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Quadrature spatial modulation (QSM) is a recently proposed multiple-
input multiple-output transmission scheme which improves the spectral
efficiency of classical spatial modulation (SM) by increasing the number
of information bits transmitted by antenna indices. In QSM, a complex
data symbol is decomposed into its real and imaginary components;
then, these two components are independently transmitted using the
SM principle. A low-complexity, near-maximum likelihood (ML)
error performance achieving detection scheme is proposed for QSM to
reduce the overall computational complexity of the ML detector. First,
the proposed detector determines the set of most probable active transmit
antennas and the corresponding possible transmission patterns. Then,
ML-based detection is used to determine the transmitted complex data
vector by performing a search over these transmission patterns and M-
ary constellation symbols. It has been shown via computer simulations
that the proposed detection algorithm exhibits near-ML bit error rate per-
formance with considerably lower decoding complexity.
Introduction: Spatial modulation (SM) is a novel multiple-input
multiple-output (MIMO) transmission scheme in which incoming data
bits determine the index of the activated transmit antenna besides the
M-ary constellation symbol, which is transmitted over this activated
antenna [1]. SM has attracted a great deal of attention in the past few
years due to its attractive advantages over classical MIMO systems and
it has been regarded as a potential candidate for 5G wireless networks [2].

Generalised spatial modulation (GSM) systems were developed to
improve the spectral efficiency of SM by increasing the number of
active transmit antennas [3, 4]. To avoid inter-channel interference
(ICI), the activated antennas transmit the same data symbol in the
GSM scheme [3], while in the multiple active SM scheme [4], different
antennas transmit different data symbols to boost the spectral efficiency.

Quadrature spatial modulation (QSM) is a novel scheme which pro-
vides a higher spectral efficiency than classical SM by increasing the
number of information bits transmitted by active antenna indices [5].
In QSM, a complex data symbol is decomposed into its real and imagin-
ary parts. Then, the real and imaginary parts of this data symbol are
independently transmitted from one of the available transmit antennas
using the SM principle. In other words, QSM provides log2 (Nt) bits
per channel use (bpcu) improvement in spectral efficiency compared
with SM, whose spectral efficiency is log2 (NtM ) bpcu, by independent
application of the SM principle for the real and imaginary components
of the complex data symbol, where Nt is the number of transmit anten-
nas, which is an integer power of two. Furthermore, since two orthog-
onal carriers (cosine and sine) are used in QSM, ICI is avoided and a
single radio frequency chain is sufficient at the transmitter.

In [5], maximum likelihood (ML) detection is used for QSM to achieve
optimal bit error rate (BER) performance. In this Letter, we propose a
low-complexity detection scheme for QSM to reduce the overall detection
complexity. The proposed algorithm, first, determines N most probable
candidates for active transmit antenna indices and by considering these
N candidates, it determines the corresponding set of possible transmission
patterns. Finally, by considering these possible transmission patterns and
M-ary constellation symbols, ML-based detection is used to jointly detect
the real and imaginary parts of the transmitted complex data symbol and
the corresponding transmission pattern.

System model of QSM with ML detection: Consider a MIMO system
with Nt transmit and Nr receive antennas. A total of log2 (N

2
t M ) infor-

mation bits enter the QSM transmitter. A complex data symbol is
selected from an M-QAM constellation S according to the first
log2 (M ) bits. This symbol is decomposed into its real and imaginary
components as sR and sI, where s = sR + jsI. Then, sR and jsI are indepen-
dently transmitted from the lRth and lIth transmit antennas using the SM
principle, respectively, where lR, lI∈ {1, 2, …, Nt} are determined
according to the remaining 2 log2 Nt bits. Therefore, the transmission
vector x [ C

Nt×1 of the QSM scheme can be given as

x = 0 · · · 0 sR 0 · · · 0 jsI 0 · · · 0
[ ]T

(1)

where the lRth and lIth elements of x are sR and jsI, respectively. x is
transmitted over a MIMO Rayleigh fading channel, which is character-
ised by H [ C

Nr×Nt , whose elements are independent and identically
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distributed with CN (0, 1), where CN (0, s2) represents circularly sym-
metric complex Gaussian distribution with variance σ2. The received
signal vector y [ C

Nr×1 is obtained as

y = Hx+ n (2)

where n [ C
Nr×1 is the noise vector whose elements distributed with

CN (0, s2). y can be rewritten as

y = hlRsR + jhlI sI + n (3)

where hlR and hlI are the lRth and lIth columns of the channel matrix H,
respectively. At the receiver, ML detector is used with the assumption of
perfect channel state information to obtain optimal BER performance.
ML detector jointly detects the real and imaginary parts of the data
symbol and the corresponding activated antenna indices by calculating
N 2
t M decision metrics as

l̂R, l̂I, ŝR, ŝI
[ ] = argmin

lR,lI ,sR,sI

y− hlRsR + jhlI sI
( )∥∥ ∥∥2 (4)

where l̂R and l̂I denote the detected active antenna indices correspond to
ŝR and ŝI, respectively, which form the detected complex symbol as
ŝ = ŝR + jŝI.

Proposed detection algorithm: The complexity of the ML detector
grows considerably with higher order MIMO systems and constella-
tions. For this reason, we introduce a new low-complexity detection
algorithm to reduce the overall detection complexity of the QSM
scheme with ML detector while ensuring near-ML performance.

Consider the QSM signal model given in (2). The proposed suboptimal
detection algorithm is based on compressed sensing (CS) which can
operate even for under-determined systems (Nt . Nr) if x has a sparse
structure. When the ratio of number of non-zero elements to total
number of the elements in x is at most ∼20%, which can be ensured by
selecting Nt≥ 8 for QSM, x satisfies sparsity property. Detection of a
such system can be regarded as the sparse reconstruction problem. Since
most of the CS algorithms are applied to real signal models, the received
signal vector y should be decomposed into its real and imaginary parts as

R(y)
I(y)

[ ]
= R(H) −I(H)

I (H) R(H)

[ ]
R(x)
I (x)

[ ]
+ R(n)

I(n)

[ ]
(5)

ỹ = H̃x̃+ ñ (6)

whereR(·) and I(·) stand for the real and imaginary operators, respectively.
Equation (6) can be transformed into an l1-norm optimisation problem as

min
x̃

x̃‖ ‖1 s.t. ỹ− H̃x̃
∥∥ ∥∥

2≤ e (7)

where ε > 0, and ·‖ ‖1 and ·‖ ‖2 denote l1 and l2-norm of a vector, respect-
ively. By using Lagrangian formulation, (7) can be converted to a quadratic
programming (QP) type optimisation problem which can be formulated as

min
z

1

2
zTBz+ cTz s.t z ≥ 0 (8)

where z = x̃+; x̃−[ ], c = l1+ −H̃
T
ỹ; H̃

T
ỹ

[ ]
and

B = H̃
T
H̃ −H̃

T
H̃

−H̃
T
H̃ H̃

T
H̃

⎡
⎣

⎤
⎦. (9)

In (8), x̃+ and x̃− are non-negative vectors that collect the positive and
negative coefficients of x̃, respectively, 1 denotes an all-ones column
vector and l = s

�������
2 lnNt

√
is the regularisation parameter. (8) can be

easily solved by using MATLAB function quadprog. Let g [ C
Nt×1 is

the reconstructed version of the transmission vector x using the CS algor-
ithm, we consider

k1 k2 · · · kN · · · kNt

[ ]T= argsort( g
∣∣ ∣∣) (10)

where sort (·) reorders the elements of the input vector in descending order,
and k1 and kNt

are the indices of the maximum and the minimum valued
elements of |g|. Then, N most probable active indices are determined as
{k1,…, kN}, where 2≤N <Nt. Considering these N most probable active
indices, a subchannel matrix Ĥ [ C

Nr×N is constructed as

Ĥ = hk1 hk2 · · · hkN
[ ]

(11)
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where hkj [ CNr×1 is the kjth column of H for j∈ {1, 2,…, N}. We have
the following N different possible transmission patterns, if sR and jsI are
transmitted from the same antenna:

x̂1 =

sR+ jsI
0
.

.

.

0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
, x̂2 =

0
sR+ jsI

0
.

.

0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
, . . . , x̂N =

0
0
.

.

0
sR+ jsI

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
. (12)

On the other hand,wehave the followingN (N −1) different possible trans-
mission patterns, if sR and jsI are transmitted from two different antennas:

x̂N+1 =

sR
jsI
0
.

.

.

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . ,

0
.

.

.

0
jsI
sR

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

jsI
sR
0
.

.

.

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . , x̂N2 =

0
.

.

.

0
sR
jsI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

In (12) and (13), x̂i [C
N×1 denotes ith possible transmissionpatternwhere

i∈ {1, 2, …, N2}. Consequently, for each N value, N +N (N −1)=N2

different transmission patterns are possible and the ML detector jointly
detects the most probable transmission pattern by considering these N2

possible transmission patterns andM-QAM constellation symbols as

î, ŝR, ŝI
( )= argmin

i,sR,sI
y− Ĥx̂i

∥∥ ∥∥2. (14)

After the detection of the transmission pattern, one can easily determine the
indices of active antennas and the corresponding complex data symbol,
which are required for bit demapping operation.

Complexity comparison: By considering the total number of real multi-
plications, we calculate the computational complexity of the ML detec-
tor and the proposed low-complexity detector. The complexity of the
ML detector given in (4) is evaluated as O(8N2

t MNr). The proposed
low-complexity detection algorithm is composed of QP and ML detec-
tion stages. The complexity of the QP stage is � O(8N 3

t ) [6] while the
complexity of the ML stage is calculated as O(8N 2MNr). Therefore, the
overall complexity of the proposed algorithm can be given as
� O(8N3

t + 8N2MNr). We conclude from this result that the proposed
detection algorithm considerably reduces the complexity of the ML
detector for higher order constellations and MIMO configurations.
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Fig. 1 BER performance of ML, QP and ZF detectors for m = 10 bpcu, 8 × 8
MIMO system, 16-QAM

Simulation results: In this section, BER performance of QSM is evalu-
ated for different spectral efficiency values by using ML, the proposed
QP and zero forcing (ZF) detectors.

In Figs. 1 and 2, we consider the BER performance of ML, ZF and the
proposed QP detector for 10 and 12 bpcu spectral efficiency values,
ELECTRONICS LETTERS 29th S
respectively, where ZF (N ) and QP (N ), N∈ {2, 3, 4} denote the
employment of ZF and QP based detection for a given value of N,
respectively. Please note that the ML stage of the proposed algorithm
(10)–(14) can also be implemented for ZF detection, i.e. by considering
g =H+y, where (·)+ denotes the pseudo-inverse of a matrix .
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Fig. 2 BER performance of ML, QP and ZF detectors for m = 12 bpcu, 16 ×
16 MIMO system, 16-QAM

In Figs. 1 and 2, we consider 8 × 8 and 16 × 16 MIMO systems,
respectively, and evaluate the BER performance of different detectors
with respect to received signal-to-noise ratio at each receive antenna
(g) for 16-QAM. As seen from Figs. 1 and 2, the proposed detector exhi-
bits near-ML BER performance with increasing N values. As
an example, compared with ML detector, the proposed detector with
N = 4 provides approximately 68.75% and 87.5% reduction in decoding
complexity for 10 and 12 bpcu cases, respectively.

Conclusion: The complexity of the ML detector can be a concern for
higher order MIMO systems and constellations, which are gaining more
and more attention for future wireless networks. In this Letter, we have pro-
posed a near-optimal detection scheme for QSM with low-complexity. We
have shown via Monte Carlo simulations and complexity comparisons that
the proposed detector, which is based on QP problem, exhibits near-ML
error performance with considerably lower decoding complexity.
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