband wireless communication systems. Recently, the channel estimation and

equalization problems have been comprehensively studied in the literature for high mobility [1], [2].

Multiple-input multiple-output (MIMO) transmission techniques have been also implemented in many

practical applications, due to their benefits over single antenna systems. More recently, a novel concept

known as spatial modulation (SM), which uses the spatial domain to convey information in addition

to the classical signal constellations, has emerged as a promising MIMO transmission technique [3]–

[5]. The SM technique has been proposed as an alternative to existing MIMO transmission strategies

such as Vertical Bell Laboratories Layered Space-Time (V-BLAST) and space-time coding which are

widely used in today’s wireless standards. The fundamental principle of SM is an extension of two

dimensional signal constellations (such as M -ary phase shift keying (M -PSK) and M -ary quadrature

amplitude modulation (M -QAM), where M is the constellation size) to a new third dimension, which

is the spatial (antenna) dimension. Therefore, in the SM scheme, the information is conveyed both by

the amplitude/phase modulation techniques and by the selection of antenna indices. The SM principle

has attracted considerable recent attention from researchers and several different SM-like transmission

methods have been proposed and their performance analyses are given under perfect and imperfect channel

state information (CSI) in recent works [6]–[11].

The application of the SM principle to the subcarriers of an OFDM system has been proposed in [12].
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However, in this scheme, the number of active OFDM subcarriers varies for each OFDM block, and

furthermore, a kind of perfect feedforward is assumed from the transmitter to the receiver via the excess

subcarriers to explicitly signal the mapping method for the subcarrier index selecting bits. Therefore,

this scheme appears to be quite optimistic in terms of practical implementation. An enhanced subcarier

index modulation OFDM (ESIM-OFDM) scheme has been proposed in [13] which can operate without

requiring feedforward signaling from the transmitter to the receiver. However, this scheme requires higher

order modulations to reach the same spectral efficiency as that of classical OFDM.

In this paper, taking a different approach from those in [12] and [13], we propose a novel transmission

scheme called OFDM with index modulation (OFDM-IM) for frequency selective fading channels. In

this scheme, information is conveyed not only by M -ary signal constellations as in classical OFDM, but

also by the indices of the subcarriers, which are activated according to the incoming information bits.

Unlike the scheme of [12], feedforward signaling from transmitter to the receiver is not required in our

scheme in order to successfully detect the transmitted information bits. Opposite to the scheme of [13],

a general method, by which the number of active subcarriers can be adjusted, and the incoming bits can

be systematically mapped to these active subcarriers, is presented in the OFDM-IM scheme. Different

mapping and detection techniques are proposed for the new scheme. First, a simple look-up table is

implemented to map the incoming information bits to the subcarrier indices and a maximum likelihood

(ML) detector is employed at the receiver. Then, in order to cope with the increasing encoder/decoder

complexity with the increasing number of information bits transmitted in the spatial domain of the

OFDM block, a simple yet effective technique based on combinatorial number theory is used to map

the information bits to the antenna indices, and a log-likelihood ratio (LLR) detector is employed at the

receiver to determine the most likely active subcarriers as well as corresponding constellation symbols. A

theoretical error performance analysis based on pairwise error probability (PEP) calculation is provided

for the new scheme operating under ideal channel conditions.

In the second part of the paper, the proposed scheme is investigated under realistic channel conditions.

First, an upper bound on the PEP of the proposed scheme is derived under channel estimation errors in

which a mismatched ML detector is used for data detection. Second, the proposed scheme is substantially

modified to operate under channel conditions in which the mobile terminals can reach high mobility.

Considering a special structure of the channel matrix for the high mobility case, three novel ML detection

based detectors, which can be classified as interference unaware or aware, are proposed for the OFDM-IM

scheme. In addition to these detectors, a minimum mean square error (MMSE) detector, which operates in

conjunction with an LLR detector, is proposed. The new scheme detects the higher number of transmitted
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information bits successfully in the spatial domain.

The main advantages of OFDM-IM over classical OFDM and ESIM-OFDM can be summarized as

follows

• The proposed scheme benefits from the frequency selectivity of the channel by exploiting subcarrier

indices as a source of information. Therefore, the error performance of the OFDM-IM scheme is

significantly better than that of classical OFDM due to the higher diversity orders attained for the bits

transmitted in the spatial domain of the OFDM block mainly provided by the frequency selectivity

of the channel. This fact is also validated by computer simulations under ideal and realistic channel

conditions.

• Unlike the ESIM-OFDM scheme, in which the number of active subcarriers is fixed, the OFDM-IM

scheme provides an interesting trade-off between complexity, spectral efficiency and performance by

the change of the number of active subcarriers. Furthermore, in some cases, the spectral efficiency

of the OFDM-IM scheme can exceed that of classical OFDM without increasing the size of the

signal constellation by properly choosing the number of active subcarriers.

The rest of the paper can be summarized as follows. In Section II, the system model of OFDM-IM is

presented. In Section III, we propose different implementation approaches for OFDM-IM. The theoretical

error performance of OFDM-IM is investigated in Section IV. In Section V, we present new detection

methods for the OFDM-IM scheme operating under realistic channel conditions. Computer simulation

results are given in Section VI. Finally, Section VII concludes the paper.

Notation: Bold, lowercase and capital letters are used for column vectors and matrices, respectively. (·)T and (·)H

denote transposition and Hermitian transposition, respectively. det (A) and rank (A) denote the determinant and

rank of A, respectively. λi (A) is the ith eigenvalue of A, where λ1 (A) is the largest eigenvalue. Ã = A (a :b, c :d)

is a submatrix of A with dimensions (b− a+ 1)× (d− c+ 1), where Ã is composed of the rows and columns of

A with indices a, a+1, . . . , b and c, c+1, . . . , d, respectively. IN×N and 0N1×N2
are the identity and zero matrices

with dimensions N×N and N1×N2, respectively. ‖·‖F stands for the Frobenius norm. The probability of an event

is denoted by P (·) and E {·} stands for expectation. The probability density function (p.d.f.) of a random vector x

is denoted by f (x). X ∼ CN
(
0, σ2

X

)
represents the distribution of a circularly symmetric complex Gaussian r.v.

X with variance σ2
X . Q (·) denotes the tail probability of the standard Gaussian distribution. C (n, k) denotes the

binomial coefficient and b·c is the floor function. S denotes the complex signal constellation of size M .
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II. SYSTEM MODEL OF OFDM-IM

Let us first consider an OFDM-IM scheme operating over a frequency-selective Rayleigh fading

channel. A total of m information bits enter the OFDM-IM transmitter for the transmission of each

OFDM block. These m bits are then split into g groups each containing p bits, i.e., m = pg. Each

group of p-bits is mapped to an OFDM subblock of length n, where n = N/g and N is the number

of OFDM subcarriers, i.e., the size of the fast Fourier transform (FFT). Unlike classical OFDM, this

mapping operation is not only performed by means of the modulated symbols, but also by the indices of

the subcarriers. Inspired by the SM concept, additional information bits are transmitted by a subset of

the OFDM subcarrier indices. For each subblock, only k out of n available indices are employed for this

purpose and they are determined by a selection procedure from a predefined set of active indices, based

on the first p1 bits of the incoming p-bit sequence. This selection procedure is implemented by using

two different mapping techniques in the proposed scheme. First, a simple look-up table, which provides

active indices for corresponding bits, is considered for mapping operation. However, for larger numbers

of information bits transmitted in the index domain of the OFDM block, the use of a look-up table

becomes infeasible; therefore, a simple and effective technique based on combinatorial number theory is

used to map the information bits to the subcarrier indices. Further details can be found in Sec. III. We set

the symbols corresponding to the inactive subcarriers to zero, and therefore, we do not transmit data with

them. The remaining p2 = k log2M bits of this sequence are mapped onto the M -ary signal constellation

to determine the data symbols that modulate the subcarriers having active indices; therefore, we have

p = p1 + p2. In other words, in the OFDM-IM scheme, the information is conveyed by both of the

M -ary constellation symbols and the indices of the subcarriers that are modulated by these constellation

symbols. Due to the fact that we do not use all of the available subcarriers, we compensate for the loss

in the total number of transmitted bits by transmitting additional bits in the index domain of the OFDM

block.

The block diagram of the OFDM-IM transmitter is given in Fig. 1. For each subblock β, the incoming

p1 bits are transferred to the index selector, which chooses k active indices out of n available indices,

where the selected indices are given by

Iβ = {iβ,1, . . . , iβ,k} (1)

where iβ,γ ∈ [1, . . . , n] for β = 1, . . . , g and γ = 1, . . . , k. Therefore, for the total number of information
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Fig. 1. Block Diagram of the OFDM-IM Transmitter

bits carried by the positions of the active indices in the OFDM block, we have

m1 = p1g = blog2 (C (n, k))cg. (2)

In other words, Iβ has c = 2p1 possible realizations. On the other hand, the total number of information

bits carried by the M -ary signal constellation symbols is given by

m2 = p2g = k (log2 (M)) g (3)

since the total number of active subcarriers is K = kg in our scheme. Consequently, a total of m =

m1 +m2 bits are transmitted by a single block of the OFDM-IM scheme. The vector of the modulated

symbols at the output of the M -ary mapper (modulator), which carries p2 bits, is given by

sβ =
[
sβ (1) . . . sβ (k)

]
(4)

where sβ (γ) ∈ S, β = 1, . . . , g, γ = 1, . . . , k. We assume that E{sβsHβ } = k, i.e., the signal constellation

is normalized to have unit average power. The OFDM block creator creates all of the subblocks by taking
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into account Iβ and sβ for all β first and it then forms the N × 1 main OFDM block

xF =
[
x (1) x (2) · · · x (N)

]T
(5)

where x (α) ∈ {0,S} , α = 1, . . . , N , by concatenating these g subblocks. Unlike the classical OFDM,

in our scheme xF contains some zero terms whose positions carry information.

After this point, the same procedures as those of classical OFDM are applied. The OFDM block is

processed by the inverse FFT (IFFT) algorithm:

xT =
N√
K

IFFT {xF } =
1√
K

WH
NxF (6)

where xT is the time domain OFDM block, WN is the discrete Fourier transform (DFT) matrix with

WH
NWN = NIN and the term N/

√
K is used for the normalization E

{
xHT xT

}
= N (at the receiver,

the FFT demodulator employs a normalization factor of
√
K/N ). At the output of the IFFT, a cyclic

prefix (CP) of length L samples
[
X (N − L+ 1) · · · X (N − 1) X (N)

]T
is appended to the beginning

of the OFDM block. After parallel to serial (P/S) and digital-to-analog conversion, the signal is sent

through a frequency-selective Rayleigh fading channel which can be represented by the channel impulse

response (CIR) coefficients

hT =
[
hT (1) ... hT (ν)

]T
(7)

where hT (σ) , σ = 1, ..., ν are circularly symmetric complex Gaussian random variables with the CN
(
0, 1ν

)
distribution. Assuming that the channel remains constant during the transmission of an OFDM block and

the CP length L is larger than ν, the equivalent frequency domain input-output relationship of the OFDM

scheme is given by

yF (α) = x (α)hF (α) + wF (α) , α = 1, . . . , N (8)

where yF (α), hF (α) and wF (α) are the received signals, the channel fading coefficients and the noise

samples in the frequency domain, whose vector presentations are given as yF , hF and wF , respectively.

The distributions of hF (α) and wF (α) are CN (0, 1) and CN (0, N0,F ), respectively, where N0,F is the

noise variance in the frequency domain, which is related by the noise variance in the time domain by

N0,F = (K/N)N0,T . (9)

We define the signal-to-noise ratio (SNR) as ρ = Eb/N0,T where Eb = (N + L) /m is the average trans-

mitted energy per bit. The spectral efficiency of the OFDM-IM scheme is given by m/ (N + L) [bits/s/Hz].

August 22, 2013 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

The receiver’s task is to detect the indices of the active subcarriers and the corresponding information

symbols by processing yF (α) , α = 1, . . . , N . Unlike classical OFDM, a simple ML decision on x (α) is

not sufficient based on yF (α) only in our scheme due to the index information carried by the OFDM-IM

subblocks. In the following, we investigate two different types of detection algorithms for the OFDM-IM

scheme:

i) ML Detector: The ML detector considers all possible subblock realizations by searching for all

possible subcarrier index combinations and the signal constellation points in order to make a joint decision

on the active indices and the constellation symbols for each subblock by minimizing the following metric:

(
Îβ, ŝβ

)
= arg min

Iβ ,sβ

k∑
γ=1

∣∣∣yβF (iβ,γ)− hβF (iβ,γ) sβ (γ)
∣∣∣2 (10)

where yβF (ξ) and hβF (ξ) for ξ = 1, . . . , n are the received signals and the corresponding fading coefficients

for the subblock β, i.e., yβF (ξ) = yF (n (β − 1) + ξ), hβF (ξ) = hF (n (β − 1) + ξ), respectively. It can

be easily shown that the total computational complexity of the ML detector in (10), in terms of complex

multiplications, is ∼ O
(
cMk

)
per subblock since Iβ and sβ have c and Mk different realizations,

respectively. Therefore, this ML detector becomes impractical for larger values of c and k due to its

exponentially growing decoding complexity.

ii) Log-likelihood Ratio (LLR) Detector: The LLR detector of the OFDM-IM scheme provides the

logarithm of the ratio of a posteriori probabilities of the frequency domain symbols by considering the

fact that their values can be either non-zero or zero. This ratio, which is given below, gives information

on the active status of the corresponding index for α = 1, . . . , N :

λ (α) = ln

∑M
χ=1 P (x (α) = sχ | yF (α))

P (x (α) = 0 | yF (α))
(11)

where sχ ∈ S. In other words, a larger λ (α) value means it is more probable that index α is selected

by the index selector at the transmitter, i.e., it is active. Using Bayes’ formula and considering that∑M
χ=1 p (x (α) = sχ) = k/n and p (x (α) = 0) = (n− k)/n, (11) can be expressed as

λ (α) = ln (k)− ln (n− k) +

∣∣yF (α)
∣∣2

N0,F

+ ln

 M∑
χ=1

exp

(
− 1

N0,F

∣∣yF (α)− hF (α) sχ
∣∣2) . (12)

The computational complexity of the LLR detector in (12), in terms of complex multiplications, is
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∼ O (M) per subcarrier, which is the same as that of the classical OFDM detector. In order to prevent

numerical overflow, the Jacobian logarithm [14] can be used in (12). As an example, for k = n/2 and

binary-phase shift keying (BPSK) modulation, (12) simplifies to

λ (α) = max (a, b) + ln
(
1 + exp (− |b− a|)

)
+

∣∣yF (α)
∣∣2

N0,F
(13)

where a− |yF (α)− hF (α)|2 /N0,F and b = − |yF (α) + hF (α)|2 /N0,F .

For higher order modulations, to prevent numerical overflow we use the identity ln (ea1 + ea2 + · · ·+ eaM ) =

fmax(fmax(. . . fmax(fmax(a1, a2), a3), . . .), aM ), where fmax (a, b) = ln (ea1 + ea2) = max (a1, a2) +

ln
(
1 + e−|a1−a2|

)
. After calculation of the N LLR values, for each subblock, the receiver decides on k

active indices out of them having maximum LLR values. This detector is classified as near-ML since the

receiver does not know the possible values of Iβ . Although this is a desired feature for higher values

of n and k, the detector may decide on a catastrophic set of active indices which is not included in Iβ

since C (n, k) > c for k > 1, and C (n, k)− c index combinations are unused at the transmitter.

After detection of the active indices by one of the detectors presented above, the information is passed

to the ”index demapper”, at the receiver which performs the opposite action of the ”index selector” block

given in Fig. 1, to provide an estimate of the index-selecting p1 bits. Demodulation of the constellation

symbols is straightforward once the active indices are determined.

III. IMPLEMENTATION OF THE OFDM-IM SCHEME

In this subsection, we focus on the index selector and index demapper blocks and provide different

implementations of them. As stated in Section II, the index selector block maps the incoming bits to a

combination of active indices out of C (n, k) possible candidates, and the task of the index demapper is

to provide an estimate of these bits by processing the detected active indices provided by either the ML

or LLR OFDM-IM detector.

It is worth mentioning that the OFDM-IM scheme can be implemented without using a bit splitter

at the beginning, i.e., by using a single group (g = 1) which results in n = N . However, in this

case, C (n, k) can take very large values which make the implementation of the overall system difficult.

Therefore, instead of dealing with a single OFDM block with higher dimensions, we split this block

into smaller subblocks to ease the index selection and detection processes at the transmitter and receiver

sides, respectively. The following mappers are proposed for the new scheme:
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TABLE I
A LOOK-UP TABLE EXAMPLE FOR n = 4, k = 2 AND p1 = 2

Bits Indices subblocks

[0 0] {1, 2}
[
sχ sζ 0 0

]T
[0 1] {2, 3}

[
0 sχ sζ 0

]T
[1 0] {3, 4}

[
0 0 sχ sζ

]T
[1 1] {1, 4}

[
sχ 0 0 sζ

]T
i) Look-up Table Method: In this mapping method, a look-up table of size c is created to use at both

transmitter and receiver sides. At the transmitter, the look-up table provides the corresponding indices for

the incoming p1 bits for each subblock, and it performs the opposite operation at the receiver. A look-up

table example is presented in Table I for n = 4, k = 2, and c = 4, where sχ, sζ ∈ S. Since C (4, 2) = 6,

two combinations out of six are discarded. Although a very efficient and simple method for smaller c

values, this mapping method is not feasible for higher values of n and k due to the size of the table. We

employ this method with the ML detector since the receiver has to know the set of possible indices for

ML decoding, i.e., it requires a look-up table. On the other hand, a look-up table cannot be used with the

LLR detector presented in Section II since the receiver cannot decide on active indices if the detected

indices do not exist in the table.

We give the following remark regarding the implementation of the OFDM-IM scheme with a reduced-

complexity ML decoding.

Remark: The exponentially growing decoding complexity of the actual ML decoder can be reduced

by using a special LLR detector that operates in conjunction with a look-up table. Let us denote the

set of possible active indices by I =
{
I1β, . . . , I

c
β

}
for which Iwβ ∈ I, where Iωβ =

{
iωβ,1, . . . , i

ω
β,k

}
for ω = 1, . . . , c. As an example, for the look-up table given in Table I, we have I1β = {1, 2} , I2β =

{2, 3} , I3β = {3, 4} , I4β = {1, 4}. After the calculation of all LLR values using (12), for each subblock

β, the receiver can calculate the following c LLR sums for all possible set of active indices using the

corresponding look-up table as

dωβ =

k∑
γ=1

λ
(
n (β − 1) + iωβ,γ

)
(14)

for w = 1, . . . , c. Considering Table I, for the first subblock (β = 1) we have d1β = λ (1) + λ (2),

d2β = λ (2) + λ (3), d3β = λ (3) + λ (4), and d4β = λ (1) + λ (4). After calculation of c LLR sums for

each subblock, the receiver makes a decision on the set of active indices by choosing the set with the

maximum LLR sum, i.e., ω̂ = arg max
ω

dωβ and obtains the corresponding set of indices, and finally
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detects the corresponding M -ary constellation symbols. As we will show in the sequel, our simulation

results indicate that this reduced-complexity ML decoder exhibits the same BER performance as that of

the actual ML detector presented in Section II with higher decoding complexity. On the other hand, for

the cases where a look-up table is not feasible, the actual LLR decoder of the OFDM-IM scheme can

be implemented by the following method.

ii) Combinatorial Method: The combinational number system provides a one-to-one mapping between

natural numbers and k-combinations, for all n and k [15], [16], i.e., it maps a natural number to a strictly

decreasing sequence J = {ck, . . . , c1}, where ck > · · · > c1 ≥ 0. In other words, for fixed n and k, all

Z ∈ [0, C (n, k)− 1] can be presented by a sequence J of length k, which takes elements from the set

{0, . . . , n− 1} according to the following equation:

Z = C (ck, k) + · · ·+ C (c2, 2) + C (c1, 1) . (15)

As an example, for n = 8, k = 4, C (8, 4) = 70, the following J sequences can be calculated:

69 = C (7, 4)+C (6, 3)+C (5, 2)+C (4, 1)→ J={7, 6, 5, 4}

68 = C (7, 4)+C (6, 3)+C (5, 2)+C (3, 1)→ J={7, 6, 5, 3}
...

32 = C (6, 4)+C (5, 3)+C (4, 2)+C (1, 1)→ J={6, 5, 4, 1}

31 = C (6, 4)+C (5, 3)+C (4, 2)+C (0, 1)→ J={6, 5, 4, 0}
...

1 = C (4, 4)+C (2, 3)+C (1, 2)+C (0, 1)→ J={4, 2, 1, 0}

0 = C (3, 4)+C (2, 3)+C (1, 2)+C (0, 1)→ J={3, 2, 1, 0}.

The algorithm, which finds the lexicographically ordered J sequences for all n, can be explained as

follows: start by choosing the maximal ck that satisfies C(ck, k) ≤ Z, and then choose the maximal

ck−1 that satisfies C(ck−1, k− 1) ≤ Z −C(ck, k) and so on [16]. In our scheme, for each subblock, we

first convert the p1 bits entering the index selector to a decimal number Z, and then feed this decimal

number to the combinatorial algorithm to select the active indices as J + 1. At the receiver side, after

determining active indices, we can easily get back to the decimal number Ẑ using (15). This number

is then applied to a p1-bit decimal-to-binary converter. We employ this method with the LLR detector
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for higher c values to avoid look-up tables. However, it can give a catastrophic result at the exit of the

decimal-to-binary converter if Ẑ ≥ c; nevertheless, we use this detector for higher bit-rates.

IV. PERFORMANCE ANALYSIS OF THE OFDM-IM SCHEME

In this section, we analytically evaluate the average bit error probability (ABEP) of the OFDM-IM

scheme using the ML decoder with a look-up table.

The channel coefficients in the frequency domain are related to the coefficients in the time domain by

hF = WNh
0
T (16)

where h0
T is the zero-padded version of the vector hT with length N , i.e.,

h0
T =

[
hT (1) ... hT (ν) 0 ... 0

]T
. (17)

It can easily be shown that hF (α) , α = 1, . . . , N , follows the distribution CN (0, 1), since taking the

Fourier transform of a Gaussian vector gives another Gaussian vector. However, the elements of hF are

no longer uncorrelated. The correlation matrix of hF is given as

K = E
{
hFh

H
F

}
= WNE

{
h0
Th

0
T
H
}
WH

N = WH
N ĨWN (18)

where

Ĩ =

 1
ν Iν×ν 0ν×(N−ν)

0(N−ν)×ν 0(N−ν)×(N−ν)


N×N

(19)

is an all-zero matrix except for its first ν diagonal elements which are all equal to 1
ν . It should be noted

that K becomes a diagonal matrix if ν = N , which is very unlikely for a practical OFDM scheme.

Nevertheless, since K is a Hermitian Toeplitz matrix, the PEP events within different subblocks are

identical, and it is sufficient to investigate the PEP events within a single subblock to determine the

overall system performance. Without loss of generality, we can choose the first subblock, and introduce

the following matrix notation for the input-output relationship in the frequency domain:

y = Xh + w (20)

where y =
[
yF (1) · · · yF (n)

]T
, X is an n × n all-zero matrix except for its main diagonal elements

denoted by x (1) , . . . , x (n), h =
[
hF (1) · · ·hF (n)

]T
and w =

[
wF (1) · · ·wF (n)

]T
. Let us define

Kn = E
{
hhH

}
. In fact, this is an n× n submatrix centered along the main diagonal of the matrix K.
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Thus it is valid for all subblocks. If X is transmitted and it is erroneously detected as X̂, the receiver

can make decision errors on both active indices and constellation symbols. The well-known conditional

pairwise error probability (CPEP) expression for the model in (20) is given as [17]

P
(
X→ X̂

∣∣∣h) = Q

(√
δ/ (2N0,F )

)
(21)

where δ =
∥∥(X − X̂

)
h
∥∥2
F

= hHAh and A =
(
X − X̂

)H(
X − X̂

)
. We can approximate Q (x) quite

well using [18]

Q (x) ∼=
1

12
e−x

2/2 +
1

4
e−2x

2/3. (22)

Thus, the unconditional PEP (UPEP) of the OFDM-IM scheme can be obtained by

P
(
X→ X̂

)
∼= Eh

{
1

12
exp (−q1δ) +

1

4
exp (−q2δ)

}
(23)

where q1 = 1/ (4N0,F ) and q2 = 1/ (3N0,F ). Let r1 = rank (Kn). Since r1 < n for our scheme, we use

the spectral theorem [19] to calculate the expectation above on defining Kn = QDQH and h = Qu,

where E
{
uuH

}
= D is an r1 × r1 diagonal matrix. Considering δ = uHQHAQu and the p.d.f. of u

given by

f (u) =
π−r1

det (D)
exp

(
−uHD−1u

)
(24)

the UPEP can be calculated as

P
(
X→ X̂

)
∼=

π−r1

12 det (D)

∫
u

exp
(
−uH

[
D−1 + q1Q

HAQ
]
u
)
du

+
π−r1

4 det (D)

∫
u

exp
(
−uH

[
D−1 + q2Q

HAQ
]
u
)
du (25)

=
1/12

det (Ir1 + q1DQHAQ)
+

1/4

det (Ir1 + q2DQHAQ)
(26)

=
1/12

det (In + q1QDQHA)
+

1/4

det (In + q2QDQHA)
(27)

=
1/12

det (In + q1KnA)
+

1/4

det (In + q2KnA)
(28)

where (25) and (26) are related via (24), and (27) is obtained from the identity

det (Ir1 + MN) = det (In + NM) (29)
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where the dimensions of M and N are r1 × n and n× r1, respectively. We have the following remarks:

Remark 1 (Diversity order of the system): Let us define Ai = In+qiKnA = In+qiB for i = 1, 2. Since

det (Ai) =
∏n

ξ=1
λξ (Ai) =

∏r

ξ=1
(1 + qiλξ (B)) (30)

where r = rank (B), for high SNR values (qi � 1), we can rewrite (28) as

P
(
X→ X̂

)
w
(

12qr1

r∏
ξ=1

λξ (B)
)−1

+
(

4qr2

r∏
ξ=1

λξ (B)
)−1

. (31)

As seen from this result, the diversity order of the system is determined by r, which is upper bounded

according to the rank inequality [19] by r ≤ min {r1, r2}, where r2 = rank (A). On the other hand we

have min r2=1 when the receiver correctly detects all of the active indices and makes a single decision

error out of k M -ary symbols. It can be shown that r can take values from the interval [1, n].

Remark 2 (Effects of varying ν values): Keeping in mind that the diversity order of the system is

determined by the worst case PEP scenario when r2 = 1, we conclude that the distance spectrum

of the system improves by increasing the values of r1, which is a new phenomenon special to the

OFDM-IM concept as opposed to classical OFDM. As a secondary factor, considering the inequality∏r
t=1 λit (KnA) ≤

∏r
t=1 λit (Kn)λt (A) for the eigenvalues of the products of positive semidefinite

Hermitian matrices [20] where 1 ≤ i1 < · · · < ir ≤ r, we also conclude that the UPEP decreases with

increasing values of δ =
∏r1
t=1 λt (Kn). In Table II, for varying n and ν values, corresponding to the

r1 and δ values, are calculated for N = 128, where we assumed that λt (Kn) = 0 if λt (Kn) < 10−4.

As seen from Table II, r1 and δ values increase with increasing values of ν, i.e., increasing frequency

selectivity of the fading channel. However, although this a factor which improves the PEP distance

spectrum of the OFDM-IM scheme, it does not considerably affect the error performance for high SNR

values because the worst case PEP event with r2 = 1 dominates the system performance in the high SNR

regime. In other words, det (Ai) , i = 1, 2, does not change for different ν values when r2 = 1. We also

observe from Table II that r1 and δ values also increase with the increasing values of n; nevertheless, it

is not possible to make a fair comparison for this case because the spectral efficiency of the system also

increases (due to the increasing number of bits transmitted in the index domain) with increasing values

of n. On the other hand, we observe from Table II that the effect of the increasing ν values on the error

performance can be more explicit for larger n values in the low-to-mid SNR regime due to the larger

variation on r1 values.

Remark 3 (Improving the diversity order): To improve the diversity order of the system, we can by-pass
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TABLE II
r1 AND δ VALUES FOR N = 128 WITH VARYING n AND ν VALUES

n \ ν 4 7 10 13

4
2 2 3 3

0.0598 0.1883 0.0001 0.0005

8
3 3 3 4

0.0002 0.0086 0.0695 0.0001

16
3 4 5 5

0.1209 0.0038 0.00003 0.0037

32
4 5 6 7

0.1013 0.2506 0.2094 0.1065

←r1
←δ

the M -ary modulation by setting p = p1 and only transmit data via the indices of the active subcarriers

at the expense of reducing the bit rate, since we always guarantee r2 ≥ 2 in the absence of the symbol

errors.

Remark 4 (Generalization): Although the CPEP expression given in (21) and therefore, the main results

presented above are valid for ML detector of the OFDM-IM scheme, as we will show in the sequel, the

error performance of the near-ML LLR detector is almost identical as that of the ML detector; therefore,

without loss of generality, the presented results can be assumed to be valid for OFDM-IM schemes

employing LLR detectors.

After the evaluation of the UPEP from (28), the ABEP of the OFDM-IM can be evaluated by

Pb ≈
1

p nX

∑
X

∑
X̂

P
(
X→ X̂

)
e
(
X, X̂

)
(32)

where nX is the number of the possible realizations of X and e(X, X̂) represents the number of bit

errors for the corresponding pairwise error event.

V. OFDM-IM UNDER REALISTIC CHANNEL CONDITIONS

In this section, we analyze the OFDM-IM scheme under realistic channel conditions such as imperfect

CSI and very high mobility by providing analytical tools to determine the error performance and proposing

different implementation techniques.

A. OFDM-IM Under Channel Estimation Errors

In this subsection, we analyze the effects of channel estimation errors on the error performance of the

OFDM-IM scheme.
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In practical systems, the channel estimator at the receiver provides an estimate of the vector of the

channel coefficients h as [21]

h̃ = h + ε (33)

where ε represents the vector of channel estimation errors which is independent of h, and has the

covariance matrix E
{
εεH

}
= σ2ε In. In this work, we assume that N0,F and σ2ε are related via Q =

N0,F /σ
2
ε , i.e., the power of the estimation error decreases with increasing SNR. Under channel estimation

errors, the receiver uses the mismatched ML decoder by processing the received signal vector given by

(20) to detect the corresponding data vector as

X̂ = arg min
X

∥∥∥y −Xh̃
∥∥∥2 . (34)

In other words, the receiver uses the decision metric of the perfect CSI (P-CSI) case by simply replacing

h by h̃. For this case, (20) can be rewritten as

y = Xh̃ + X
(
h− h̃

)
+ w = Xh̃ + w̃, (35)

where w̃ , X
(
h− h̃

)
+w = −Xε+w. Considering (34) and (35), the CPEP of the OFDM-IM scheme

can be calculated as follows:

P
(
X→ X̂

∣∣∣h̃)
= P

(∥∥∥y −Xh̃
∥∥∥2 > ∥∥∥y − X̂h̃

∥∥∥2)
= P

(∥∥∥Xh̃
∥∥∥2 − ∥∥∥X̃h̃

∥∥∥2 − 2<
{
yH
(
X− X̂

)
h̃
}
> 0

)
= P

(
−
∥∥∥(X− X̂

)
h̃
∥∥∥2 − 2<

{
w̃H

(
X− X̂

)
h̃
}
> 0

)
= P (D > 0) . (36)

It can be shown that the decision variable D is Gaussian distributed with

E {D} = −
∥∥∥(X− X̂

)
h̃
∥∥∥2

V ar {D} = 2σ2ε

∥∥∥XH
(
X− X̂

)
h̃
∥∥∥2 + 2N0,F

∥∥∥(X− X̂
)
h̃
∥∥∥2
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which yields the following CPEP expression:

P
(
X→ X̂

∣∣∣h̃) =

Q


∥∥∥(X− X̂

)
h̃
∥∥∥2√

2σ2ε

∥∥∥XH
(
X− X̂

)
h̃
∥∥∥2 + 2N0,F

∥∥∥(X− X̂
)
h̃
∥∥∥2
 . (37)

In order to obtain the UPEP, the CPEP expression given in (37) should be averaged over the multivariate

complex Gaussian p.d.f. of h̃ which is given by [22]

f(h̃) =
π−n

det(K̃n)
exp

(
−h̃HK̃−1n h̃

)
. (38)

where K̃ = E
{
h̃h̃H

}
= Kn + σ2ε In and rank

(
K̃
)

= n. However, due to the complexity of (37), this

operation is not an easy task, therefore, we consider the following upper bound for the CPEP of the

OFDM-IM scheme:

P
(
X→ X̂

∣∣∣h̃) ≤ Q

√√√√∥∥(X− X̂

)
h̃
∥∥2

2σ2ε + 2N0,F

 (39)

which is obtained by using the inequality∥∥∥XH
(
X− X̂

)
h̃
∥∥∥2 ≤ ∥∥∥(X− X̂

)
h̃
∥∥∥2 (40)

where both inequalities hold if all active subcarrier indices have been correctly detected. In other words,

the actual CPEP expression given in (37) simplifies to the CPEP expression given in (39) for the error

events corresponding to the erroneous detection of only M -ary symbols in a given subblock which are

chosen from a constant envelope constellation as M -PSK since∥∥∥XH
(
X− X̂

)
h̃
∥∥∥2 =

n∑
i=1

∣∣∣xi (xi − x̂i) h̃i
∣∣∣2

∥∥∥(X− X̂
)
h̃
∥∥∥2 =

n∑
i=1

∣∣∣(xi − x̂i) h̃i∣∣∣2
where X = diag

([
x1 . . . xn

])
, X̂ = diag

([
x̂1 . . . x̂n

])
and h̃ =

[
h̃1 . . . h̃n

]
, and only k out of n

xi’s have non-zero values. Using (22) and (38), the UPEP upper bound of the OFDM-IM scheme with
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channel estimation errors can be calculated as follows:

P
(
X→X̂

)
≤ π−n

12 det
(
K̃n

)∫
h̃

exp
(
−h̃H

[
K̃−1n + q̃1A

]
h̃
)
dh̃

+
π−n

4 det
(
K̃n

) ∫
h̃

exp
(
−h̃H

[
K̃−1n + q̃2A

]
h̃
)
dh̃

=
1/12

det
(
In + q̃1K̃nA

) +
1/4

det
(
In + q̃2K̃nA

) (41)

where q̃1 = 1/
(
4σ2ε + 4N0,F

)
, q̃2 = 1/

(
3σ2ε + 3N0,F

)
and A =

(
X− X̂

)H(
X− X̂

)
. After calculation

of the UPEP, the ABEP of the OFDM-IM can be evaluated by using (32).

In order to obtain a different approximation to the actual UPEP, one can consider the UPEP in

the high-SNR regime in which the worst case error events and their multiplicities dominate the error

performance. Similar to the P-CSI case, according to (41), the diversity order of the system is determined

by rank
(
K̃nA

)
, which is upper bounded by rank (A) = 1, i.e., the system performance is dominated

by the error events corresponding to the erroneous detection of only M -ary symbols in a given subblock.

Therefore, for this type of error events the inequality given in (39) holds and the actual UPEP can be

evaluated by (41), and then the ABEP can be calculated by using (32) considering only the corresponding

worst case error events. On the other hand, the calculation of the UPEP for general M -ary signal

constellations is left for future work.

B. OFDM-IM Under Very High Mobility

It is well known that OFDM eliminates intersymbol interference and simply uses a one-tap equalizer to

compensate for multiplative channel distortion in quasi-static and frequency-selective channels. However,

in fading channels with very high mobilities, the time variation of the channel over one OFDM symbol

period results in a loss of subchannel orthogonality which leads to ICI. The received signal in the

frequency domain can be expressed as [23]

yF = GxF + wF (42)

where G = WNHWH
N which H the equivalent channel matrix in the time domain and WN the FFT

matrix, and it is no longer diagonal due to the ICI. Unlike the system model given in Section II, we

assume that some of the available subcarriers are not allocated for data tranmission, i.e., the OFDM block

is padded by zeros. In particular, we assume that the first and last Nzp/2 elements of the main OFDM

block are not used for data transmission, where Nzp is the size of the zero padding. Considering that
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the first and the last Nzp/2 elements of the main OFDM block have been padded with zeros, we define

the meaningful received signal vector, OFDM block and the channel matrix, respectively, as follows:

ỹF = yF (J ), x̃F = xF (J ), and G̃ = G (J ,J ), where J = Nzp
2 + 1:N − Nzp

2 .

Due to the structure of the modified channel matrix G given in (42), different OFDM subblocks interfere

with each other, unlike in the model of Section II; therefore, algorithms are required to detect the active

indices as well as the corresponding constellation symbols. MMSE equalization can be considered as an

efficient solution to the detection problem of (42) because the interference between the different OFDM

subblocks can be easily eliminated by MMSE equalization. However, as we will show in the sequel,

MMSE detection can diminish the effectiveness of the transmission of the additional bits in the spatial

domain by eliminating the effect of the channel matrix completely on the transmitted OFDM block. On

the other hand, considering the banded structure of the channel matrix G, different interference unaware

or aware detection algorithms can be implemented for the OFDM-IM scheme. In the following, we

propose different detection methods for the OFDM-IM scheme under mobility:

1) MMSE Detector: The MMSE detector chooses the matrix G̃H (called the equalizer matrix) that

minimizes the cost function E{| x̃F − G̃H ỹF |2}. The resulting detection statististic becomes

yMMSE = G̃H

(
G̃G̃H +

INav
ρF

)−1
ỹF (43)

where yMMSE is the MMSE equalized signal, ρF is the average SNR at the frequency domain, and

Nav = N −Nzp is the number of available subcarriers. After MMSE equalization, which eliminates the

ICI caused by the time selective channels with high mobility, one can consider either of the reduced-

complexity ML or LLR detectors to determine the active indices and corresponding constellation symbols

depending on the system configuration. As an example, for the case of the LLR decoder, (12) can be used

for detection with the assumption of hF (α) = 1 for all α due to the effect of the MMSE equalization.

For the reduced-complexity ML decoder, the calculated LLR values are used with the look-up table to

determine the corresponding LLR sums.

2) Submatrix Detector: This interference unaware detector assumes that G̃ ≈ G̃sub, where G̃sub has

the following structure:

G̃sub =


G̃1 0 · · · 0

0 G̃2
...

...
. . .

0 · · · G̃g

 (44)
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where G̃β = G̃ (nβ − n+ 1:nβ, nβ − n+ 1:nβ) is an n×n matrix that corresponds to the subblock β,

β = 1, . . . , g. In other words, this detector does not consider the interference between different subblocks.

Therefore, for each subblock, the receiver makes a joint decision on the active indices and the constellation

symbols by minimizing the following metric:

x̂βF = arg min
x̃βF

∥∥∥ỹβF − G̃βx̃
β
F

∥∥∥2
F

(45)

where ỹβF = ỹF (nβ − n+ 1:nβ) is the corresponding received signal vector of length n for OFDM-IM

subblock x̃βF = x̃F (nβ − n+ 1:nβ), which has cMk different realizations. Therefore, unlike the MMSE

detector, the decoding complexity of this detector grows exponentially with increasing values of k.

3) Block Cancellation Detector: The block cancellation detector applies the same procedures as those

of the submatrix detector; however, after the detection of x̃βF , this detector updates the received signal

vector by eliminating the interference of x̃βF from the remaining subblocks by

ỹF = ỹF − Ḡβx̂
β
F (46)

where Ḡβ = G̃ (1 :Nav, nβ − n+ 1:nβ). In other words, after the detection of x̃βF , its effect on the

received signal vector is totally eliminated by the update equation given by (46) under the assumption

that x̂βF = x̃βF .

3) SP Detector: The signal-power (SP) detector for the OFDM-IM scheme applies the same detection

and cancelation techniques as the block cancelation detector; however, first, it calculates the SP values

for all subblocks via

SPβ =
∥∥∥G̃β

∥∥∥2
F

(47)

and then sorts these SP values, starting from the subblock with the highest SP, and proceeding towards

the subblock with the lowest SP. In other words, the SP detector starts with the detection of the subblock

with the highest SP; after the detection of this subblock, it updates the received signal vector using (46)

and so on.

VI. SIMULATION RESULTS

In this section, we present simulation results for the OFDM-IM scheme with different configurations

and make comparisons with classical OFDM, ESIM-OFDM [13] and the ICI self-cancellation OFDM

scheme [24]. The BER performance of these schemes was evaluated via Monte Carlo simulations. In what

follows, we investigate the error performance of OFDM-IM under ideal and realistic channel conditions.
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Fig. 2. Comparison of ML, reduced complexity ML and LLR detectors for OFDM-IM with different configurations

A. Performance of OFDM-IM under Ideal Channel Conditions

In this subsection, we investigate the error performance of OFDM-IM in the presence of frequency

selective channels only as described in Section II. In all simulations, we assumed the following system

parameters: N = 128, ν = 10 and L = 16.

In Fig. 2, we compare the BER performance of the ML, the reduced-complexity ML and the LLR

detectors for OFDM-IM with the same system parameters for BPSK. As seen from the left hand side

of Fig. 2, for the n = 4, k = 2 scheme, the ML and reduced-complexity ML decoders exhibit exactly

the same BER performance, as expected. As mentioned previously, the reduced-complexity ML decoder

calculates the corresponding LLR sum values for each possible index combination from the predefined

look-up table and then decides on the most likely combination. On the right hand side of Fig. 2, we

compared the BER performance of two completely different n = 8, k = 4 OFDM-IM schemes. The

n = 8, k = 4 scheme, which uses a reduced complexity ML decoder, employs a look-up table of size 64,

composed of lexicographically ordered 4 combinations of 8. On the other hand, the n = 8, k = 4 scheme

with an LLR decoder, does not employ a look-up table, instead it uses the combinatorial method. As

seen from Fig. 2, interestingly, the LLR detector, which is actually a near-ML detector, achieves the same

BER performance as that of the ML detector. This can be attributed to the fact that the percentage of the

number of unused combinations (C (n, k)− c = 70− 64 = 6) out of the all possible index combinations

(C (n, k) = 70) is relatively low for n = 8, k = 4 selection (8.6%). Therefore, we conclude that it is not

very likely for the receiver to decide to a catastrophic set of active indices for this case. On the other
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Fig. 3. BER performance of OFDM-IM with different configurations, BPSK

hand, this percentage is equal to 36.3% and 10.7% for n = 16, k = 8 and n = 32, k = 16 OFDM-IM

schemes respectively. Note that, it is not possible to implement a look-up table, therefore an ML decoder,

for these schemes to make comparisons.

In Fig. 3, we compared the BER performance of different OFDM-IM schemes with classical OFDM

for BPSK. As seen from Fig. 3, at a BER value of 10−5 our new scheme with n = 4, k = 2

achieves approximately 6 dB better BER performance than classical OFDM operating at the same spectral

efficiency. This significant improvement in BER performance can be explained by the improved distance

spectrum of the OFDM-IM scheme, where higher diversity orders are obtained for the bits carried by

the active indices. For comparison, the theoretical curve obtained from (32) is also depicted on the same

figure for the n = 4, k = 2 scheme, which uses an ML decoder. As seen from Fig. 3, the theoretical

curve becomes very tight with the computer simulation curve as the SNR increases. For higher values of

n, we employ the combinatorial method for the index mapping and demapping operations with the LLR

decoder. We observe that despite their increased data rates, the OFDM-IM schemes with n = 8, k = 4

and n = 32, k = 16, exhibit BER performance close to the low-rate n = 4, k = 2 OFDM scheme.

This can be explained by the fact that for high SNR, the error performance of the OFDM-IM scheme

is dominated by the PEP events with r = 1 as we discussed in the Section IV. Finally we observe from

Fig. 3 that OFDM-IM achieves significantly better BER performance than classical OFDM at high SNR
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Fig. 4. The effect of varying ν values on BER performance for n = 4, k = 2 and n = 32, k = 16 OFDM-IM schemes

values due to the improved error performance of the bits transmitted in the index domain, which is more

effective at high SNR.

In Fig. 3, we also show the BER performance of the OFDM-IM scheme which does not employ M -ary

modulation (n = 32, k = 16, LLR, w/o M ), and relies on the transmission of data via subcarrier indices

only. As seen from Fig. 3, this scheme achieves a diversity order of two, as proved in Section IV, and

exhibits the best BER performance for high SNR values with a slight decrease in the spectral efficiency

compared to classical OFDM employing BPSK modulation.

In Fig. 4, we investigate the effect of varying fading channel tap lengths on the error performance of

the OFDM-IM schemes using BPSK with n = 4, k = 2 and n = 32, k = 16 in the light of our analysis

presented in Remark 2 of Section IV. As seen from this figure, increasing ν values create a separation in

BER performance especially in the mid SNR region, while the differences in error performance curves

become smaller in the high SNR region as expected, due to the identical worst case PEP events. On the

other hand, we observe that increasing ν values have a bigger effect on the BER performance for the

n = 32, k = 16 scheme due to the larger variation in r1 values of Table II for this configuration.

In Figs. 5-7, we compare the BER performance of the proposed scheme with classical OFDM and

ESIM-OFDM for three different spectral efficiency values (0.8889, 1.7778 and 2.6667 bits/s/Hz, re-

spectively). We consider ML and LLR detectors for ESIM-OFDM and OFDM-IM, respectively. As seen

from Figs. 5-7, the proposed scheme provides significant improvements in error performance compared to

ESIM-OFDM and OFDM operating at the same spectral efficiency. Furthermore, we observe that ESIM-
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Fig. 5. Performance of classical OFDM, ESIM-OFDM and OFDM-IM for 0.8889 bits/s/Hz
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Fig. 6. Performance of classical OFDM, ESIM-OFDM and OFDM-IM for 1.7778 bits/s/Hz

OFDM cannot provide noticeable performance improvement over classical OFDM when both schemes

operate at the same spectral efficiency since ESIM-OFDM requires higher order modulation.

B. Performance of OFDM-IM under Channel Estimation Errors

In Fig. 8, we present computer simulation results for the imperfect CSI case. As a reference, we

consider the BER performance of the n = 4, k = 2 OFDM-IM scheme using BPSK for Q = 1. In
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Fig. 7. Performance of classical OFDM, ESIM-OFDM and OFDM-IM for 2.6667 bits/s/Hz
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Fig. 8. BER performance of the n = 4, k = 2 OFDM-IM scheme with imperfect CSI, BPSK, Q = 1

Fig. 8, the theoretical upper bound calculated from (41) is also given. For comparison, as mentioned

in Section V.A, we also present the theoretical curve obtained by the calculation of the UPEP values,

considering only the worst case error events. As seen from Fig. 8, both approximations become very

tight with increasing SNR values and can be used to predict the BER behavior of the OFDM-IM scheme

under channel estimation errors.
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TABLE III
SIMULATION PARAMETERS

Channel Bandwidth 1.5 MHz
Number of Subcarriers (N) 128
Number of Occuppied Subcarriers 88
Subcarrier Spacing 15 kHz
Sampling Frequency 1.92 MHz
Carrier Frequency (fc) 2.5 GHz
Number of Multipaths (ν) 10
Cyclic Prefix Length (L) 10
Velocity (v) 100, 300 km/h
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OFDM−IM,n=8,k=4,MMSE+LLR,m=110 bits
OFDM−IM,n=22,k=11,MMSE+LLR,m=120 bits

Fig. 9. Performance of OFDM-IM for a mobile terminal moving at a speed of v = 100 km/h, BPSK

C. Performance of OFDM-IM under Mobility Conditions

In this subsection, we present computer simulation results for the OFDM-IM scheme operating under

realistic channel mobility conditions. Our simulation parameters are given in Table III. A multipath

wireless channel having an exponentially decaying power delay profile with the normalized powers is

assumed [25].

In Fig. 9, we compare the BER performance of three different OFDM-IM schemes employing various

detectors with the classical OFDM and the ICI self-cancellation OFDM scheme proposed in [24] for a

mobile terminal moving at a speed of v = 100 km/h. OFDM and OFDM-IM schemes use BPSK while the

ICI self-cancellation scheme uses QPSK and applies precoding. For the n = 4, k = 2 OFDM-IM scheme,

four different type of detectors presented in Section V.B are used. For the higher rate n = 8, k = 4
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Fig. 10. Performance of OFDM-IM for a mobile terminal moving at a speed of v = 300 km/h, BPSK

and n = 22, k = 11 OFDM-IM schemes, which rely on the combinatorial method to determine the

active indices, the received signal vector is processed by the MMSE detector and then an LLR detector

is employed. On the other hand, the classical OFDM scheme and ICI self-cancellation OFDM scheme

employ an MMSE detector. As seen from Fig. 9, compared to classical OFDM, OFDM-IM cannot exhibit

exceptional performance with the MMSE detector, since this detector, which works as an equalizer, does

not improve the detection process of the OFDM-IM scheme, which relies on the fluctuations between

the channel coefficients to determine the indices of the active subcarriers. In other words, the MMSE

equalizer eliminates the effect of the channel coefficients, and therefore, the receiver makes decisions

by simply calculating the Euclidean distance between the constellation points and the received signal.

On the other hand, the interference unaware submatrix receiver tends to error floor just after reaching to

the BER value of 10−5. This can be explained by the fact that this detector does not take into account

the inference between different subblocks; therefore, the performance is limited by this interference

with increasing SNR values, which causes an error floor. Although considering the interference, the

performance of the block cancellation detector is also dominated by the error floor as seen from Fig.

9; however, it pulls downs the error floor to lower BER values compared to the submatrix receiver.

Meanwhile the SP detector provides the best error performance by completely eliminating the error floor

in the considered BER regime. For a BER value of 10−5, the SP detector provides approximately 9 dB

better BER performance than classical OFDM. We also observe that the proposed scheme with the SP

detector achieves better BER performance than the ICI self-cancellation OFDM scheme at high SNR. In
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Fig. 11. Performance of OFDM-IM for a mobile terminal moving at a speed of v = 100 km/h, QPSK

the same figure, we also show the BER curves of higher rate n = 8, k = 4 and n = 22, k = 11 OFDM-

IM schemes. Interestingly, our n = 8, k = 4 OFDM-IM scheme achieves better BER performance than

classical OFDM with increasing SNR values even if transmitting 22 additional bits per OFDM block.

In Fig. 10, we extend our simulations to the v = 300 km/h case. As seen from Fig. 10, by increasing the

mobile terminal velocity, the detectors that do not use the MMSE equalization, tend to have error floors

for lower BER values compared to the v = 100 km/h case, and the ICI self-cancellation OFDM scheme

cannot compete with the proposed scheme any more. We observe from Fig. 10 that the OFDM-IM scheme

with the SP detector provides a significant improvement (around 12 dB) compared to classical OFDM

if the target BER is 10−5, while for much lower target BER values, one may consider the OFDM-IM

scheme with the MMSE detector, which is invulnerable to the error floor.

In Fig. 11, we compare the BER performance of OFDM-IM using QPSK and employing the MMSE

and LLR detector with classical OFDM using QPSK and ESIM-OFDM using 8-QAM for a mobile

terminal moving at a speed of v = 100 km/h. As seen from Fig. 11, for the same spectral efficiency, the

proposed scheme achieves better BER performance than the classical OFDM and ESIM-OFDM, while the

higher rate n = 22, k = 16 OFDM-IM scheme achieves better BER performance than classical OFDM

with increasing SNR.
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D. Complexity Comparisons

In this subsection, we compare the computational complexity of the proposed method with the reference

systems. Without mobility, the detection complexity (in terms of complex operations) of the LLR and the

reduced-complexity ML detectors employed in the proposed scheme is the same as that of the classical

OFDM and ESIM-OFDM systems, and, as shown in Sections II and III, it is ∼ O(M) per subcarrier. On

the other hand, in the case of high mobility, while the detection complexity of the MMSE+LLR detector

of the proposed scheme is the same as the classical OFDM, ESIM-OFDM and ICI self-cancelation OFDM

schemes (∼ O(M)), the detection complexity of the ML based detectors (submatrix, block cancelation

and SP detectors) of the proposed scheme grows exponentially with increasing values of k, as shown in

Section V, i.e., it is ∼ O(Mk) per subblock, which is higher than the reference systems. Consequently,

this detector can be used only for smaller values of k, such as k = 2. On the other hand, for higher

values of k, the MMSE+LLR detector is the potential technique to employ in practice.

VII. CONCLUSION AND FUTURE WORK

A novel multicarrier scheme called OFDM with index modulation, which uses the indices of the active

subcarriers to transmit data, has been proposed in this paper. In this scheme, inspired by the recently

proposed SM concept, the incoming information bits are transmitted in a unique fashion to improve the

error performance as well as to increase spectral efficiency. Different transceiver structures are presented

for the proposed scheme which operates on frequency selective fading channels with or without terminal

mobility. It has been shown that the proposed scheme achieves significantly better BER performance than

classical OFDM under different channel conditions. The following points remain unsolved in this work:

i) the error performance analysis of OFDM-IM under channel estimation errors for general M -ary signal

constellations and for the high mobility case; ii) the error performance analysis of the LLR and MMSE

detectors of the OFDM-IM scheme; and iii) the optimal selection method of n and k values for a given

bit rate.

As the proposed scheme works well for the uplink system, for the downlink system it can be integrated

into orthogonal frequency division multiple access (OFDMA) systems as well. In an OFDMA system,

after allocating the available subcarriers to different users, each user can apply OFDM-IM for its subcar-

riers. Therefore, in general, for U users, U different OFDM-IM schemes can be incorporated operating

simultaneously to create the overall OFDMA system. Note that the OFDM-IM scheme provides coding

gain compared to classical OFDM. In order to obtain additional diversity gain, it can be combined by
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linear constellation precoding (LCP) proposed in [26]; however, this is beyond the scope of this paper

and is a potential future research topic.
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[7] E. Başar, Ü. Aygölü, E. Panayırcı, and H. V. Poor, “New trellis code design for spatial modulation,” IEEE Trans. Wireless

Commun., vol. 10, no. 9, pp. 2670–2680, Aug. 2011.

[8] S. Sugiura, S. Chen, and L. Hanzo, “Coherent and differential space-time shift keying: A dispersion matrix approach,”

IEEE Trans. Commun., vol. 58, no. 11, pp. 3219 –3230, Nov. 2010.

[9] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift keying modulation for MIMO channels,” in IEEE

Int. Symp. Personal, Indoor, Mobile Radio Commun., Sep. 2008, pp. 1–5.

[10] J. Fu, C. Hou, W. Xiang, L. Yan, and Y. Hou, “Generalised spatial modulation with multiple active transmit antennas,” in

IEEE GLOBECOM Workshops, Dec. 2010, pp. 839–844.
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