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A cognitive cross network where both primary and secondary users’
receivers are closer to the transmitter of the other user; however, the
distances to their own transmitters are too large that a relay is required
for a reliable communication, is considered. To this end, the secondary
user shares its relay with the primary user (PU) by means of physical-
layer network coding in exchange for access to PU’s licensed band. It
is assumed that both transmitters and the relay adopt the emerging
spatial modulation concept to improve the error performance. Bit
error probability of the proposed scheme is analytically derived and
supported via computer simulation results.
Introduction: Cognitive radio (CR), which allows secondary (unli-
censed) users (SUs) to access the frequency bands of primary (licensed)
users (PUs), is a solution to scarcity and inefficient use of the available
spectrum [1, 2]. Spatial modulation (SM) that conveys information by
antenna indices besides M-ary modulation schemes, is a multiple-input
multiple-output transmission technique employing a single RF chain at
the transmitter [3, 4]. It provides a perfect compromise between spectral
efficiency and energy efficiency as well as reliability. In bidirectional
transmission over a relay, the spectral efficiency can also be improved
by physical-layer network coding (PLNC) where the relay receives
signals of two users in multiple access (MA) phase and applies
bit-wise exclusive-or (XOR) operation to combine these signals, then
brings out the PLNC mapped signal in broadcast (BC) phase [5].
Therefore, the number of required time intervals is reduced to two and
the spectral efficiency is increased.

In this Letter, a cross network combining CR with SM and PLNC
techniques is considered where each user’s receiver is closer to the
transmitter of the other user and the distances between both user’s
transmitter-receiver pairs are too large that a relay is required for a
reliable communication. SU consisting of a secondary transmitter (ST)
and a secondary receiver (SR), shares its relay (R) with PU having a
primary transmitter (PT) and a primary receiver (PR). In return, SU
can access PU’s licensed spectrum and perform its own transmission.
PT, ST and R adopt SM while R also applies PLNC. Bit error
probability (BEP) of the proposed scheme is analytically derived and
the theoretical results are supported via computer simulations that
show the provided improvements compared with the corresponding
reference schemes.
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Fig. 1 Proposed spatially modulated cognitive cross network

Notation: (.)H denotes Hermitian transpose. E[X ] = mX and
Var[X ] = s2

X stand for the expected value and the variance of a
random variable X, respectively. Bold-uppercase letters denote matrices
while bold-lowercase letters represent vectors. xi = (ki, zi) stands for the
SM symbol, where ki denotes the activated antenna index carrying
log2 (Nt) bits while zi represents M-PSK symbol for i [ {p, s, r}.

System model: The considered cognitive cross network is given in
Fig. 1 where Nt denotes the number of transmit antennas at PT, ST
and R whereas Npr, Nsr and Nr represent the number of receive antennas
at PR, SR and R, respectively. dm, m = 1, 2, 3 are the distances between
nodes. Hj, j = 1, 2, . . . , 6 represent the matrices of channel fading
coefficients whose components are assumed to be zero mean complex
Gaussian random variables with variance d−v

m , where v is the path-loss
exponent. All noise components are assumed to be samples of additive
white Gaussian noise (AWGN) process with variance N0. Pp, Ps and Pr

denote the transmission powers of PT, ST and R, respectively.
positionLtd, Salisbury
In MA phase, PT and ST transmit simultaneously an SM symbol
xi = (ki, zi) to R where i = p and i = s for PT and ST, respectively.
These transmissions are eavesdropped by SR and PR, respectively.
The received signals at R, SR and PR are given by

yR = ���
Pp

√
h1kp zp +

���
Ps

√
h2ks zs + nR (1)

ySR1 =
���
Pp

√
h3kp zp + nSR1 (2)

yPR1 =
���
Ps

√
h4ks zs + nPR1 (3)

where h1kp and h3kp are the k
th
p columns of H1 and H3, h2ks and h4ks are

the kths columns of H2 and H4, and nR, nSR1 and nPR1 represent AWGN
vectors at R, SR and PR, respectively.

R, SR and PR perform the maximum likelihood (ML) detection as
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respectively. In BC phase, R BCs the PLNC mapped symbol
xr = (kr, zr) which is the SM symbol obtained from XOR operations
of binary corresponding of k̂Rp and k̂Rs , and ẑRp and ẑRs , respectively.
The received signals at SR and PR are given as
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where h5kr and h6kr are the k
th
r columns ofH5 andH6, and nSR2 and nPR2

stand for the AWGN vectors at SR and PR, respectively.
In BC phase, SR and PR detect the PLNC mapped symbol according

to the ML detection rule as
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respectively. SR and PR can obtain their target bits by applying XOR
operation to the binary corresponding of the following pairs:
(k̂SRp , ẑSRp ) and (k̂SRr , ẑSRr ) for SR, and (k̂PRs , ẑPRs ) and (k̂PRr , ẑPRr ) for PR.

BEP analysis: BEP of PU can be expressed as
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where PR
b stands for BEP of R, which consists of both PT→R and

ST→R links, i.e. MA channel (MAC). In (11), PST�PR
b and PR�PR

b

denote BEPs of the ST→PR and R→PR links, respectively. When the
SM symbols xp and xs are transmitted to R by PT and ST, the decision
metric can be written from (4) as m(kp, zp, ks, zs) = ‖yR − ���
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where the decision variable is D = −||h1kp zp − h1k̂Rp
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Using the alternative form of Q function, (12) can be rewritten as
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After taking the expectation of (13) over the vectors of channel fading
coefficients, the average pairwise error probability (APEP) at R can be
given as
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Finally, BEP of R can be expressed as
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where e(xr � x̂r) is the number of erroneous bits in detection of the
PLNC mapped symbol at R.

For PR�SR
b , the corresponding decision metric is given from (10) as

m(kr, zr) = yPR2 −
���
Pr

√
h6kr zr

∥∥ ∥∥2 then, the decision variable is D =
−||h6kr zr − h6k̂PRr
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APEP of the R→ PR link is calculated by taking the expected value of
(18) over h6kr as
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BEP of the R→PR link is given by
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where e(xr � x̂PRr ) is the number of erroneous bits in detection of the
PLNC mapped signal through the R→PR link. PST�PR

b can be derived
with similar steps by a modification in the decision metric from (10).

Due to the network symmetry, BEP of SU is identical to that of PU for
Pp = Ps. However, since R belongs to SU, for Pr = Ps, SU achieves the
same BEP performance as PU with an additional power of 3 dB.

Performance evaluation: In this section, theoretical BEP results
obtained in the previous section are compared with computer simulation
results. It is assumed that cognitive cross network forms a rectangular
area with the path-loss exponent v = 4 and Nr = Npr = 2. In all
figures, straight, dashed and dotted lines represent theoretical results
while markers stand for computer simulation results.

In Fig. 2, the BEP performance of PR is given for variable M and Nt

by assuming d1 = d3 = 1 and d2 = 0.1 and it is compared with that of
the reference scheme employing M-PSK modulation instead of SM.
When M = 2, Nt = 2 for the proposed scheme, the reference scheme
with M = 4, Nt = 1 provides a slightly better BEP performance.
However, it can be seen from Fig. 2 that the SM-based new scheme
provides a considerably better BEP performance than the reference
scheme for higher data rates.
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Fig. 2 BEP performance of PU for varying M and Nt

In Fig. 3, the BEP performance of PR is given for d2 = 0.5 and the
effect of the position of R is investigated for M = 4 and Nt = 2. R is
moved on the vertical direction in the rectangular area from the
middle of transmitters to the middle of receivers by assuming a unity
distance between the transmitters PT and ST. The best BEP performance
at PR is obtained when R is at the centre of the rectangular area. Note
also that in all cases the proposed scheme outperforms the scheme
that performs direct transmission from PT to PR.
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Fig. 3 Effect of relay position on BEP performance of PU

Conclusion: In this Letter, a cognitive cross network using SM at all
nodes and PLNC at the relay, has been proposed. The superiority of
the proposed scheme has been shown by comparisons with the classical
M-PSK modulated as well as direct transmission schemes.
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