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Performance of Spatial Modulation in the Presence of
Channel Estimation Errors

Ertuğrul Başar, Student Member, IEEE, Ümit Aygölü, Member, IEEE, Erdal Panayırcı, Fellow, IEEE,
and H. Vincent Poor, Fellow, IEEE

Abstract—This work investigates the negative effects of channel
estimation errors on the performance of spatial modulation
(SM) when operating over flat Rayleigh fading channels. The
pairwise error probability of the SM scheme is derived in the
presence of channel estimation errors and an upper bound on
the average bit error probability is evaluated for 𝑀 -PSK and
𝑀 -QAM signalling. It is shown via computer simulations that
the derived upper bound becomes very tight with increasing
signal-to-noise ratio (SNR) and the SM scheme is quite robust
to channel estimation errors.

Index Terms—Channel estimation errors, MIMO systems,
spatial modulation.

I. INTRODUCTION

SPATIAL modulation (SM), which exploits the indices
of multiple transmit antennas as an additional source of

information besides the conventional 𝑀 -ary signal constella-
tions, is a promising multiple-input multiple-output (MIMO)
transmission technique that has been recently proposed [1].
It has been shown in [2] and [3] that SM can achieve better
error performance than V-BLAST (Vertical-Bell Lab Layered
Space-Time) in some cases under the assumption that perfect
channel state information (P-CSI) is available at the receiver.
However, in practical applications, we hardly have P-CSI at
the receiver, and a channel estimator is employed to provide
unknown channel parameters. Therefore, it is important to as-
sess the system performance in the presence of imperfect CSI
before choosing the appropriate channel estimation technique.

The effects of channel estimation errors on the performance
of SM and space-shift keying (SSK) modulation [4], a special
version of SM in which only antenna indices are exploited
to convey information, have been investigated by some re-
searchers [4–8]. In fact, the authors of [5] emphasized that
the conventional SM/SSK modulations are based on P-CSI,
and a degradation in performance is unavoidable when these
systems are subject to imperfect CSI. In [4], [5] and [6] the
performance of SM and SSK were studied in the presence
of imperfect CSI only by computer simulations. In [7], the
authors have studied the performance of SSK with partial
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CSI using analytical methods. More recently, the same authors
have extended their analyses in [8] by examining the error per-
formance of SSK with imperfect channel knowledge in detail.
However, to the best of our knowledge, the error performance
of SM with imperfect CSI has not been investigated through
analytical methods before, and in this work, we aim to shed
light on this timely and interesting topic.

In this letter, we provide an analytical approach for the
calculation of the average bit error probability (ABEP) of
SM with imperfect CSI. First, the pairwise error probability
(PEP) of SM is derived for general 𝑀 -ary constellations;
then, an asymptotically tight upper bound on the ABEP is
provided. Our computer simulations indicate that the derived
upper bounds become very tight with increasing signal-to-
noise ratio (SNR) and SM is quite robust to imperfect CSI
compared to V-BLAST. The rest of the letter is organized as
follows. In Section II, the considered system model is given.
Our analytical approach to the ABEP calculation of SM is
presented in Section III. Numerical examples are provided in
Section IV. Finally, conclusions are given in Section V.

Notation: Bold capital letters are used for matrices. ℜ{𝑥}
denotes the real part of the complex variable 𝑥. The probability
of an event is denoted by 𝑃 (⋅). For a random variable (r.v.)
𝑋 , 𝐸 {𝑋}, 𝑉 𝑎𝑟 {𝑋} and 𝑀𝑋 (𝑡) denote the mean, variance
and moment generating function (MGF) of 𝑋 , respectively.
𝑋 ∼ 𝒞𝒩 (

0, 𝜎2
𝑋

)
represents the distribution of a circularly

symmetric complex Gaussian r.v with variance 𝜎2
𝑋 . 𝑄 (⋅) de-

notes the tail probability of the standard Gaussian distribution.

II. SYSTEM MODEL

We consider a MIMO system operating over a quasi-
static Rayleigh flat fading channel with 𝑛𝑇 transmit and 𝑛𝑅

receive antennas. The channel fading coefficient between the
𝑡th transmit and the 𝑟th receive antenna, denoted by 𝛼𝑡,𝑟, is
distributed as 𝒞𝒩 (0, 1).

Assume that log2 (𝑀𝑛𝑇 ) information bits enter the SM
transmitter at each transmission interval. The transmitter spec-
ifies the identity of the active transmit antenna by using the
first log2 (𝑛𝑇 ) bits of the incoming bit stream, then maps
the remaining log2 (𝑀) bits onto the corresponding 𝑀 -ary
signal constellation. Therefore, according to the SM technique,
during each transmission interval, only one transmit antenna,
which transmits an 𝑀 -ary constellation symbol 𝑠, is active.
As an example, for 𝑀 = 4, 𝑛𝑇 = 4, four information bits are
transmitted by the transmitter at each signalling interval, where
the first two bits determine the index of the active transmit
antenna, while the last two bits determine the quadrature phase
shift keying (QPSK) symbol that is transmitted through this
active antenna.
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The spatially modulated symbol is denoted by 𝑥 = (𝑖, 𝑠),
where 𝑠 is transmitted over the 𝑖th transmit antenna. The
received signal at the 𝑟th receive antenna (𝑟 = 1, ⋅ ⋅ ⋅ , 𝑛𝑅) is
given by

𝑦𝑟 = 𝛼𝑖,𝑟𝑠+ 𝑤𝑟 (1)

where 𝑤𝑟 is a sample of additive white Gaussian noise with
distribution 𝒞𝒩 (0, 𝑁0). Assuming the SM symbol 𝑥 = (𝑖, 𝑠)
is transmitted and it is erroneously detected as 𝑥̂ = (𝑗, 𝑠),
when CSI is perfectly known at the receiver, the conditional
pairwise error probability (CPEP) is given by [9]

𝑃 (𝑥 → 𝑥̂ ∣H) = 𝑄

(√
𝛾

2

∑𝑛𝑅

𝑟=1

∣∣𝛼𝑖,𝑟𝑠− 𝛼𝑗,𝑟𝑠
∣∣2) (2)

where H = [𝛼𝑡,𝑟]𝑛𝑇×𝑛𝑅
is the channel matrix with indepen-

dent and identically distributed entries and 𝛾 = 𝐸{∣𝑠∣2}/𝑁0

is the average SNR at each receiver antenna.
In practical systems, a channel estimator at the receiver

provides the fading coefficient estimates 𝛽𝑡,𝑟. If the channel is
estimated with least squares (LS), the estimation error model
has the form 𝛽𝑡,𝑟 = 𝛼𝑡,𝑟 + 𝜖𝑡,𝑟, where 𝜖𝑡,𝑟 represents the
channel estimation error which is independent of 𝛼𝑡,𝑟, and
is distributed according to 𝒞𝒩 (

0, 𝜎2
𝜖

)
[10]. Consequently,

the distribution of 𝛽𝑡,𝑟 becomes 𝒞𝒩 (
0, 1 + 𝜎2

𝜖

)
, and 𝛽𝑡,𝑟

is dependent on 𝛼𝑡,𝑟 with the correlation coefficient 𝜌 =
1/
√
1 + 𝜎2

𝜖 , i.e, when 𝜎2
𝜖 → 0, then 𝜌 → 1. We assume that 𝜌

is known at the receiver. In this work, two different scenarios
are considered: i) fixed 𝜎2

𝜖 : the value of the estimation error is
fixed for all SNR values in order to determine the pure effect
of the imperfect channel knowledge on the error performance,
and ii) variable 𝜎2

𝜖 : the value of the estimation error is adjusted
in accordance with the SNR as 𝜎2

𝜖 = 1/ (𝛾𝑁), where 𝑁
depends on the number of pilot symbols used in training and
the chosen estimation method [11].

In the presence of channel estimation errors, assuming the
SM symbol 𝑥 = (𝑖, 𝑠) is transmitted, the mean and variance
of the received signal 𝑦𝑟, 𝑟 = 1, ⋅ ⋅ ⋅ , 𝑛𝑅 conditioned on 𝛽𝑖,𝑟

are given as [12]

𝐸 {𝑦𝑟 ∣𝛽𝑖,𝑟} = 𝜌2𝛽𝑖,𝑟𝑠

𝑉 𝑎𝑟 {𝑦𝑟 ∣𝛽𝑖,𝑟} = 𝑁0 +
(
1− 𝜌2

) ∣𝑠∣2 . (3)

Thus, the optimal receiver of the SM decides in favor of the
symbol 𝑠 and transmit antenna index 𝑗 that minimizes the
following metric for an 𝑀 -ary signal constellation

(𝑗, 𝑠) = argmin
𝑖,𝑠

∑𝑛𝑅

𝑟=1

( ∣∣𝑦𝑟 − 𝜌2𝛽𝑖,𝑟𝑠
∣∣2

𝑁0 + (1− 𝜌2) ∣𝑠∣2

+ ln
(
𝑁0 +

(
1− 𝜌2

) ∣𝑠∣2)
)

(4)

to maximize the a posteriori probability of 𝑦𝑟, 𝑟 = 1, ⋅ ⋅ ⋅ , 𝑛𝑅,
which are complex Gaussian r.v.’s. Note that for constellations
with constant envelope

(∣𝑠∣2 = 1, ∀𝑠) such as 𝑀 -ary PSK (𝑀 -
PSK), the metric in (4) reduces to

(𝑗, 𝑠) = argmin
𝑖,𝑠

∑𝑛𝑅

𝑟=1

∣∣𝑦𝑟 − 𝜌2𝛽𝑖,𝑟𝑠
∣∣2 . (5)

III. PAIRWISE ERROR PROBABILITY CALCULATION

In this section, first, we evaluate the PEP of SM for 𝑀 -
PSK with imperfect CSI, then we generalize the analysis to
𝑀 -ary quadrature amplitude modulation (𝑀 -QAM). After the
evaluation of PEP, ABEP expressions will be provided for the
SM scheme.

A. ABEP of the SM for 𝑀 -PSK

Assuming 𝑥 = (𝑖, 𝑠) is transmitted, the probability of
deciding in favor of 𝑥 = (𝑗, 𝑠) is given from (5) as

𝑃 (𝑥 → 𝑥̂ ∣ Ĥ) = 𝑃
(∑𝑛𝑅

𝑟=1

∣∣𝑦𝑟 − 𝜌2𝛽𝑗,𝑟𝑠
∣∣2

<
∑𝑛𝑅

𝑟=1

∣∣𝑦𝑟 − 𝜌2𝛽𝑖,𝑟𝑠
∣∣2) (6)

where Ĥ = [𝛽𝑡,𝑟]𝑛𝑇×𝑛𝑅
is the estimated channel matrix. After

simple manipulation, we obtain

𝑃 (𝑥 → 𝑥 ∣ Ĥ) = 𝑃
(∑𝑛𝑅

𝑟=1
𝜌4 ∣𝛽𝑖,𝑟∣2 − 𝜌4 ∣𝛽𝑗,𝑟∣2

− 2𝜌2ℜ{𝑦∗𝑟 (𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠)} > 0
)
= 𝑃 (𝐷 > 0) (7)

where the sum is denoted by 𝐷. Considering (3), we observe
that 𝐷 is a Gaussian r.v. with

𝐸{𝐷} = −𝜌4
∑𝑛𝑅

𝑟=1
∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2

𝑉 𝑎𝑟{𝐷} = 2𝜌4
(
𝑁0 +

(
1− 𝜌2

))∑𝑛𝑅

𝑟=1
∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2

Thus, the conditional PEP (CPEP) of SM can be written as

𝑃 (𝑥 → 𝑥̂ ∣ Ĥ) = 𝑄

⎛
⎝𝜌2

√∑𝑛𝑅

𝑟=1 ∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2
2 (𝑁0 + (1− 𝜌2))

⎞
⎠ . (8)

Using an alternative form of the Gaussian Q-function [13], (8)
can be rewritten as

𝑃 (𝑥 → 𝑥̂ ∣ Ĥ) =

1

𝜋

∫ 𝜋/2

0

exp

(
−𝜌4

∑𝑛𝑅

𝑟=1 ∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2
4 sin2 𝜃 (𝑁0 + (1− 𝜌2))

)
𝑑𝜃.

(9)

Defining 𝑑𝑟 ≜ ∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2, we derive its MGF from [14]
as

𝑀𝑑𝑟 (𝑡) =
1

1− 𝜆 (1 + 𝜎2
𝜖 ) 𝑡

(10)

where

𝜆 =

{
2, if 𝑖 ∕= 𝑗

∣𝑠− 𝑠∣2 , if 𝑖 = 𝑗.
(11)

Finally, integrating (9) over the probability density function
(p.d.f.) of 𝑑𝑟 and using (10), the unconditional PEP (UPEP)
of the SM scheme is obtained as follows:

𝑃 (𝑥 → 𝑥̂) =
1

𝜋

∫ 𝜋/2

0

(
sin2 𝜃

sin2 𝜃 + 𝜆𝜌2

4(𝑁0+(1−𝜌2))

)𝑛𝑅

𝑑𝜃 (12)

which has a closed form solution provided in [13]. We observe
from (12) that, when compared to the SM scheme with P-CSI,
the same diversity order of 𝑛𝑅 is asymptotically attained for
values of 𝜌 approaching unity.
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After the evaluation of the UPEP, the ABEP of the SM
scheme can be upper bounded by the following asymptotically
tight union bound [13]:

𝑃𝑏 ≤ 1

2𝑘

2𝑘∑
𝑛=1

2𝑘∑
𝑚=1

𝑃 (𝑥𝑛 → 𝑥𝑚) 𝑒𝑛,𝑚
𝑘

(13)

where {𝑥𝑛}2
𝑘

𝑛=1 is the set of all possible SM symbols, 𝑘 =
log2 (𝑀𝑛𝑇 ) is the number of information bits per SM symbol,
and 𝑒𝑛,𝑚 is the number of bit errors associated with the
corresponding PEP event.

It is worth mentioning that the PEP expression provided in
(12) can be generalized to SSK modulation, which does not
use amplitude/phase modulations, by taking 𝜆 = 2 in (12).

B. ABEP of the SM for 𝑀 -QAM

In order to determine the UPEP of the SM using 𝑀 -QAM
signalling in the presence of channel estimation errors, we
consider the mismatched maximum likelihood (ML) receiver
that uses the ML decision metric of the P-CSI case by
replacing 𝛼𝑡,𝑟 by 𝛽𝑡,𝑟. This is mainly due to the fact the
decision metric given in (4) for constellations with non-
constant envelope is quite complicated to analyse.

The decision metric for the mismatched ML receiver is
given as

(𝑗, 𝑠) = argmin
𝑖,𝑠

∑𝑛𝑅

𝑟=1
∣𝑦𝑟 − 𝛽𝑖,𝑟𝑠∣2 . (14)

Then the CPEP of the SM scheme is obtained by

𝑃 (𝑥 → 𝑥 ∣ Ĥ) = 𝑃
(∑𝑛𝑅

𝑟=1
∣𝛽𝑖,𝑟∣2 ∣𝑠∣2 − ∣𝛽𝑗,𝑟∣2 ∣𝑠∣2

− 2ℜ{𝑦∗𝑟 (𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠)} > 0
)
= 𝑃 (𝐷 > 0) (15)

where the sum is denoted by 𝐷, which is a Gaussian r.v. with

𝐸{𝐷} =
∑𝑛𝑅

𝑟=1
∣𝛽𝑖,𝑟∣2 ∣𝑠∣2

(
1− 2𝜌2

)− ∣𝛽𝑗,𝑟∣2 ∣𝑠∣2

+ 2𝜌22ℜ{𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠}
𝑉 𝑎𝑟{𝐷} = 2(𝑁0 +

(
1− 𝜌2

) ∣𝑠∣2)∑𝑛𝑅

𝑟=1
∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2 .

On defining 𝐷̃ = 𝜌2𝐷, and taking
(
1 + 𝜎2

𝜖

)2 ≈ (1 + 𝜎2
𝜖

)
for

𝜎2
𝜖 ≪ 1, which is quite reasonable for practical applications,

we have

𝐸{𝐷̃} ≈ −𝜌2
∑𝑛𝑅

𝑟=1
∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2

𝑉 𝑎𝑟{𝐷̃} = 2𝜌4(𝑁0 +
(
1− 𝜌2

) ∣𝑠∣2)∑𝑛𝑅

𝑟=1
∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2

which yields the approximate CPEP expression

𝑃 (𝑥 → 𝑥̂ ∣ Ĥ) ≈ 𝑄

⎛
⎝
√√√⎷ ∑𝑛𝑅

𝑟=1 ∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2

2
(
𝑁0 + (1− 𝜌2) ∣𝑠∣2

)
⎞
⎠ . (16)

The MGF of 𝑑𝑟 ≜ ∣𝛽𝑖,𝑟𝑠− 𝛽𝑗,𝑟𝑠∣2 is again given by (10)
while 𝜆 = ∣𝑠∣2 + ∣𝑠∣2 if 𝑖 ∕= 𝑗 and 𝜆 = ∣𝑠− 𝑠∣2 if 𝑖 = 𝑗, for
this case. Finally, the UPEP of SM is calculated for 𝑀 -QAM
as

𝑃 (𝑥 → 𝑥) ≈ 1

𝜋

∫ 𝜋/2

0

⎛
⎝ sin2 𝜃

sin2 𝜃 + 𝜆

4(𝑁0+(1−𝜌2)∣𝑠∣2)

⎞
⎠

𝑛𝑅

𝑑𝜃.

(17)
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𝑛𝑇 = 4, BPSK (4 bits/s/Hz) with optimal receivers (fixed 𝜎2
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Then, the union bound given in (13) can be still used to
evaluate the approximate ABEP of the SM scheme for 𝑀 -
QAM.

IV. SIMULATION RESULTS

In this section, the bit error rate (BER) performance of the
SM and V-BLAST schemes with imperfect CSI is evaluated
via Monte Carlo simulations with respect to the average SNR
per receive antenna, and the results are compared with the
analytical results of (13) for QPSK and 16-QAM. In all
simulations, it was assumed that 𝑛𝑅 = 4. The natural mapping
was applied for both antenna and signal constellation points.
According to Section II, the power of the estimation error(
𝜎2
𝜖

)
was either fixed (to 0.01, 0.007, 0.005 and 0.003 values)

for all SNR values in order to determine the pure effect of the
estimation error on the performance, or was adjusted according
to the SNR values by taking 𝑁 as 1, 3 and 10. For comparison
purposes, the performance of the P-CSI case

(
𝜎2
𝜖 = 0

)
is also

included.
In Fig. 1, computer simulation results are presented for the

SM scheme with 𝑛𝑇 = 4 and QPSK, and V-BLAST with
𝑛𝑇 = 4 and binary PSK (BPSK) at 4 bits/s/Hz for fixed
𝜎2
𝜖 values. Both schemes use optimal ML receivers. As a

reference, the corresponding ABEP upper bound curves are
also shown with solid lines for the SM scheme. First, as seen
from Fig. 1, the theoretical upper bounds provided by (13)
become extremely tight with increasing SNR for all 𝜎2

𝜖 values.
Second, we observe that the SM scheme is resistant to channel
estimation errors for values of 𝜎2

𝜖 ≤ 0.01, and furthermore it
is more robust than V-BLAST at this spectral efficiency. As an
example, at a BER value of 10−5, the SNR degradation of SM
is 0.9 dB for 𝜎2

𝜖 = 0.005 (𝜌 = 0.9975) compared to the P-
CSI case, while the degradation for V-BLAST is observed as
1.1 dB, which is slightly higher than SM. In Fig. 2, computer
simulation results are presented for the same systems given in
Fig. 1 at 4 bits/s/Hz for variable 𝜎2

𝜖 values. As seen from this
figure, for this configuration, SM and V-BLAST are closely
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Fig. 3. BER performance of SM with 𝑛𝑇 = 4, 16-QAM and V-BLAST with
𝑛𝑇 = 3, QPSK (6 bits/s/Hz) with mismatched receivers (fixed 𝜎2

𝜖 ).

matched again, since at a BER value of 10−5 the degradation
amounts for these systems are observed as 0.4 dB, 1.3 dB and
3 dB for SM and, 0.5 dB, 1.3 dB and 3.1 dB for V-BLAST,
compared to the P-CSI case for 𝑁 = 10, 3 and 1 values,
respectively.

Simulation results are depicted in Fig. 2 for the SM scheme
with 𝑛𝑇 = 4 and 16-QAM, and V-BLAST with 𝑛𝑇 = 3 and
QPSK at 6 bits/s/Hz, with the corresponding ABEP upper
bound curves for SM for fixed 𝜎2

𝜖 values. For this case,
both schemes use mismatched ML receivers. As seen from
Fig. 2, although the approximation given in (17) is made in
this case, the ABEP upper bound curves are still very tight
with increasing SNR values. At a BER value of 10−5, when
compared with the P-CSI case, the degradation amount in
SNR is observed for the SM case as 0.9 dB and 2.1 dB

for 𝜎2
𝜖 = 0.003 and 0.005, respectively, while these values

are equal to 1.2 dB and 2.3 dB for V-BLAST. Therefore, we

conclude that SM is more robust to channel estimation errors
than V-BLAST for reasonable channel estimation error values.

It is worth mentioning that by considering Figs. 1-3, we
observe that the SM scheme is quite robust to channel esti-
mation errors compared to V-BLAST, which has a higher ML
decoding complexity and a higher implementation cost due
to requirement of inter-antenna synchronization and multiple
radio frequency (RF) chains at the transmitter.

V. CONCLUSIONS

In this letter, we have investigated the error performance of
SM with imperfect CSI. The UPEP of SM has been derived
for general 𝑀 -ary signal constellations, and an upper bound
on ABEP has been provided which is shown to become very
tight with increasing SNR. It has been observed that the SM
scheme is quite robust to channel estimation errors compared
to V-BLAST. Therefore, we conclude that the SM scheme
could be considered as a competitive alternative to V-BLAST
in practical applications.
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